
Regression Test Selection for AspectJ Software

Guoqing Xu
Ohio State University

Atanas Rountev
Ohio State University

Abstract

As aspect-oriented software development gains popular-
ity, there is growing interest in using aspects to implement
cross-cutting concerns in object-oriented systems. When
aspect-oriented features are added to an object-oriented
program, or when an existing aspect-oriented program is
modified, the new program needs to be regression tested to
validate these changes. To reduce the cost of regression test-
ing, a regression-test-selection technique can be used to se-
lect only a necessary subset of test cases to rerun. Unfortu-
nately, existing approaches for regression test selection for
object-oriented software are not effective in the presence of
aspectual information woven into the original code.

This paper proposes a new regression-test-selection
technique for AspectJ programs. At the core of our ap-
proach is a new control-flow representation for AspectJ
software which captures precisely the semantic intricacies
of aspect-related interactions. Based on this representation,
we develop a novel graph comparison algorithm for test se-
lection. Our experimental evaluation shows that, compared
to existing approaches, the proposed technique is capable
of achieving significantly more precise test selection.

1 Introduction

As software is modified, during development and main-
tenance, it is regression tested to provide confidence that the
changes did not introduce unexpected problems. Because
the size of the regression test suite typically keeps grow-
ing, a regression-test-selection technique can be employed
to reduce the cost of regression testing. A safe regression-
test-selection algorithm selects every test case that may re-
veal a fault in the modified software. Various regression
test selection techniques have been developed for procedu-
ral languages (e.g., [5, 6, 15, 20]) and for object-oriented
languages (e.g., [9, 10, 11, 16, 19, 8, 12].)

Of particular interest for our work is the technique pro-
posed by Harrold et al. [8] for regression test selection for
Java based on comparisons of control-flow graphs (CFGs).
Given a program P , regression tests are executed to build an

edge-coverage matrix which maps each test case to the set
of CFG edges exercised by that test case. For a subsequent
modified program version P ′, the CFGs of P and P ′ are
compared to identify “dangerous” edges in the CFG for P .
These edges represent program points at which P and P ′

differ. All and only test cases for P which cover dangerous
edges are selected for testing of P ′.

Regression test selection for aspect-oriented software.
Aspect-oriented software development is a popular ap-
proach for modularizing cross-cutting concerns, which sim-
plifies software maintenance and evolution. When aspect-
oriented features are added to an object-oriented program,
or when an existing aspect-oriented program is modified,
the program needs to be regression tested. A precise and
safe test selection technique can reduce significantly the
cost of regression testing needed to validate the modifica-
tions. Aspects can change dramatically the behavior of the
original code — for example, without any changes to the
original Java code, adding a single AspectJ aspect can ar-
bitrarily change the pre- and post-conditions of many meth-
ods. Arguably, regression testing is even more important for
aspect-oriented software than for object-oriented software,
due to the pervasive effects of small code changes. This pa-
per focuses on one instance of this problem: what are safe
and precise regression-test-selection techniques for systems
built with Java and AspectJ?

The executable code of an AspectJ program, produced
by an AspectJ compiler, is pure Java bytecode. Therefore,
an obvious approach is to use the regression-test-selection
technique from [8] to select tests based solely on the Java
bytecode, regardless of whether there are aspects in the
source code. However, in addition to the bytecode code that
corresponds to the source code (e.g., to bodies of methods
and advices), the compiled bytecode of an AspectJ program
contains extra code which is inserted by the compiler at cer-
tain join points during the weaving process. This compiler-
specific code checks run-time conditions, decides which ad-
vice needs to be invoked, and exposes data from the execu-
tion context of join points. Due to this compiler-specific
bytecode, the discrepancy between the source code (i.e.,
Java classes and AspectJ aspects) and the woven Java byte-
code can be very significant. This discrepancy creates seri-

ous problems for the graph-based approach from [8], and it
will select test cases that in fact do not need to be rerun. In
our experimental study, this naive selection approach typi-
cally selected 100% of the original test suite for rerunning.

Proposed solution. We propose a new source-code-
based control-flow representation of AspectJ programs, re-
ferred to as the AspectJ Inter-module Graph (AJIG). An
AJIG includes (1) CFGs that model the control flow within
Java classes, within aspects, and across boundaries between
aspects and classes through non-advice method calls, and
(2) interaction graphs that model the interactions between
methods and advices at certain join points. An AJIG cap-
tures the semantic intricacies of an AspectJ program with-
out introducing extra nodes and edges to represent the low-
level details of compiler-specific code. Thus, AJIGs depend
only on the input program and not on the implementation
details of any particular weaving compiler.

Based on this representation, we define a two-phase
graph traversal algorithm that determines a set of dangerous
AJIG edges corresponding to semantic source-code-level
changes made by a programmer. These edges define the
set of test cases that need to be rerun. We implemented the
regression-test-selection technique and performed an exper-
imental evaluation of its precision and cost. Our study indi-
cates that the technique has low cost and can effectively re-
duce the number of test cases selected for rerunning, clearly
outperforming the naive approach outlined above.

Contributions. The work described in this paper is the
first attempt to systematically address the regression test se-
lection problem for aspect-oriented programs. Our main
contributions are as follows:

• A new control-flow representation of the semantics of
AspectJ programs, independent of the low-level im-
plementation code introduced by a weaving compiler.
This source-code-based representation can serve as the
basis not only for regression test selection, but also for
various other static analyses for AspectJ.

• A two-phase graph traversal algorithm that identifies
differences between two versions of an AspectJ pro-
gram. The algorithm is specifically designed to take
into account the interactions between methods and ad-
vices at join points.

• A regression testing framework that implements this
technique using the abc AspectJ compiler [1].

• An experimental study of the precision and cost of the
technique. The results indicate that the AJIG-based ap-
proach can effectively and efficiently reduce the num-
ber of regression test cases to be rerun.

2 Example and Background

We will use the bean program from the AspectJ example
package [2] as a running example. We modified the orig-

class Point {
int x = 0, y = 0;
int getX() { return x; } int getY() { return y; }
void setRectangular(int newX, int newY)
throws Exception { setX(newX); setY(newY); }
void setX(int newX) throws Exception { x = newX; }
void setY(int newY) throws Exception { y = newY; }
String toString() { println("X="+x+",Y="+y); }

}
class Demo implements PropertyChangeListener {
void propertyChange(PropertyChangeEvent e) { ... }
static void main(String[] a) throws Exception {
Point p1 = new Point();
p1.addPropertyChangeListener(new Demo());
p1.setRectangular(5,2); println("p1 = " + p1);
p1.setX(6); p1.setY(3); println("p1 = " + p1);

}
}

Figure 1. Running example, part 1.

inal program by adding several advices to represent more
general advice interactions. The example uses aspects to
implement an event firing mechanism. Figure 1 shows a
class Point and a corresponding class Demo with a proper-
tyChange method which is to be invoked when a property
change event is fired. Method addPropertyChangeListener
and the companion field support are introduced in Point by
aspect BoundPoint, shown in Figure 2.

2.1 JIG-Based Regression Test Selection

Harrold et al. [8] present the first regression test selec-
tion technique for Java. They define a control-flow repre-
sentation referred to as Java Interclass Graph (JIG) which
extends traditional CFGs. The extensions account for fea-
tures such as as inheritance, dynamic binding, exceptions,
synchronization, and analysis of subsystems.

A JIG contains a CFG for each method that is internal to
the set of classes under analysis. Each call site is expanded
into a call node and a return node, and the call node is linked
with the entry node of the called method. There is a path
edge between the call node and the return node to represent
the path through the called method. For a method that is
external to the analyzed classes, the JIG does not represent
the intra-method control flow and a path edge is used to
connect the entry node and the exit node of that method. For
a virtual call, depending on the run-time type of the receiver
object, the call is bound to different methods. Details of
the representation of external method calls, exceptions, and
synchronization can be found in [8].

After constructing the JIGs of P and P ′, the technique
identifies dangerous edges — edges that may lead to behav-
ioral differences — by performing a synchronous traversal
of the JIGs. Given an edge e in P , the algorithm looks for
an edge e′ in P ′ which has the same label as e. If e′ is
found, the target nodes of e and e′ are compared to decide

aspect BoundPoint {
/* ’this’ is a reference to a Point object */
PropertyChangeSupport Point.support =
new PropertyChangeSupport(this);
void Point.addPropertyChangeListener
(PropertyChangeListener l) {

{ support.addPropertyChangeListener(l); }
void firePropertyChange(Point p, String property,
double oldval, double newval) {

p.support.firePropertyChange(property,
new Double(oldval),new Double(newval));

}
// ====== pointcuts =======
pointcut setterX(Point p):

call(void Point.setX(*)) && target(p);
pointcut setterXonly(Point p): setterX(p) &&

!cflow(execution(
void Point.setRectangular(int,int)));

// ====== advices ======
before(Point p, int x) throws InvalidException:
setterX(p) && args(x) { // before1

if (x < 0) throw new InvalidException("bad");
}
void around(Point p): setterX(p) { // around1

int oldX = p.getX(); proceed(p);
firePropertyChange(p,"setX",oldX,p.getX());

}
void around(Point p): setterXonly(p) { // around2

int oldX = p.getX(); proceed(p);
firePropertyChange(p,"onlysetX",oldX,p.getX());

}
before (Point p): setterX(p){ // before2

println("start setting p.x");
}
after(Point p) throwing (Exception ex):
setterX(p) { // afterThrowing1

println(ex);
}
after(Point p): setterX(p){ // after1

println("done setting p.x");
}
}

Figure 2. Running example, part 2.

whether e and e′ match. If e′ is not found, or e′ is found but
e and e′ do not match, e is deemed a dangerous edge. This
processing is performed recursively, starting from the main
method and from each class initialization method. When
testing a program P , the JIG edge coverage of a test suite T
is recorded in a coverage matrix, with one row per edge and
one column per test case. Testing of P ′ is done by rerunning
test cases from T that exercise dangerous edges.

2.2 AspectJ Semantics

A join point in AspectJ is a well-defined point in the ex-
ecution that can be monitored — e.g., a call to a method,
method body execution, etc. For a particular join point, the
textual part of the program executed during the time span
of the join point is the shadow of the join point [3]. We
classify shadows in two categories: statement shadows and

try{ around1(){ around2() {
before1(); if (residue) before2();
around1(); around2(); p1.setX(..);

}catch(extype e){ else{ } // around 2
afterThrowing1(); before2();
after1(); throw e; p1.setX(..);

}catch(Throwable e){ }
after1(); throw e; } // around1

} after1();

Figure 3. Execution of multiple advices.

body shadows. The statement shadow of a method call join
point is the corresponding call site. The body shadow of
a method execution join point is the body of that method.
For example, in Figure 1, call sites p1.setX() in main and
this.setX() in setRectangular are shadows of the join point
of a call to Point.setX, and both are statement shadows.

A pointcut is a set of join points that optionally exposes
some of the values in the execution context. AspectJ de-
fines several primitive pointcut designators; each one is ei-
ther static (defining a set of join point shadows) or dynamic
(defining a runtime condition). For example, static point-
cuts are call and execution, and dynamic pointcuts are args,
target, and cflow. A combined pointcut is dynamic if one of
its component pointcuts is dynamic; otherwise it is static.

Example. In Figure 2, setterX contains all join points
where Point.setX is called, and setterXonly contains only
join points where setX is called and the call is not within
the control flow of an execution of setRectangular. Both
pointcuts are dynamic because they contain dynamic prim-
itive pointcut designators.

An advice declaration consists of an advice kind (be-
fore, after, around), a pointcut, and a body of code forming
an advice. For an advice associated with a dynamic point-
cut, the advice may or may not be invoked at a join point at
run time, depending on the evaluation of the corresponding
runtime condition. The compiler needs to construct a dy-
namic residue of runtime checks to be performed at the join
point to determine whether the pointcut actually matches.

Example. Each of the six advices from Figure 2 could
potentially be invoked at call sites p1.setX() and this.setX()
in Figure 1. However, around2 will not be invoked at the
second call site because this call site is within the control
flow of an execution of setRectangular. At both call sites,
dynamic residues will be inserted by the compiler to check
if around2 should actually be invoked at run time.

Whenever multiple advices apply at the same join point,
precedence rules determine the order in which they execute.
If two advices are defined in the same aspect: (1) if either
one is an after-advice, then the one that appears later in the
aspect has precedence over the one that appears earlier, and
(2) otherwise, the one that appears earlier has higher prece-
dence. For brevity, we do not discuss advices from multiple

aspects; they are also handled by our implementation.
Example. The precedence of the advices in BoundPoint

at either of the shadows is as follows: before1, around1,
around2, before2, afterThrowing1, after1. The pseudocode
in Figure 3 illustrates the execution semantics of these ad-
vices at a join point. We use residue as an artificial decision
statement to indicate that around2 may or may not be in-
voked at run time.1 If around2 is invoked, before2 and the
actual call site are invoked by the call to proceed in around2.
Otherwise, before2 and the call site are invoked by the call
to proceed in around1. If an exception is thrown by the call
site or any advice, the control flow goes to afterThrowing1.
Advice after1 will be invoked regardless of whether the call
site and advices return normally or exceptionally.

3 Representation for AspectJ Software

To accurately model AspectJ semantic in a compiler-
independent manner, we propose a new control-flow rep-
resentation, the AspectJ Inter-module Graph (AJIG) which
extends the Java Interclass Graph from [8] with representa-
tions of interactions among methods and advices. The dis-
cussion considers only join points corresponding to call site.
For a method execution join point (i.e., when the shadow is
the body of a method m), a simple transformation can cre-
ate an artificial method whose body is the same as m, and
then replace the body of m with a call to this method. This
effectively transforms the join point for m’d body to a call
site join point.

Non-advice method calls. An explicit method call can
be made in an AspectJ program (1) from a class method2 to
a class method or an aspect method, (2) from an advice to
a class method or an aspect method, and (3) from an aspect
method to a class method or an aspect method. Because
an aspect uses only Java constructs to define non-advice
methods, such methods can be treated as class methods de-
fined in special aspect classes. After this adaptation, the JIG
representation can be used for all explicit method calls that
could occur in AspectJ.

Interactions for advices and methods. The AJIG is de-
signed to represent precisely all interactions involving ad-
vices; such interactions are at the core of aspect-oriented
programming. Unlike explicit method calls, an advice is
invoked implicitly at the shadow of a certain join point. Be-
cause the execution of the shadow in the original Java code
is completely replaced by the combination of advices that
match the shadow, we construct an interaction graph (IG)
for each shadow to model the semantics of the correspond-

1Although in this case one can statically decide whether around2 is
invoked, the example shows the semantics of the woven bytecode: the
compiler conservatively inserts a residue for a cflow pointcut.

2Class method will be used to refer to a method defined in a Java class,
and aspect method to refer to a non-advice method defined in an aspect.

procedure computeNestingTree
input ads: invocation sequence of advices
output tree: advice nesting tree
create node tree.root
for each advice A in ads in order do
 tree.root.addChild(A)
currAround := none
for each advice A in ads in order do
 if currAround != none do
 if A is AFTER and

currAround lexically-precedes A do
continue

currAround.addChild(A)
tree.root.removeChild(A)

 if A is AROUND do currAround := A

root

before1

around1 after1

around2

afterThrowing1

before2 cs

Figure 4. Advice nesting tree.

ing join point. For each shadow we replace its CFG nodes
and edges in the JIG with the corresponding IG.

When creating an IG, it is essential to consider the situa-
tion where multiple advices could be invoked at the shadow
and to represent advices with dynamic pointcuts which
match the shadow statically, but may or may not match at
run time. In the rest of this section we present a technique to
build an IG that specifically addresses these two problems.

3.1 Multiple Advice Invocations

Invocation order. Given a set of advices that statically
match a method call shadow, their precedence is computed
according to the rules described earlier. The call site con-
tained in the shadow is inserted before the first after-advice
in the ordered sequence; this call site will be denoted by cs .
For example, consider the six advices from Figure 2 which
statically match this.setX() in setRectangular. After taking
into account the precedence rules, the resulting sequence
is before1, around1, around2, before2, cs, afterThrowing1,
after1, where cs refers to this.setX().

Advice nesting tree. Based on this sequence, we build
an advice nesting tree which represents the run-time advice
nesting relationships. Each tree level contains at most one
around-advice, which is the root of all advices in the lower
levels of the tree. This construction is illustrated in Figure 4.
With each around-advice A the algorithm associates (1) a
possibly-empty set of before-advices and after-advices, (2)
zero or one around-advices, and potentially (3) the actual
call site that could be invoked by the call to proceed in A.
These advices and the call site appear as if they were nested
within A. The advice nesting tree for BoundPoint at shadow
this.setX() is shown in Figure 4.

Nodes at one level of the tree are invoked by the call to
proceed in the around-advice in the upper level of the tree.
For example, before2 and this.setX() at level 4 are invoked
by the call to proceed in around2 at level 3, which in turn
is invoked by the call to proceed in around1 at level 2. All

ph_root

entry

return

exit

before1

return

around1

 after advices ...

before1

entry

exit

...

around1

exit

return

proceed

...

entry

...

ph_proceed1

exit

return

around2

...

entry

...

around2

exit

return

proceed

...

entry

...

ph_proceed2

exit

return

before2

entry entry

exit

...

return

cs

before2

entry

exit

...

Point.setX

CFG edge Call edge Path edge

Figure 5. Interaction graph for this.setX().

advices at level 2 are invoked by the root node, which se-
mantically replaces the execution of the shadow.

Placeholder methods. Clearly, a key question for IG
building is how to represent calls to proceed. We use a
call to a ph proceed placeholder method to represent the
call to proceed in each around-advice (prefix “ph ” is short
for “placeholder”). The placeholder proceed method for an
around-advice contains calls to the children nodes in the
nesting tree. Such a method is built for each level of the tree
in bottom-up manner. The root node of the advice nesting
tree corresponds to a special placeholder method ph root.
Examples of such methods are shown in Figure 5.

3.2 After-Advices and Exceptions

The execution semantics of after-advices is more com-
plex to model because it is related to the representation of
exception handling. After-advices are classified as three
types: afterReturning, which is invoked when the crosscut
method returned normally; afterThrowing, which is invoked
when the crosscut method threw an exception of the spec-
ified type; and afterAlways, which is always invoked. Fig-
ure 6 illustrates the representation of after-advices in the
running example.

Representation of after-advices. Given a sequence of
after-advices that appears at some level of the advice nest-
ing tree, sorted in their invocation order, we partition it into
two categories. The normal category contains advices that
are invoked when the crosscut method returns normally, and
the exceptional category contains the ones that are invoked
when the method returns exceptionally. For example, con-
sider afterThrowing1 and after1 from Figure 2; both appear
at the second level of the tree. The normal category for this
level contains after1 and the exceptional category contains

return

exit

after1

exceptional exit
for ph_root for
type Exception

ph_root: type Exception

return

entry

afterThrowing1

return

exit

after1

entry

exit

...

before1

entry

x<0

around1...

ph_root

entry

return

before1
F

exit

normal exit
for before1

throw...

exit
exceptional exit
for before1 for
type InvalidException

after1

entry

exit

...

afterThrowing1

type <=
Exception

TT F

Figure 6. After-advices and exceptions.

afterThrowing1 and after1.
At each level of the tree, the placeholder method ph root

or ph proceed for that level contains a (call,return) node pair
for each after-advice. A sub-graph is constructed for the
normal category by linking the return node for an advice
invocation to the call node invoking the next advice in this
category. The sub-graph is added to the end of the place-
holder method corresponding to that tree level. In our ex-
ample, after1 is called by ph root and its sub-graph appears
at the end of the CFG for ph root.

There is also a sub-graph for the exceptional category,
with artificial exceptional entry and exceptional exit nodes.
Type Exception is associated with both nodes because it is
general enough to capture any type of propagated checked
exception. For each advice in the exceptional category, a
node pair (call,return) is created. If an afterThrowing advice
specifies an exception type ex, an artificial decision node
”type ≤ ex” is created to show that the run-time type of the
propagated exception is a subtype of ex. The “true” edge
of this decision node is connected to the call node invoking
the afterThrowing advice, and the “false” edge is connected
to the call node invoking the next advice in the exceptional
category (or to another decision node if that next advice is
afterThrowing). The decision node indicates that if the run-
time type of the exception matches ex, then the correspond-
ing afterThrowing advice will be invoked; otherwise, the
next advice in this category will be invoked instead.

The nodes in the exceptional sub-graph are linked to-
gether by connecting a return node for an invocation of an
after-advice with the call node invoking the next advice (or
with the corresponding decision node if the next advice is
afterThrowing). The exceptional entry node is connected
to the call node (or decision node) for the first advice, and
the return node of the final advice is connected to the ex-
ceptional exit node. The exceptional exit node of the ex-

ceptional sub-graph is also an exceptional exit node of the
enclosing placeholder method.

Representation of exception handling. Because the JIG
can adequately represent intraprocedural exception han-
dling within an advice or method, we discuss only the in-
terprocedural case. The JIG uses exceptional exit nodes
to represent uncaught exceptions within an advice or a
method. For each level of the tree that contains after-
advices, consider each exceptional exit node en in a before-
advice, around-advice, and the crosscut method (corre-
sponding to tree node cs) at that level. Node en is connected
to the exceptional entry node (of the exceptional category)
for the CFG of the placeholder method at that level. This
means that an exception thrown by a non-after-advice or
the crosscut method will be propagated to the exceptional
category of after-advices, and then depending on the type
of that exception, some after-advices in that category will
be invoked.

Each exceptional exit node en in an after-advice is con-
nected to the call node invoking the first following after-
advice from the exceptional category (or to the correspond-
ing decision node if that next advice is afterThrowing). If
the advice is the last one at that level of the tree, en is
connected to the exceptional exit node. This means that
if an after-advice throws an exception, the exception will be
propagated to the next afterAlways or afterThrowing advice
that could be invoked upon receiving this exception.

Example. Figure 6 shows the representation of excep-
tion handling for the running example. Because before1
throws an InvalidException, there is an exceptional exit
node in that advice. This node is connected to the excep-
tional entry node of the exceptional sub-graph in ph root.
At run time, the ”true” edge of the decision node for af-
terThrowing1 will be executed, because InvalidException is
a subtype of Exception. If the afterThrowing1 advice itself
threw an exception, we would link the exceptional exit node
in this advice to the call node for after1 in the exceptional
sub-graph, so that after1 can still be invoked.

3.3 Advices with Dynamic Pointcuts

A dynamic pointcut that statically matches a shadow
could potentially not match that shadow at run time. Al-
though some types of dynamic pointcuts can be determined
to match a shadow at compile time (e.g., setterX in Bound-
Point), in the general case such determination can occur
only at run time. We conservatively assume that for all dy-
namic pointcuts, whether they match a shadow or not has
to be determined at run time. Under this assumption, both
setterX and setterXonly are dynamically determined point-
cuts. Advices that are associated with dynamic pointcuts
will be referred to as dynamic advices. All six advices in
the running example are dynamic advices.

exit

after1

ph_root

entry

before1

ph_decision

ph_decision

...

around1

ph_proceed1

ph_decision

...

...

...
exceptional exit
for ph_root for
type Exception

ph_root: type Exception

entry

afterThrowing1

exit

after1

exit exceptional
exit for type

InvalidException

before1

entry
...

ph_decision

...

ph_decision

...

exit

entry
...

ph_proceed1

proceed

entry
...

around1

exit

...
T

F

T

T

T

T

F

F

F

F

type <=
Exception

T

F

Figure 7. IG with dynamic advices.

For a dynamic advice A, we create a placeholder deci-
sion node ph decision for the corresponding pointcut. The
“true” edge is connected to the call node for A, meaning that
if the decision node evaluates to true, A will be invoked. If
A is an around-advice, the “false” edge is connected to a
call node for its corresponding ph proceed method — if the
pointcut does not match the shadow at run time, the advices
that are nested within A will be invoked instead. If A is
not an around-advice, the “false” edge is simply connected
to the call node for the next advice (or to the exit node) in
the graph. All incoming edges of the call node for A are
redirected to the decision node for A. Figure 7 shows part
of the final interaction graph for BoundPoint with the rep-
resentation of dynamic advices. The graph is semantically
equivalent to the pseudocode from Figure 3.

4 Two-Phase Graph Traversal Algorithm

We use the AJIG to define a safe regression-test-
selection approach which generalizes the JIG-based ap-
proach from [8]. The presence of dynamic advices is prob-
lematic for the traversal algorithm from [8]. For example,
a test could execute a ph decision node in an AJIG without
executing the guarded advice. Because such nodes were
created artificially to represent the semantics of dynamic
advices, we need to design a new traversal algorithm that
appropriately handles decision nodes.

We use the algorithm from [8] to compare edges in Java
code. Whenever this algorithm traverses edges e and e′, it
checks whether their destination nodes N and N ′ are state-
ment shadows. (Recall that body shadows are converted to
statement shadows in the AJIG.) If both nodes are shadows,

their IGs are processed as described below. If neither is a
shadow, we proceed with the next pair of edges. If N is a
shadow and N ′ is not, an empty IG for N ′ is created and
IG comparison is performed.3 If N ′ is a shadow and N is
not, e is added to the dangerous set because it is not known
which advices will be invoked if the test is run for P ′.

First phase: interprocedural traversal. Given two IGs,
the first phase compares the invocation order of advices.
This comparison collapses the CFGs of advices and con-
siders only edges in ph * methods. The output is a set DE
(“dangerous edges”) of edges in P that are changed in P ′,
as well as a set FP (“further processing”) of advices whose
invocation order remains the same and whose bodies need
to be further inspected in the second phase. We start the
comparison on the first pairs of edges in ph root and in each
exceptional sub-graph which is not reachable from ph root.
During the comparison, the logic described below is contin-
uously applied to pairs of corresponding edges.

Four key situations could occur during the comparison.
The first case is when e and e′ go to call nodes for advices.
If the advices are different, e is added to the dangerous set
DE. Otherwise, the advice is added to set FP for further pro-
cessing; furthermore, if this is an around-advice, the corre-
sponding corresponding ph proceed methods in P and P ′

are compared recursively. The second case is when e goes
to a call node for an advice ad1, and e′ goes to a place-
holder decision node. Here DE is updated with e, because
the pointcut of ad1 has changed (from static to dynamic).

The most complex situation is case 3: e goes to a place-
holder decision node, and e′ goes to a call node for an ad-
vice ad2. Suppose ad1 is the advice whose invocation is
guarded by the decision node. If ad1 and ad2 are the same
advice, e is added to DE because the pointcut of ad1 has
changed in P ′. If they are not the same advice, the compar-
ison cannot stop because if ad1 is not invoked at run time,
the next advice that will be invoked could potentially match
ad2. The edge labeled ”true” is added to DE to show that
an invocation of ad1 does not exist in P ′. At this point, we
need to consider the next advice that will be invoked. This
leads to two subcases. First, if ad1 is a before-advice or an
after-advice, the next advice that will be invoked is the one
that follows ad1 in the current placeholder method. Thus, e′

should be compared with the edge leaving the return node of
the call to ad1. Second, if ad1 is an around-advice, the next
advice to be invoked is the first advice in the ph proceed
method for ad1. In this case we need to compare e′ with the
first edge in the corresponding placeholder method.

The fourth and final case is when both e and e′ go to deci-
sion nodes. Suppose ad1 and ad2 are the two advices whose
invocations are guarded by these decision nodes. A check is
performed to determine whether ad1 and ad2 have the same

3This is necessary when all advices for N are dynamic, in which case
it is possible that a test executes none of these advices at run time.

subject #Loc #Versions #Tests %mc %ic

bean 296 8 42 100 100
tracing 1059 6 45 100 100
telecom 870 7 41 100 75
quicksort 111 4 24 100 95
nullcheck 2991 5 63 54.1 76.6
dcm 3423 4 63 54.2 53.8
lod 3075 4 63 54.1 66

Table 1. Subject programs.

signature and the same pointcut. If either the signature or
the pointcut is changed, e is added to DE. Otherwise, ad1 is
added to FP; furthermore, if these are around-advices, their
ph proceed methods are traversed recursively to compare
all nested advices.

Second Phase: Intraprocedural Comparison. For each
advice in set FP, we synchronously traverse its CFGs in P
and P ′. The JIG-based algorithm can directly be applied
here to find dangerous edges within the body of the advice.

5 Empirical Evaluation

Our goal is to investigate empirically the effectiveness
and efficiency of the proposed technique. The study consid-
ers three research questions:

• What code changes can be introduced by the compiler
during weaving, and how do they affect regression test
selection?

• How much precision can be gained compared to a tech-
nique that operates only at the bytecode level?

• What is the cost of the analysis?

Implementation. We have implemented the AJIG repre-
sentation and the graph traversal algorithm in a regression
testing framework built on top of the abc AspectJ com-
piler [1]. To collect an execution trace, abc’s intermedi-
ate representation is instrumented after static weaving. The
instrumented code is used as input to the advice-weaving
component of the compiler. Hence, the generated trace does
not include any compiler-inserted information.

Subject programs. Our studies utilize the seven pro-
grams shown in Table 1. The first three are included in the
AspectJ compiler example package and were used by Xie
and Zhao [21]. The remaining four were obtained from the
ajbenchmarks package [1] used by Dufour et al. [7] to
measure the performance of AspectJ programs.

Table 1 shows the number of lines of code in the original
program, the number of versions, the size of the test suite,
the percentage of methods covered by the test suite (%mc),
and the percentage of method-advice interactions covered
by the test suite (%ic). Interaction coverage is defined as
follows. A static interaction occurs if there is an advice

subject #Cl1 #Me1 #Loc1 #Cl2 #Me2 #Loc2

bean 3 33 296 4 36 323
tracing 16 111 1059 18 115 2059
telecom 16 102 870 17 105 1110
quicksort 4 18 111 4 20 330
nullcheck 28 196 2991 33 484 5675
dcm 32 226 3423 37 541 6526
lod 32 220 3075 35 290 3855

Table 2. Changes introduced by the compiler.

whose pointcut statically matches a shadow. A dynamic in-
teraction occurs if a test executes a static interaction. The
interaction coverage is the ratio between the number of dy-
namic interactions and the number of static interactions.

We originally obtained three versions of tracing from the
AspectJ web site, and two versions of quicksort, three ver-
sions of nullcheck, two versions of dcm, and two versions of
lod from the abc web site. For each program, we created
several additional versions to produce complex situations
where multiple advices could be invoked at a shadow and
where there are both static and dynamic advices. There-
fore, rather than changes within bodies of methods or ad-
vices, the major differences between versions are the ad-
dition or removal of advices, the modification of pointcuts
(from static to dynamic or the other way around), and the
addition/removal of calls to proceed in around-advices. For
each program, we made the first version v1 a pure Java pro-
gram by removing all aspectual constructs.

To achieve higher interaction coverage, we modified the
main methods of the programs to accept user inputs. We
developed a test suite for each benchmark to exercise a large
number of control-flow paths. There is one test suite for the
last three benchmarks, because they are based on the same
Certrevsim tool for discrete event simulation of certificate
revocation schemes.

Threats to validity. As with any empirical study, this
study has limitations that must be considered when inter-
preting its results. We have considered the application of
the regression-test-selection techniques to only seven pro-
grams, which are smaller than more traditional Java soft-
ware systems, and we cannot claim that these results nec-
essarily generalize to other programs. However, the first
four programs we chose are known examples which have
been used in the evaluation of previous work [14, 21, 7], and
the last three are among the largest in the ajbenchmarks
suite that we could find as real-world AspectJ applications.

Threats to internal validity mostly lie with possible errors
in our implementation and measurement tools that could af-
fect outcomes. To reduce these threats, we performed sev-
eral sanity checks. We also spot checked, for many of the
changes considered, that the results produced by the two
phases of our approach were correct.

Compiler-introduced changes. Our first goal was to
understand the changes that the compiler could introduce
during weaving, and their effects on regression test selec-
tion. We compiled the benchmarks into bytecode using the
abc compiler, which currently outperforms the ajc com-
piler [3]. We then used the Dava decompiler included in the
Soot framework [18] to decompile the woven code back to
Java source code to inspect the changes. Table 2 provides
an overview of changes introduced by the compiler for the
original AspectJ program versions v2. Columns Cl1, Me1,
Loc1 and Cl2, Me2, Loc2 illustrate the numbers of classes,
methods, and lines of code before weaving and after weav-
ing. (Inaccuracy for #Loc could be introduced by Dava.)

Clearly, significant amount of additional code is inserted
by the weaving compiler. For tracing, nullcheck, dcm and
lod, the number of methods (and lines of code) grows dra-
matically. We found that the advices defined in these pro-
grams can crosscut almost every method in the base classes.
Some of these advices are around-advices, which makes the
compiler generate hundreds of around * methods, each of
which is called to replace a shadow statement. We observed
various examples of changes that actually had nothing to do
with the modification between versions:

• In front of an existing advice in tracing, we added a
new one that matches a different shadow. As a result,
the compiler changed the name of the existing advice
as well as the call site that invokes this advice.

• When we removed a control-flow path in a before-
advice in bean, this advice method disappeared. In-
stead of calling the advice method, the compiler in-
lined the whole advice body at the shadow.

• When the before-advice was inlined, the names of
some local variables in the method that contains the
shadow were changed because of name conflicts.

• When we added an afterThrowing advice in bean, the
compiler generated a try-catch block that enclosed the
shadow, regardless of whether the advices and the call
site would actually throw an exception.

• When the pointcut setterXonly was added in a version
in bean, dynamic residue was inserted at both of shad-
ows this.setX and p.setX. However, the pointcut would
never match the former.

The key observation is that such changes to the woven
bytecode are due to low-level details of the compiler imple-
mentation, but they are not program changes that should af-
fect regression test selection. Unfortunately, such changes
can prevent the existing JIG-based algorithm [8] from se-
lecting only the changes made in the source code.

Study of two regression-test-selection techniques. We
performed a study of two regression-test-selection tech-
niques: the existing JIG-based technique from [8] and the

b2 100/57.1 b3 100/52.3 76.2/76.2
b4 100/57.1 71.4/71.4 b5 100/90.0 100/85.7
b6 100/90.0 100/85.7 b7 100/90.0 100/85.7
b8 100/90.0 100/85.7 tr2 100/95
tr3 100/95 100/95 tr4 100/95 100/50
tr5 100/95 100/95 tr6 100/95 100/50
te2 71.4/39.3 te3 100/53.6 97.8/57.1
te4 100/71.4 100/71.4 te5 100/71.4 100/28.6
te6 100/71.4 100/28.6 te7 100/28.6 100/39.3
q2 100/100 q3 100/100 100/0
q4 100/100 100.95.2 n2 100/90
n3 100/98.4 100/90 n4 100/90 100/90
n5 100/98.4 100/90 n6 100/98.4 100/48.2
d2 100/98.4 d3 100/98.4 100/90
d4 100/98.4 100/100 d5 100/90 98.4/0
l2 100/98.4 l3 100/98.4 100/90
l4 100/90 100/90 l5 100/98.4 100/90

Table 3. Regression test suite reduction.

proposed AJIG-based technique. Although there are vari-
ations of JIG-based selection [12], we consider only edge-
level selection because our approach identifies changes at
the edge level. The study evaluated two cases: (1) P is a
Java program and P ′ is an AspectJ program, and (2) both P
and P ′ are AspectJ programs. Hence, for each program, we
compared each version to its pure Java version v1 and to its
original AspectJ version v2.

Table 3 shows the test suite reduction achieved by the
two techniques. The numbers show the percentage of test
cases that need to be rerun. Each AspectJ program version
is labeled with its number — e.g., b3 corresponds to version
v3 of bean, te5 is version v5 of telecom, etc. There are
two table cells for each AspectJ program version vi (i≥2).
The first cell considers P to be the pure Java version v1

and P ′ to be vi. The second cell considers P to be the
original AspectJ version v2 and P ′ to be vi (i≥3). In each
cell of the table, a slash ”/” separates the percentage of test
cases selected by the edge-level JIG-based technique, and
the percentage of test cases selected by our approach.

In most cases, our technique outperforms the JIG-based
technique. For some cases such as the second cell for
q3, our technique selected no test cases, whereas the JIG-
based technique selected all of them. In this particular case
there was a removal of a dynamic after-advice that statically
matches every call site, but is never executed at run time.
The dynamic residue inserted by the compiler at each call
site forced the JIG-based technique to select all test cases.
As another example, no tests could be avoided by our ap-
proach for the first cells of q2, q3, and q4, because these
versions contain advices that crosscut base Java methods
which are always executed at run time (e.g., main). Hence,
it is impossible to avoid any tests when each of these ver-
sions is compared with the pure Java version v1.

Analysis cost. The analysis runs in practical time, com-
pared to the compilation time. For example, for the three
largest programs nullcheck, lod and dcm, our analysis ran
in 1.88, 0.78 and 0.94 seconds as part of the compila-
tion, while the entire compilation process finished in 11.50,
11.39 and 12.36 seconds respectively.

6 Related Work

The abc compiler group [1] developed the AspectBench
Compiler for AspectJ, which provides a variety of static
analyses and optimizations [3, 4]. We implemented our
technique as an extension to the compiler, building the AJIG
representation before advice weaving.

Many researchers have considered the problem of regres-
sion test selection (e.g., [6, 15, 5, 8, 15, 19, 13]). The closest
related work is the JIG-based approach by Harrold et al. [8].
As evident in our experimental study, this approach does not
appear to be effective for woven bytecode, and typically se-
lects 100% of the test cases. Previous work by Xu [23] and
Zhao et al. [27] proposed approaches for selecting regres-
sion test for aspect-oriented programs. Both of these ap-
proaches suggest to use a ”clean” CFG to model the control
flow of aspect-oriented programs, excluding the compiler-
specific information. However, [23] leaves the precise def-
inition and evaluation of the ”clean” CFG for future work.
The CFG model proposed by [27] does not consider the sit-
uation where multiple advices apply at a shadow, or the ex-
istence of dynamic advices. This work does not implement
or evaluate the proposed approaches.

Rinard et al. [14] present a classification of the inter-
actions between methods and advices, and apply a pointer
and escape analysis. Zhao defines control-flow representa-
tions for a variety of testing and analysis tasks for aspect-
oriented programs [26, 24, 25]. The proposed models are
fairly lightweight: they do not include representations for
any complex situations, such as multiple advices or dy-
namic advices. Furthermore, there are no implementations
or evaluations of these models.

Souter et al. [17] develop a test selection technique based
on concerns. To reduce the cost of running tests, they pro-
pose to instrument only the concerns of interest. They also
propose to select or prioritize tests for the selected concerns.
Xu and Xu [22] present a specification-based testing ap-
proach for aspect-oriented programs. They create aspec-
tual state models using flattened regular expressions. Xie
and Zhao [21] describe a wrapper class synthesis technique
and a framework for generating test inputs for AspectJ pro-
grams. These efforts focus on testing of aspect-related fea-
tures, whereas our work is the first attempt to systematically
perform regression test selection for general AspectJ code.

7 Conclusions

We propose a regression-test-selection technique specif-
ically aimed at complex AspectJ language features. The
approach builds the AJIG control-flow representation, at
the core of which are graphs encoding the interactions
among multiple advices. Because the AJIG is built from
the source code, it does not represent any compiler-specific
code. Thus, when the AJIGs for two program versions are
compared, the identification of dangerous edges captures
the semantic differences between the two versions while
abstracting away the low-level details that are specific to
a compiler implementation. We propose a graph traversal
algorithm in which the key step is to compare the calling
structure of interaction graphs. Our experimental study in-
dicates that (1) low-level compiler-specific changes occur
commonly, and (2) our technique can effectively reduce test
suite size, clearly outperforming the JIG-based approach.

The AJIG is a general control-flow model for AspectJ
software which could serve as basis for various static anal-
yses for AspectJ: regression test selection [23, 27], change
impact analysis [24], data flow analysis [26], program slic-
ing [25], analyses for program understanding, etc. In the
future we will investigate such uses of this representation.

Acknowledgments. We would like to thank the ICSE
reviewers for their valuable comments and suggestions.

References

[1] AspectBench Compiler. abc.comlab.ox.ac.uk.
[2] AspectJ Compiler. www.aspectj.org.
[3] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,

J. Lhoták, O. Lhoták, O. de Moor, D. Sereni, G. Sittam-
palam, and J. Tibble. Optimising AspectJ. In Conf. Pro-
gramming Language Design and Implementation, pages
117–128, 2005.

[4] P. Avgustinov, E. Hajiyev, N. Ongkingco, O. de Moor,
D. Sereni, J. Tibble, and M. Verbaere. Semantics of static
pointcuts in AspectJ. In Symp. Principles of Programming
Languages, pages 11–23, 2007.

[5] T. Ball. On the limit of control flow analysis for regression
test selection. In Int. Symp. Software Testing and Analysis,
pages 134–142, 1998.

[6] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo. TestTube: A
system for selective regression testing. In Int. Conf. Software
Engineering, pages 211–220, 1994.

[7] B. Dufour, C. Goard, L. Hendren, O. de Moor, G. Sittam-
palam, and C. Verbrugge. Measuring the dynamic behaviour
of AspectJ programs. In Conf. Object-Oriented Program-
ming Systems, Languages, and Applications, pages 150–
169, 2004.

[8] M. J. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pen-
nings, S. Sinha, S. A. Spoon, and A. Gujarathi. Regression
test selection for Java software. In Conf. Object-Oriented
Programming Systems, Languages, and Applications, pages
312–326, 2001.

[9] P. Hsia, X. Li, D. C. Kung, C.-T. Hsu, L. Li, Y. Toyoshima,
and C. Chen. A technique for the selective revalidation of
OO software. J. Software Maintenance, 9(4):217–233, 1997.

[10] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen. Fire-
wall regression testing and software maintenance of object-
oriented systems. J. Object-Oriented Programming, 1994.

[11] D. C. Kung, J. Gao, P. Hsia, F. Wen, and Y. Toyoshima.
Change impact identification in object oriented software
maintenance. In Int. Conf. Software Maintenance, pages
202–211, 1994.

[12] A. Orso, N. Shi, and M. J. Harrold. Scaling regression test-
ing to large software systems. In Symp. Foundations of Soft-
ware Engineering, pages 241–251, 2004.

[13] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chi-
anti: A tool for change impact analysis of Java programs. In
Conf. Object-Oriented Programming Systems, Languages,
and Applications, pages 432–448, 2004.

[14] M. Rinard, A. Salcianu, and S. Bugrara. A classification
system and analysis for aspect-oriented programs. In Symp.
Foundations of Software Engineering, pages 147–158, 2004.

[15] G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique. ACM Trans. Software Engineering
and Methodology, 6(2):173–210, 1997.

[16] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression test
selection for C++ software. J. Software Testing, Verification
and Reliability, 10(2):77–109, 2000.

[17] A. Souter, D. Shepherd, and L. Pollock. Testing with respect
to concerns. In Int. Conf. Software Maintenance, pages 54–
63, 2003.

[18] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pom-
inville, and V. Sundaresan. Optimizing Java bytecode using
the Soot framework: Is it feasible? In Int. Conf. Compiler
Construction, LNCS 1781, pages 18–34, 2000.

[19] L. J. White and K. Abdullah. A firewall approach for re-
gression testing of object-oriented software. In 10th Annual
Software Quality Week, May 1997.

[20] L. J. White and H. K. N. Leung. A firewall concept for both
control-flow and data-flow in regression integration testing.
In Int. Conf. Software Maintenance, pages 262–270, 1992.

[21] T. Xie and J. Zhao. A framework and tool supports for gen-
erating test inputs of AspectJ programs. In Int. Conf. Aspect-
Oriented Software Development, pages 190–201, 2006.

[22] D. Xu and W. Xu. State-based incremental testing of aspect-
oriented programs. In Int. Conf. Aspect-Oriented Software
Development, pages 180–189, 2006.

[23] G. Xu. A regression tests selection technique for aspect-
oriented programs. In Workshop on Testing Aspect-Oriented
Programs, pages 15–20, 2006.

[24] J. Zhao. Change impact analysis for aspect-oriented soft-
ware evolution. In Int. Workshop on Principles of Software
Evolution, pages 108–112, 2002.

[25] J. Zhao. Slicing aspect-oriented software. In IEEE Int. Work-
shop on Program Comprehension, pages 251–260, 2002.

[26] J. Zhao. Data-flow-based unit testing of aspect-oriented pro-
grams. In Int. Computer Software and Applications Conf.,
page 188, 2003.

[27] J. Zhao, T. Xie, and N. Li. Towards regression test selec-
tion for AspectJ programs. In Workshop on Testing Aspect-
Oriented Programs, pages 21–26, 2006.

