Control-Flow Analysis

Chapter 8, Section 8.4
Chapter 9, Section 9.6

URL from the course web page [copyrighted material, please do not link to it or distribute it]
Control-Flow Graphs

• Control-flow graph (CFG) for a procedure/method
 – A node is a basic block: a single-entry-single-exit sequence of three-address instructions
 – An edge represents the potential flow of control from one basic block to another

• Uses of a control-flow graph
 – Inside a basic block: local code optimizations; done as part of the code generation phase
 – Across basic blocks: global code optimizations; done as part of the code optimization phase
 – Aspects of code generation: e.g., global register allocation
Control-Flow Analysis

• Part 1: Constructing a CFG
• Part 2: Finding dominators and post-dominators
• Part 3: Finding loops in a CFG
 – What exactly is a loop? We cannot simply say “whatever CFG subgraph is generated by *while, do-while, and for* statements” – need a general graph-theoretic definition
• Part 4: Static single assignment form (SSA)
• Part 5: Finding control dependences
 – Necessary as part of constructing the program dependence graph (PDG), a popular IR for software tools for slicing, refactoring, testing, and debugging
Part 1: Constructing a CFG

• Basic block: maximal sequence of consecutive three-address instructions such that
 – The flow of control can enter only through the first instruction (i.e., no jumps into the middle of the block)
 – The flow of control can exit only at the last instruction

• Given: the entire sequence of instructions

• First, find the leaders (starting instructions of all basic blocks)
 – The first instruction
 – The target of any conditional/unconditional jump
 – Any instruction that immediately follows a conditional or unconditional jump
Constructing a CFG

• Next, find the basic blocks: for each leader, its basic block contains itself and all instructions up to (but not including) the next leader

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. i = 1</td>
<td>First instruction</td>
</tr>
<tr>
<td>2. j = 1</td>
<td>Target of 11</td>
</tr>
<tr>
<td>3. t1 = 10 * i</td>
<td>Target of 9</td>
</tr>
<tr>
<td>4. t2 = t1 + j</td>
<td></td>
</tr>
<tr>
<td>5. t3 = 8 * t2</td>
<td></td>
</tr>
<tr>
<td>6. t4 = t3 - 88</td>
<td></td>
</tr>
<tr>
<td>7. a[t4] = 0.0</td>
<td></td>
</tr>
<tr>
<td>8. j = j + 1</td>
<td></td>
</tr>
<tr>
<td>9. if (j <= 10) goto (3)</td>
<td></td>
</tr>
<tr>
<td>10. i = i + 1</td>
<td>Follows 9</td>
</tr>
<tr>
<td>11. if (i <= 10) goto (2)</td>
<td></td>
</tr>
<tr>
<td>12. i = 1</td>
<td>Follows 11</td>
</tr>
<tr>
<td>13. t5 = i - 1</td>
<td>Target of 17</td>
</tr>
<tr>
<td>14. t6 = 88 * t5</td>
<td></td>
</tr>
<tr>
<td>15. a[t6] = 1.0</td>
<td></td>
</tr>
<tr>
<td>16. i = i + 1</td>
<td></td>
</tr>
<tr>
<td>17. if (i <= 10) goto (13)</td>
<td></td>
</tr>
</tbody>
</table>

Note: this example sets array elements a[i][j] to 0.0, for 1 <= i,j <= 10 (instructions 1-11). It then sets a[i][i] to 1.0, for 1 <= i <= 10 (instructions 12-17). The array accesses in instructions 7 and 15 are done with offsets computed as described in Section 6.4.3, assuming row-major order, 8-byte array elements, and array indexing that starts from 1, not from 0.
Artificial ENTRY and EXIT nodes are often added for convenience.

There is an edge from B_p to B_q if it is possible for the first instruction of B_q to be executed immediately after the last instruction of B_p. This is conservative: e.g., if $(3.14 > 2.78)$ still generates two edges.
Practical Considerations

• The usual data structures for graphs can be used
 – The graphs are sparse (i.e., have relatively few edges), so an adjacency list representation is the usual choice
 • Number of edges is at most $2 \times$ number of nodes

• Nodes are basic blocks; edges are between basic blocks, not between instructions
 – Inside each node, some additional data structures for the sequence of instructions in the block (e.g., a linked list of instructions)
 – Often convenient to maintain both a list of successors (i.e., outgoing edges) and a list of predecessors (i.e., incoming edges) for each basic block
Part 2: Dominance

• A CFG node d dominates another node n if every path from ENTRY to n goes through d
 – Implicit assumption: every node is reachable from ENTRY (i.e., there is no dead code)
 – A dominance relation $\text{dom} \subseteq \text{Nodes} \times \text{Nodes}$: $d \text{ dom } n$
 – The relation is trivially reflexive: $d \text{ dom } d$

• Node m is the immediate dominator of n if
 – $m \neq n$
 – $m \text{ dom } n$
 – For any $d \neq n$ such $d \text{ dom } n$, we have $d \text{ dom } m$

• Every node has a unique immediate dominator
 – Except ENTRY, which is dominated only by itself
This example is artificial: it does not have an EXIT node; nodes 4 and 8 have more than 2 outgoing edges.

ENTRY dom n for any n
1 dom n for any n except ENTRY
2 does not dominate any other node
3 dom 3, 4, 5, 6, 7, 8, 9, 10
4 dom 4, 5, 6, 7, 8, 9, 10
5 does not dominate any other node
6 does not dominate any other node
7 dom 7, 8, 9, 10
8 dom 8, 9, 10
9 does not dominate any other node
10 does not dominate any other node

Immediate dominators:
1 → ENTRY 2 → 1
3 → 1 4 → 3
5 → 4 6 → 4
7 → 4 8 → 7
9 → 8 10 → 8
A Few Observations

• For any acyclic path from ENTRY to \(n \), all dominators of \(n \) appear along the path, always in the same order (for all such paths)

• Dominance is a transitive relation: \(a \ dom b \) and \(b \ dom c \) means \(a \ dom c \)

• Dominance is an anti-symmetric relation: \(a \ dom b \) and \(b \ dom a \) means that \(a \) and \(b \) must be the same
 – Reflexive, anti-symmetric, transitive: partial order

• If \(a \) and \(b \) are two dominators of some \(n \), either \(a \ dom b \) or \(b \ dom a \)
Dominator Tree

• The parent of n is its immediate dominator

The path from n to the root contains all and only dominators of n

Post-Dominance

• A CFG node d **post-dominates** another node n if every path from n to EXIT goes through d
 – Implicit assumption: EXIT is reachable from every node
 – A relation $pdom \subseteq \text{Nodes} \times \text{Nodes}$: $d \ pdom \ n$
 – The relation is trivially reflexive: $d \ pdom \ d$

• Node m is the **immediate post-dominator** of n if
 – $m \neq n; m \ pdom \ n; \forall d \neq n. \ d \ pdom \ n \Rightarrow d \ pdom \ m$
 – Every n has a unique immediate post-dominator

• Post-dominance on a CFG is equivalent to dominance on the reverse CFG (all edges reversed)

• **Post-dominance tree**: the parent of n is its immediate post-dominator; root is EXIT
Extend the previous example with EXIT

ENTRY does not post-dominate any other n
1 \textit{pdom} ENTRY, 1, 9
2 does not post-dominate any other n
3 \textit{pdom} ENTRY, 1, 2, 3, 9
4 \textit{pdom} ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other n
6 does not post-dominate any other n
7 \textit{pdom} ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 \textit{pdom} ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other n
10 \textit{pdom} ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT \textit{pdom} n for any n

Immediate post-dominators:
ENTRY \rightarrow 1 1 \rightarrow 3
2 \rightarrow 3 3 \rightarrow 4
4 \rightarrow 7 5 \rightarrow 7
6 \rightarrow 7 7 \rightarrow 8
8 \rightarrow 10 9 \rightarrow 1
10 \rightarrow EXIT
The path from n to the root contains all and only post-dominators of n

Constructing the post-dominator tree: use any algorithm for constructing the dominator tree; just “pretend” that the edges are reversed
Computing the Dominator Tree

• Theoretically superior algorithms are not necessarily the most desirable in practice
• Our choice (for the default project): Cooper et al.,
• Formulation and algorithm based on insights from dataflow analysis
 – Essentially, solving a system of mutually-recursive equations – more later ...
• I expect you to read the paper carefully and to implement the algorithm for computing the dominator tree
Part 3: Loops in CFGs

- **Cycle**: sequence of edges that starts and ends at the same node
 - Example:

- **Strongly-connected component (SCC)**: a maximal set of nodes such as each node in the set is reachable from every other node in the set
 - Example:

- **Loop**: informally, a strongly-connected component with a single entry point
 - An SCC that is not a loop:
Back Edges and Natural Loops

• Back edge: a CFG edge \((n,h)\) where \(h\) dominates \(n\)
 – Easy to see that \(n\) and \(h\) belong to the same SCC

• Natural loop for a back edge \((n,h)\)
 – The set of all nodes \(m\) that can reach node \(n\) without going through node \(h\) (trivially, this set includes \(h\))
 – Easy to see that \(h\) dominates all such nodes \(m\)
 – Node \(h\) is the header of the natural loop

• Trivial algorithm to find the natural loop of \((n,h)\)
 – Mark \(h\) as visited
 – Perform depth-first search (or breadth-first) starting from \(n\), but follow the CFG edges in reverse direction
 – All and only visited nodes are in the natural loop
Immediate dominators:
1 → ENTRY 2 → 1 3 → 1
4 → 3 5 → 4 6 → 4
7 → 4 8 → 7 9 → 8
10 → 8 EXIT → 10

Back edges: 4 → 3, 7 → 4, 8 → 3, 9 → 1, 10 → 7

Loop(10 → 7) = { 7, 8, 10 }

Loop(7 → 4) = { 4, 5, 6, 7, 8, 10 }
Note: Loop(10 → 7) ⊆ Loop(7 → 4)

Loop(4 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
Note: Loop(7 → 4) ⊆ Loop(4 → 3)

Loop(8 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
Note: Loop(8 → 3) = Loop(4 → 3)

Loop(9 → 1) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
Note: Loop(4 → 3) ⊆ Loop(9 → 1)
Loops in the CFG

• Find all back edges; each target h of at least one back edge defines a loop L with $header(L) = h$

• $body(L)$ is the union of the natural loops of all back edges whose target is $header(L)$
 – Note that $header(L) \in body(L)$

• Example: this is a single loop with header node 1

• For two CFG loops L_1 and L_2
 – $header(L_1)$ is different from $header(L_2)$
 – $body(L_1)$ and $body(L_2)$ are either disjoint, or one is a proper subset of the other (nesting – inner/outer)
Flashback to Graph Algorithms

• Depth-first search in the CFG [Cormen et al. book]
 – Set each node’s color as white
 – Call DFS(ENTRY)
 – DFS(n)
 • Set the color of n to grey
 • For each successor m: if color is white, call DFS(m)
 • Set the color of n to black

• Inside DFS(n), seeing a grey successor m means that (n,m) is a retreating edge
 – Note: m could be n itself, if there is an edge (n,n)

• The order in which we consider the successors matters: the set of retreating edges depends on it
Reducible Control-Flow Graphs

• For reducible CFGs, the retreating edges discovered during DFS are all and only back edges
 – The order during DFS traversal is irrelevant: all DFS traversals produce the same set of retreating edges

• For irreducible CFGs: a DFS traversal may produce retreating edges that are not back edges
 – Each traversal may produce different retreating edges
 – Example:
 • No back edges
 • One traversal produces the retreating edge $3 \rightarrow 2$
 • The other one produces the retreating edge $2 \rightarrow 3$
Reducibility (1/2)

• A number of equivalent definitions
 – One of them we already saw

• The graph can be reduced to a single node with the application of the following two rules
 – Given a node n with a single predecessor m, merge n into m; all successors of n become successors of m
 – Remove an edge $n \rightarrow n$

• Try this on the graphs from slides 18, 17, and 20
Reducibility (2/2)

• The essence of irreducibility: a SCC with multiple possible entry points
 – If the original program was written using if-then, if-then-else, while-do, do-while, break, and continue, the resulting CFG is always reducible
 – If goto was used by the programmer, the CFG could be irreducible (but, in practice, it typically is reducible)

• Optimizations of the intermediate code, done by the compiler, could introduce irreducibility

• Code obfuscation: e.g., Java bytecode can be transformed to be irreducible, making it impossible to reverse-engineer a valid Java source program
Part 4: Static Single Assignment (SSA) Form

• Source: Cytron et al., ACM TOPLAS, Oct. 1991
 – Section 1 (ignore Section 1.1)
 – Section 2
 – Section 3 (ignore Section 3.1)
 – Section 4 (ignore the detailed proofs in Section 4.3)

• The key issues
 – Insert ϕ-functions at join points (Sections 3 and 4)
 – Rename the variables so that each use (read) of a variable is reached by exactly one definition (write) of that variable – i.e., by a single assignment
 • Section 5.2 discusses this issue, but we will not

• Alternative for dom. frontiers: Cooper et al. 2001
Part 5: Control Dependence: Informally

• A node \(n \) is control dependent on a node \(c \) if
 – There exists an edge \(e_1 \) coming out of \(c \) that definitely causes \(n \) to execute
 – There exists some edge \(e_2 \) coming out of \(c \) that is the start of some path that avoids the execution of \(n \)

• The decision made at \(c \) affects whether \(n \) gets executed: if \(e_1 \) is followed, \(n \) definitely is executed; if \(e_2 \) is followed, there is the possibility that \(n \) is not executed at all
 – Thus, \(n \) is control dependent on \(c \) – the control-flow leading to \(n \) depends on what \(c \) does
Control Dependence: Formally

• (part 1) \(n \) is control dependent on \(c \) if
 – \(n \neq c \)
 – \(n \) does not post-dominate \(c \)
 – there exists a path from \(c \) to \(n \) such that \(n \) post-dominates every node on the path except \(c \)

• (part 2) \(n \) is control dependent on \(n \) if
 – there exists a path from \(n \) to \(n \) (with at least one edge) such that \(n \) post-dominates every node on the path
 • this implies that \(n \) has two outgoing edges
 • this case applies to the header of a loop

• See Cytron et al., 1991, Section 6 for more details
 – \(c \) belongs to \(DF(n) \) but computed on the reverse CFG
Consider all branch nodes c: 1, 4, 7, 8, 10

ENTRY does not post-dominate any other n
1 $pdom$ ENTRY, 1, 9
2 does not post-dominate any other n
3 $pdom$ ENTRY, 1, 2, 3, 9
4 $pdom$ ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other n
6 does not post-dominate any other n
7 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other n
10 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT $pdom$ n for any n

2 is control dependent on 1
3, 4, 5, 6 are control dependent on 4
4, 7 are control dependent on 7
9, 1, 3, 4, 7, 8 are control dependent on 8
7, 8, 10 are control dependent on 10
Finding All Control Dependences

• Consider all CFG edges \((c,x)\) such that \(x\) does not post-dominate \(c\) (therefore, \(c\) is a branch node)

• Traverse the post-dominator tree bottom-up
 – \(n = x\)
 – while \((n \neq \text{parent of } c\) in the post-dominator tree\)
 • report that \(n\) is control dependent on \(c\)
 • \(n = \text{parent of } n\) in the post-dominator tree
 – Example: for CFG edge \((8,9)\) from the previous slide, traverse and report \(9, 1, 3, 4, 7, 8\) (stop before 10)

• Other algorithms exist, but this one is simple and works quite well [Cooper et al., 2001]