Dataflow Analysis

Chapter 9, Section 9.2, 9.3, 9.4
Dataflow Analysis

• Dataflow analysis is a sub-area of static program analysis (aka compile-time analysis)
 – Used in the compiler back end for optimizations of three-address code and for generation of target code
 – For software engineering: software understanding, restructuring, testing, verification

• Attaches to each CFG node some information that describes properties of the program at that point
 – Based on lattice theory

• Defines algorithms for inferring these properties
 – e.g., fixed-point computation
Reaching Definitions

• A classical example of a dataflow analysis
 – We will consider **intraprocedural** analysis: only inside a single procedure, based on its CFG

• For this discussion, pretend that the CFG nodes are individual instructions, not basic blocks
 – Each node defines two **program points**: immediately before and immediately after

• Goal: identify all connections between variable definitions (“write”) and variable uses (“read”)
 – \(x = y + z \) has a **definition** of \(x \) and **uses** of \(y \) and \(z \)
Reaching Definitions

• A definition \(d \) reaches a program point \(p \) if there exists a CFG path that
 – starts at the program point immediately after \(d \)
 – ends at \(p \)
 – does not contain a definition of \(d \) (i.e., \(d \) is not “killed”)

• The CFG path may be infeasible (could never occur)
 – Any compile-time analysis has to be conservative

• For a CFG node \(n \)
 – \(\text{IN}[n] \) is the set of definitions that reach the program point immediately before \(n \)
 – \(\text{OUT}[n] \) is the set of definitions that reach the program point immediately after \(n \)
 – Output of reaching definitions analysis: sets \(\text{IN}[n] \) and \(\text{OUT}[n] \) for each CFG node \(n \)
Examples of relationships:
IN[n2] = OUT[n1]
IN[n5] = OUT[n4] \cup OUT[n10]
OUT[n7] = IN[n7]
OUT[n9] = (IN[n9] – {d1,d4}) \cup \{d7\}
Formulation as a System of Equations

- For each CFG node n

\[
\text{IN}[n] = \bigcup_{m \in \text{Predecessors}(n)} \text{OUT}[m] \quad \text{OUT}[\text{ENTRY}] = \emptyset
\]

\[
\text{OUT}[n] = (\text{IN}[n] - \text{KILL}[n]) \cup \text{GEN}[n]
\]

- $\text{GEN}[n]$ is a singleton set containing the definition d at n
- $\text{KILL}[n]$ is the set of all defs of the variable written by d

- It can be proven that the “smallest” sets $\text{IN}[n]$ and $\text{OUT}[n]$ that satisfy this system are exactly the solution for the Reaching Definitions problem
 - To ponder: how do we know that this system has any solutions? how about a unique smallest one?
Iteratively Solving the System of Equations

\[
\text{OUT}[n] = \emptyset \text{ for each CFG node } n
\]

\textit{change} = \text{true}

\textbf{While (change)}

1. For each \(n \) other than ENTRY and EXIT
 \[
 \text{OUT}_{old}[n] = \text{OUT}[n]
 \]

2. For each \(n \) other than ENTRY
 \[
 \text{IN}[n] = \text{union of } \text{OUT}[m] \text{ for all predecessors } m \text{ of } n
 \]

3. For each \(n \) other than ENTRY and EXIT
 \[
 \text{OUT}[n] = (\ \text{IN}[n] - \text{KILL}[n] \) \cup \text{GEN}[n]
 \]

4. \(\text{change} = \text{false} \)

5. For each \(n \) other than ENTRY and EXIT
 If \((\text{OUT}_{old}[n] \neq \text{OUT}[n]) \) \(\text{change} = \text{true} \)
Worklist Algorithm

IN\[n\] = \emptyset for all \(n\)

Put the successor of ENTRY on *worklist*

While (*worklist* is not empty)

1. Remove a CFG node \(m\) from the worklist
2. \(\text{OUT}[m] = (\text{IN}[m] - \text{KILL}[m]) \cup \text{GEN}[m]\)
3. For each successor \(n\) of \(m\)

 \(\text{old} = \text{IN}[n]\)

 \(\text{IN}[n] = \text{IN}[n] \cup \text{OUT}[m]\)

 If \((\text{old} \neq \text{IN}[n])\) add \(n\) to *worklist*

This is “chaotic” iteration

- The order of adding-to/removing-from the worklist is unspecified
 - e.g., could use stack, queue, set, etc.
- The order of processing of successor nodes is unspecified

Regardless of order, the resulting solution is always the same
A Simpler Formulation

• In practice, an algorithm will only compute $\text{IN}[n]$

\[
\text{IN}[n] = \bigcup_{m \in \text{Predecessors}(n)} (\text{IN}[m] - \text{KILL}[m]) \cup \text{GEN}[m]
\]

– Ignore predecessor m if it is ENTRY

• Worklist algorithm
 – $\text{IN}[n] = \emptyset$ for all n
 – Put the successor of ENTRY on the worklist
 – While the worklist is not empty, remove m from the worklist; for each successors n of m, do
 • $old = \text{IN}[n]$
 • $\text{IN}[n] = \text{IN}[n] \cup (\text{IN}[m] - \text{KILL}[m]) \cup \text{GEN}[m]$
 • If ($old \neq \text{IN}[n]$) add n to worklist
A Few Notes

• We sometimes write

\[
\text{IN}[n] = \bigcup_{m \in \text{Predecessors}(n)} (\text{IN}[m] \cap \text{PRES}[m]) \cup \text{GEN}[m]
\]

• \text{PRES}[n] : the set of all definitions “preserved” (i.e., not killed) by \(n \)

• Efficient implementation: bitvectors
 – Sets are presented by bitvectors; set intersection is bitwise AND; set union is bitwise OR
 – \text{GEN}[n] and \text{PRES}[n] are computed once, at the very beginning
 – \text{IN}[n] are computed iteratively, using a worklist
Reaching Definitions and Basic Blocks

• For space/time savings, we can solve the problem for basic blocks (i.e., CFG nodes are basic blocks)
 – Program points are before/after basic blocks
 – \(\text{IN}[n] \) is still the union of \(\text{OUT}[m] \) for predecessors \(m \)
 – \(\text{OUT}[n] \) is still \((\text{IN}[n] - \text{KILL}[n]) \) \(\cup \) \(\text{GEN}[n] \)

• \(\text{KILL}[n] = \text{KILL}[s_1] \cup \text{KILL}[s_2] \cup ... \cup \text{KILL}[s_k] \)
 – \(s_1, s_2, ..., s_k \) are the statements in the basic blocks

• \(\text{GEN}[n] = \text{GEN}[s_k] \cup (\text{GEN}[s_{k-1}] - \text{KILL}[s_k]) \cup (\text{GEN}[s_{k-2}] - \text{KILL}[s_{k-1}] - \text{KILL}[s_k]) \cup ... \cup (\text{GEN}[s_1] - \text{KILL}[s_2] - \text{KILL}[s_3] - ... - \text{KILL}[s_k]) \)
 – \(\text{GEN}[n] \) contains any definition in the block that is downwards exposed (i.e., not killed by a subsequent definition in the block)
ENTRY

\[i = m - 1 \]

\[j = n \]

\[a = u_1 \]

\[i = i + 1 \]

\[j = j - 1 \]

\[a = u_2 \]

\[i = u_3 \]

\[\text{if (…)} \]

\[\text{if (…)} \]

EXIT

\[\text{KILL}[n_2] = \{ d_1, d_2, d_3, d_4, d_5, d_6, d_7 \} \]

\[\text{GEN}[n_2] = \{ d_1, d_2, d_3 \} \]

\[\text{KILL}[n_3] = \{ d_1, d_2, d_4, d_5, d_7 \} \]

\[\text{GEN}[n_3] = \{ d_4, d_5 \} \]

\[\text{KILL}[n_4] = \{ d_3, d_6 \} \]

\[\text{GEN}[n_4] = \{ d_6 \} \]

\[\text{KILL}[n_5] = \{ d_1, d_4, d_7 \} \]

\[\text{GEN}[n_5] = \{ d_7 \} \]

\[\text{IN}[n_2] = \{ \} \]

\[\text{OUT}[n_2] = \{ d_1, d_2, d_3 \} \]

\[\text{IN}[n_3] = \{ d_1, d_2, d_3, d_5, d_6, d_7 \} \]

\[\text{OUT}[n_3] = \{ d_3, d_4, d_5, d_6 \} \]

\[\text{IN}[n_4] = \{ d_3, d_4, d_5, d_6 \} \]

\[\text{OUT}[n_4] = \{ d_4, d_5, d_6 \} \]

\[\text{IN}[n_5] = \{ d_3, d_4, d_5, d_6 \} \]

\[\text{OUT}[n_5] = \{ d_3, d_5, d_6, d_7 \} \]
Uses of Reaching Definitions Analysis

• Def-use (du) chains
 – For a given definition (i.e., write) of a memory location, which statements read the value created by the def?
 – For basic blocks: all upward-exposed uses

• Use-def (ud) chains
 – For a given use (i.e., read) of a memory location, which statements performed the write of this value?
 – The reverse of du-chains

• Goal: potential write-read (flow) data dependences
 – Compiler optimizations
 – Program understanding (e.g., slicing)
 – Dataflow-based testing: coverage criteria
 – Semantic checks: e.g., use of uninitialized variables
 – Could also find write-write (output) dependences
Live Variables

• A variable v is **live** at a program point p if there exists a CFG path that
 – starts at p
 – ends at a statement that reads v
 – does **not** contain a definition of v

• Thus, the value that v has at p could be used later
 – “could” because the CFG path may be infeasible
 – If v is not live at p, we say that v is **dead** at p

• For a CFG node n
 – $\text{IN}[n]$ is the set of variables that are live at the program point immediately before n
 – $\text{OUT}[n]$ is the set of variables that are live at the program point immediately after n
\begin{align*}
\text{ENTRY} & \quad n1 \\
i = m - 1 & \quad n2 \\
j = n & \quad n3 \\
a = u1 & \quad n4 \\
i = i + 1 & \quad n5 \\
j = j - 1 & \quad n6 \\
\text{if (...) & \quad n7} \\
a = u2 & \quad n8 \\
i = u3 & \quad n9 \\
\text{if (...) & \quad n10} \\
\text{EXIT} & \quad n11
\end{align*}

\begin{align*}
\text{OUT}[n1] &= \{ m, n, u1, u2, u3 \} \\
\text{IN}[n2] &= \{ m, n, u1, u2, u3 \} \\
\text{OUT}[n2] &= \{ n, u1, i, u2, u3 \} \\
\text{IN}[n3] &= \{ n, u1, i, u2, u3 \} \\
\text{OUT}[n3] &= \{ u1, i, j, u2, u3 \} \\
\text{IN}[n4] &= \{ u1, i, j, u2, u3 \} \\
\text{OUT}[n4] &= \{ i, j, u2, u3 \} \\
\text{IN}[n5] &= \{ i, j, u2, u3 \} \\
\text{OUT}[n5] &= \{ j, u2, u3 \} \\
\text{IN}[n6] &= \{ j, u2, u3 \} \\
\text{OUT}[n6] &= \{ u2, u3, j \} \\
\text{IN}[n7] &= \{ u2, u3, j \} \\
\text{OUT}[n7] &= \{ u2, u3, j \} \\
\text{IN}[n8] &= \{ u2, u3, j \} \\
\text{OUT}[n8] &= \{ u3, j, u2 \} \\
\text{IN}[n9] &= \{ u3, j, u2 \} \\
\text{OUT}[n9] &= \{ i, j, u2, u3 \} \\
\text{IN}[n10] &= \{ i, j, u2, u3 \} \\
\text{OUT}[n10] &= \{ i, j, u2, u3 \} \\
\text{IN}[n11] &= \{ \}
\end{align*}

\begin{align*}
\text{Examples of relationships:} \\
\text{OUT}[n1] &= \text{IN}[n2] \\
\text{OUT}[n7] &= \text{IN}[n8] \cup \text{IN}[n9] \\
\text{IN}[n10] &= \text{OUT}[n10] \\
\text{IN}[n2] &= (\text{OUT}[n2] - \{i\}) \cup \{m\}
\end{align*}
Formulation as a System of Equations

• For each CFG node n

\[
\text{OUT}[n] = \bigcup_{m \in \text{Successors}(n)} \text{IN}[m] \quad \text{IN}[\text{EXIT}] = \emptyset
\]

\[
\text{IN}[n] = (\text{OUT}[n] - \text{KILL}[n]) \cup \text{GEN}[n]
\]

- $\text{GEN}[n]$ is the set of all variables that are read by n
- $\text{KILL}[n]$ is a singleton set containing the variable that is written by n (even if this variable is live immediately after n, it is not live immediately before n)

• The smallest sets $\text{IN}[n]$ and $\text{OUT}[n]$ that satisfy this system are exactly the solution for the Live Variables problem
Iteratively Solving the System of Equations

\[IN[n] = \emptyset \text{ for each CFG node } n \]

change = true

While (*change*)

1. For each *n* other than ENTRY and EXIT
 \[IN_{\text{old}}[n] = IN[n] \]
2. For each *n* other than EXIT
 \[OUT[n] = \text{union of } IN[m] \text{ for all successors } m \text{ of } n \]
3. For each *n* other than ENTRY and EXIT
 \[IN[n] = (OUT[n] \setminus KILL[n]) \cup GEN[n] \]
4. *change* = false
5. For each *n* other than ENTRY and EXIT
 If \((IN_{\text{old}}[n] \neq IN[n])\) *change* = true
Worklist Algorithm

\[\text{OUT}[n] = \emptyset \text{ for all } n \]

Put the predecessors of EXIT on worklist

While (worklist is not empty)

1. Remove a CFG node \(m \) from the worklist
2. \(\text{IN}[m] = (\text{OUT}[m] - \text{KILL}[m]) \cup \text{GEN}[m] \)
3. For each predecessor \(n \) of \(m \)
 \[\text{old} = \text{OUT}[n] \]
 \[\text{OUT}[n] = \text{OUT}[n] \cup \text{IN}[m] \]
 If (\(\text{old} \neq \text{OUT}[n] \)) add \(n \) to worklist

As with the worklist algorithm for Reaching Definitions, this is chaotic iteration. But, regardless of order, the resulting solution is always the same.
A Simpler Formulation

• In practice, an algorithm will only compute $\text{OUT}[n]$.

$\text{OUT}[n] = \bigcup_{m \in \text{Successors}(n)} (\text{OUT}[m] - \text{KILL}[m]) \cup \text{GEN}[m]$

- Ignore successor m if it is EXIT

• Worklist algorithm
 - $\text{OUT}[n] = \emptyset$ for all n
 - Put the predecessors of EXIT on the worklist
 - While the worklist is not empty, remove m from the worklist; for each predecessor n of m, do
 • $\text{old} = \text{OUT}[n]$
 • $\text{OUT}[n] = \text{OUT}[n] \cup (\text{OUT}[m] - \text{KILL}[m]) \cup \text{GEN}[m]$
 • If ($\text{old} \neq \text{OUT}[n]$) add n to worklist
A Few Notes

• We sometimes write

\[\text{OUT}[n] = \bigcup_{m \in \text{Successors}(n)} (\text{OUT}[m] \cap \text{PRES}[m]) \cup \text{GEN}[m] \]

 – PRES[\(n\)]: the set of all variables “preserved” (i.e., not written) by \(n\)
 – Efficient implementation: bitvectors

• Comparison with Reaching Definitions
 – Reaching Definitions is a forward dataflow problem and Live Variables is a backward dataflow problem
 – Other than that, they are basically the same

• Uses of Live Variables
 – Dead code elimination: e.g., when \(x\) is not live at \(x=y+z\)
 – Register allocation (more later …)
Constant Propagation Analysis

• Can we guarantee that the value of a variable \(v \) at a program point \(p \) is always a known constant?

• Compile-time constants are quite useful
 – Constant folding: e.g., if we know that \(v \) is always 3.14 immediately before \(w = 2*v \); replace it \(w = 6.28 \)
 – Often due to symbolic constants
 – Dead code elimination: e.g., if we know that \(v \) is always false at if (\(v \)) …
 – Program understanding, restructuring, verification, testing, etc.
Basic Ideas

• At each CFG node \(n \), \(\text{IN}[n] \) is a map \(\text{Vars} \rightarrow \text{Values} \)
 – Each variable \(v \) is mapped to a value \(x \in \text{Values} \)
 – \(\text{Values} = \) all possible constant values \(\cup \{ \text{nac}, \text{undef} \} \)

• Special “value” \(\text{nac} \) (not-a-constant) means that the variable cannot be definitely proved to be a compile-time constant at this program point
 – E.g., the value comes from user input, file IO, network
 – E.g., the value is 5 along one branch of an if statement, and 6 along another branch of the if statement
 – E.g., the value comes from some \(\text{nac} \) variable

• Special “value” \(\text{undef} \) (undefined): used temporarily – we have not seen values for \(v \) yet
Formulation as a System of Equations

• OUT[ENTRY] = a map which maps each v to \textit{undef}

• For any other CFG node n
 – IN[n] = $\text{Merge}(\text{OUT}[m])$ for all predecessors m of n
 – OUT[n] = $\text{Update}(\text{IN}[n])$

• Merging two maps: if v is mapped to c_1 and c_2 respectively, in the merged map v is mapped to:
 – If $c_1 = \textit{undef}$, the result is c_2
 – Else if $c_2 = \textit{undef}$, the result is c_1
 – Else if $c_1 = \textit{nac}$ or $c_2 = \textit{nac}$, the result it \textit{nac}
 – Else if $c_1 \neq c_2$, the result is \textit{nac}
 – Else the result is c_1 (in this case we know that $c_1 = c_2$)
Formulation as a System of Equations

• **Updating** a map at an assignment $v = ...$
 – If the statement is not an assignment, $\text{OUT}[n] = \text{IN}[n]$

• The map does not change for any $w \neq v$

• If we have $v = c$, where c is a constant: in $\text{OUT}[n]$, v is now mapped to c

• If we have $v = p + q$ (or similar binary operators) and $\text{IN}[n]$ maps p and q to c_1 and c_2 respectively
 – If both c_1 and c_2 are constants: result is $c_1 + c_2$
 – Else if either c_1 or c_2 is nac: result is nac
 – Else: result is undef
ENTRY

a = 1

b = 2

c = a+b

if (…)

a = 1+c

b = 4+c

d = a+b

a = a+b

b = a+c

EXIT

OUT[n1] = {a → undef, b → undef, c → undef, d → undef }
OUT[n2] = {a → 1, b → undef, c → undef, d → undef }
OUT[n3] = {a → 1, b → 2, c → undef, d → undef }
OUT[n4] = {a → 1, b → 2, c → 3, d → undef }
OUT[n6] = {a → 4, b → 2, c → 3, d → undef }
OUT[n7] = {a → 4, b → 7, c → 3, d → undef }
OUT[n8] = {a → 4, b → 7, c → 3, d → 11 }
OUT[n9] = {a → 5, b → 2, c → 3, d → undef }
OUT[n10] = {a → 5, b → 6, c → 3, d → undef }
IN[n11] = {a → nac, b → nac, c → 3, d → 11 }
OUT[n11] = {a → nac, b → nac, c → 3, d → 11 }
OUT[n12] = {a → nac, b → nac, c → 3, d → 11 }

Note: in reality, d could be uninitialized at n11 and n12 (see Section 9.4.6 for a good discussion on this issue)
Foundations of Dataflow Analysis

You need to understand the basic ideas, not the technical details
Partial Order

- Given a set S, a relation r between elements of S is a set $r \subseteq S \times S$
 - Notation: if $(x,y) \in r$, write “$x \mathbin{r} y$”
 - Example: “less than” relation over integers

- A relation is a partial order if and only if
 - Reflexive: $x \mathbin{r} x$
 - Anti-symmetric: $x \mathbin{r} y$ and $y \mathbin{r} x$ implies $x = y$
 - Transitive: $x \mathbin{r} y$ and $y \mathbin{r} z$ implies $x \mathbin{r} z$
 - Example: “less than or equal to” over integers
 - By convention, the symbol used for a partial order is \leq or something similar to it (e.g. \sqsubseteq)
Partially Ordered Set

- **Partially ordered set** \((S, \leq)\) is a set \(S\) with a defined partial order \(\leq\)
- Greatest element: \(x\) such that \(y \leq x\) for all \(y \in S\); often denoted by \(1\) or \(\top\) (top)
- Least element: \(x\) such that \(x \leq y\) for all \(y \in S\); often denoted by \(0\) or \(\bot\) (bottom)
- It is not necessary to have 1 or 0 in a partially ordered set
 - e.g. \(S = \{a, b, c, d\}\) and only \(a \leq b\) and \(c \leq d\)
Displaying Partially Ordered Sets

• Represented by an undirected graph
 – Nodes = elements of S
 – If \(a \leq b \), a is shown below b in the picture
• If \(a \leq b \), there is an edge \((a,b)\)
 – But: transitive edges are typically not shown
• Example: \(S = \{0,a,b,c,1\} \)

\[
\begin{align*}
0 \leq a \leq b & \leq 1 \\
0 \leq c & \leq 1
\end{align*}
\]

Implicit transitive edges:
\[
\begin{align*}
0 \leq b, \\
0 \leq 1, a \leq 1
\end{align*}
\]
Meet

• S – partially ordered set, $a \in S$, $b \in S$

• A **meet** of a and b is $c \in S$ such that
 – $c \leq a$ and $c \leq b$
 – For any x: $x \leq a$ and $x \leq b$ implies $x \leq c$
 – Also referred to as “the greatest lower bound of a and $b”
 – Typically denoted by $a \land b$

\[
\begin{align*}
 a \land b &= a & a \land 0 &= 0 \\
 a \land c &= 0 & a \land 1 &= a \\
 b \land c &= 0 & b \land 1 &= b \\
 b \land 0 &= 0 & \ldots
\end{align*}
\]
Join

- A join of a and b is $c \in S$ such that
 - $a \leq c$ and $b \leq c$
 - For any x: $a \leq x$ and $b \leq x$ implies $c \leq x$
 - Also referred to as “the least upper bound of a and $b”
 - Typically denoted by $a \lor b$

\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c} \\
\text{1} \\
\text{0}
\end{array}
\]

\[
\begin{align*}
\text{a} \lor \text{b} &= \text{b} \\
\text{a} \lor \text{0} &= \text{a} \\
\text{a} \lor \text{c} &= 1 \\
\text{a} \lor 1 &= 1 \\
\text{b} \lor \text{c} &= 1 \\
\text{b} \lor 1 &= 1 \\
\text{b} \lor \text{0} &= \text{b}
\end{align*}
\]
Lattices

• Any pair \((a,b)\) has either zero or one meets
 – Similarly for joins

 \[
 \begin{array}{c}
 a \\
 c \\
 \end{array}
 \begin{array}{c}
 b \\
 d \\
 \end{array}
 \]

 a \land b \text{ does not exist}

 “\(x \leq a \text{ and } x \leq b\) implies \(x \leq \text{meet}\)” is violated

• If for every pair \((a,b)\) there is a meet and a join, the partially ordered set is a **lattice**
So What?

• All of this is basic discrete math. What does it have to do with compile-time code analysis and code optimizations?

• For many analysis problems, program properties can be conveniently encoded as lattice elements.

• If $a \leq b$, in some sense the property encoded by a is weaker (or stronger) than the one encoded by b.
 – Exactly what “weaker”/“stronger” means depends on the problem.
The Most Basic Lattice

- Many dataflow analyses use a lattice \(L \) that is the power set \(\mathcal{P}(X) \) of some set \(X \)
 - \(\mathcal{P}(X) \) is the set of all subsets of \(X \)
 - A lattice element is a subset of \(X \)
 - Partial order \(\leq \) is the \(\supseteq \) relation
 - Meet is set union \(\cup \); join is set intersection \(\cap \)
 - \(0 = X; 1 = \emptyset \)
Reaching Definitions and Live Variables

• Let D be the set of all definitions in the CFG

• Reaching definitions: the lattice L is $\mathcal{P}(D)$
 – The solution for every CFG node is a lattice element
 • $\text{IN}[n] \in \mathcal{P}(D)$ is the set of definitions reaching n
 – The complete solution is a map $\text{Nodes} \rightarrow L$

• Let V be the set of all variables that are read anywhere in the CFG

• Live variables: the lattice L is $\mathcal{P}(V)$
 – The solution for every CFG node is a lattice element
 • $\text{OUT}[n] \in \mathcal{P}(V)$ is the set of variables live at n
 – The complete solution is a map $\text{Nodes} \rightarrow L$
The Role of Meet

• The partial order encodes some notion of strength for properties
 – if \(x \leq y \), then \(x \) is “less precise” than \(y \)

• Reaching Definitions: \(x \leq y \) iff \(x \supseteq y \)
 – \(x \) tells us that more things are possible, so \(x \) is less precise than \(y \)
 – Extreme case: if \(x = 0 = D \), this tells us that any definition may reach

• \(x \wedge y \) is less precise than \(x \) and \(y \)
 – greatest lower bound is the most precise lattice element that “describes” both \(x \) and \(y \)
 – E.g., the union of two sets of reaching definitions is the smallest (most precise) way to describe both
Transfer Functions

• A dataflow analysis defines a lattice \(L \) that encodes some program properties

• It also has to define **the effects of program statements** on these properties
 – A transfer function \(f_n : L \rightarrow L \) is associated with each CFG node \(n \)
 – For forward problems: if the properties before the execution of \(n \) were encoded by \(x \in L \), the properties after the execution of \(n \) are encoded by \(f_n(x) \)

• Reaching Definitions
 – \(f_n(x) = (x \cap \text{PRES}[n]) \cup \text{GEN}[n] \)
 – Expressed with meet and join: \(f(x) = (x \vee a) \land b \)
Intraprocedural Dataflow Analysis

• Given: an intraprocedural CFG, a lattice L, and transfer functions
 – Plus a lattice element $\rho \in L$ that describes the properties that hold at the entry node of the CFG

• The effects of one particular CFG path $p=(n_0,n_1,...,n_k)$ are

 $$f_{n_k} (f_{n_{k-1}} (... f_1 (f_0 (\rho)) ...))$$

 – i.e., $f_p(\rho)$, where f_p is the composition of the transfer functions for nodes in the path
 – n_0 is the entry node of the CFG
Intraprocedural Dataflow Analysis

- Analysis goal: for each CFG node n, compute a *meet-over-all-paths* solution

\[
\text{MOP}(n) = \bigwedge_{p \in \text{Paths}(n_0,n)} f_p(\rho)
\]

- $\text{Paths}(n_0,n)$ the set of all paths from the entry node to n (the paths do not include n)

- This solution “summarizes” all properties that could hold immediately before n
 - Many execution paths: “meet” ensures that we get the greatest lower bound of their effects
 - E.g., the smallest set of reachable definitions
The MOP Solution

• The MOP solution encodes everything that could potentially happen at run time
 – e.g., for Reaching Definitions: if there exists a run-time execution in which variable \(x \) is assigned at \(m \) and read at \(n \), set \(\text{MOP}(n) \) is guaranteed to contain the definition of \(x \) at \(m \)

• Problems for computing \(\text{MOP}(n) \):
 – Potentially infinite \# paths due to loops
 – Even if there is a finite number of paths, there are too many of them: too expensive to compute \(\text{MOP}(n) \) by considering each path separately
Approximating the MOP Solution

• A compromise: compute an approximation of the MOP solution

• A correct approximation: \(S(n) \leq \text{MOP}(n) \)
 – Recall that \(\leq \) means “less precise”
 – e.g., for Reaching Definitions \(\text{IN}[n] \supseteq \text{MOP}(n) \)
 – “safe solution” = “correct solution”

• A precise approximation: \(S(n) \) should be as close to \(\text{MOP}(n) \) as possible
 – In the best case, \(S(n) = \text{MOP}(n) \)
Standard Approximation Algorithm

• Idea: define a system of equations and then solve it with fixed-point computation

\[S(n) = \bigwedge_{m \in \text{Pred}(n)} f_m(S(m)) \]

• This system has the form \(S = F(S) \)
 – \(S: \text{Nodes} \to \text{L} \) is map from CFG nodes to lattice elements
 – \(F: (\text{Nodes} \to \text{L}) \to (\text{Nodes} \to \text{L}) \) is a map from the old solution to the new one, based on the transfer functions \(f_n \)
Computing a Fixed Point

• Discrete math: if f is a function, a **fixed point of f** is a value x such that $x = f(x)$
 – We want to compute a fixed point of F
 – Standard algorithm (fixed-point computation)

```python
S := [1,1,...,1]
change := true
while (change)
    old_S := S;
    S := F(S)
    if (S ≠ old_S) change := true
    else change := false
```

at exit

$S=old_S$, so $S=F(S)$
Does This Really Work?

• Does not necessarily terminate
• Common case: finite lattice + monotone transfer functions
 – monotone: \(x \leq y \) implies \(f(x) \leq f(y) \)
• In this case, the algorithm provably terminates with a safe approximation of the MOP solution: \(S(n) \leq \text{MOP}(n) \)
 – For some categories of problems, the computed solution is the same as the MOP solution
 • e.g., for Reaching Definitions, but not for Constant Propagation
Interprocedural Dataflow Analysis

- CFG = procedure-level CFGs, plus (call, entry) and (exit, return) edges

```c
void n() {
    ...
    m();
    ...
}
```
Analysis Framework

• Again, define a lattice and transfer functions
 – e.g. the transfer functions at call nodes should describe the effects of parameter passing

• MOP is too imprecise here: not all paths in the CFG are feasible
 – unrealizable paths in the interprocedural CFG
Unrealizable Paths

Realizable path: every (exit, return) matches the corresponding (call, entry)
Modified MOP Definition

• MORP: meet-over-all-realizable-paths

• Typically a safe approximation of MORP is computed (for efficiency)
 – Too many paths (even infinite # w/ recursion)

• Option 1: do not distinguish between realizable and unreliable paths
 – Context-insensitive analysis: does not keep track of the calling context of a procedure

• Option 2: context-sensitive analysis
 – Keeps tracks of calling context, and avoids some of the unrealizable paths