Control-Flow Analysis

Chapter 8, Section 8.4
Chapter 9, Section 9.6
Phases of the Compilation Process

• Front end
 – Lexical analysis
 – Syntax analysis
 – Semantic analysis (e.g., type checking)
 – Generation of three-address code

• Back end
 – Code optimization: machine-independent optimization of three-address code (optional phase)
 – Code generation: target code (e.g., assembly)
Control-Flow Graphs

• Control-flow graph (CFG) for a procedure/method
 – A node is a basic block: a single-entry-single-exit sequence of three-address instructions
 – An edge represents the potential flow of control from one basic block to another

• Uses of a control-flow graph
 – Inside a basic block: local code optimizations (e.g., Section 8.5)
 – Across basic blocks: global code optimizations
 – Aspects of code generation: e.g., global register allocation
Control-Flow Analysis

• Part 1: Constructing a CFG
 – A very simple algorithm

• Part 2: Finding dominators and post-dominators in a CFG

• Part 3: Finding control dependences in a CFG
 – Necessary as part of constructing the program dependence graph (PDG), a popular IR for software tools for slicing, refactoring, testing, and debugging

• Part 4: Finding loops in a CFG
 – What exactly is a loop? We cannot simply say “whatever CFG subgraph is generated by while, do-while, and for statements” – need a general graph-theoretic definition
Part 1: Constructing a CFG

• Basic block: maximal sequence of consecutive three-address instructions such that
 – The flow of control can enter only through the first instruction (i.e., no jumps into the middle of the block)
 – The flow of control can exit only at the last instruction

• Given: the entire sequence of instructions

• First, find the **leaders** (starting instructions of all basic blocks)
 – The first instruction
 – The target of any conditional/unconditional jump
 – Any instruction that immediately follows a conditional or unconditional jump
Constructing a CFG

• Next, find the basic blocks: for each leader, its basic block contains itself and all instructions up to (but not including) the next leader.

```
1. i = 1
2. j = 1
3. t1 = 10 * i
4. t2 = t1 + j
5. t3 = 8 * t2
6. t4 = t3 – 88
7. a[t4] = 0.0
8. j = j + 1
9. if (j <= 10) goto (3)
10. i = i + 1
11. if (i <= 10) goto (2)
12. i = 1
13. t5 = i – 1
14. t6 = 88 * t5
15. a[t6] = 1.0
16. i = i + 1
17. if (i <= 10) goto (13)
```

Note: this example sets array elements a[i][j] to 0.0, for 1 <= i,j <= 10 (instructions 1-11). It then sets a[i][i] to 1.0, for 1 <= i <= 10 (instructions 12-17). The array accesses in instructions 7 and 15 are done with offsets computed as described in Section 6.4.3, assuming row-major order, 8-byte array elements, and array indexing that starts from 1, not from 0.
\begin{align*}
 & i = 1 \\
 & j = 1 \\
 & t1 = 10 \times i \\
 & t2 = t1 + j \\
 & t3 = 8 \times t2 \\
 & t4 = t3 - 88 \\
 & a[t4] = 0.0 \\
 & j = j + 1 \\
 & \text{if} (j \leq 10) \text{ goto B3} \\
 & i = i + 1 \\
 & \text{if} (i \leq 10) \text{ goto B2} \\
 & t5 = i - 1 \\
 & t6 = 88 \times t5 \\
 & a[t6] = 1.0 \\
 & i = i + 1 \\
 & \text{if} (i \leq 10) \text{ goto B6} \\
 & \text{EXIT} \\
\end{align*}

Artificial ENTRY and EXIT nodes are often added for convenience.

There is an edge from B_p to B_q if it is possible for the first instruction of B_q to be executed immediately after the last instruction of B_p. This is conservative: e.g., if $(3.14 > 2.78)$ still generates two edges.
Practical Considerations

• The usual data structures for graphs can be used
 – The graphs are sparse (i.e., have relatively few edges), so an adjacency list representation is the usual choice
 • Number of edges is at most $2 \times$ number of nodes

• Nodes are basic blocks; edges are between basic blocks, not between instructions
 – Inside each node, some additional data structures for the sequence of instructions in the block (e.g., a linked list of instructions)
 – Often convenient to maintain both a list of successors (i.e., outgoing edges) and a list of predecessors (i.e., incoming edges) for each basic block
Part 2: Dominance

• A CFG node d dominates another node n if every path from ENTRY to n goes through d
 – Implicit assumption: every node is reachable from ENTRY (i.e., there is no dead code)
 – A dominance relation $\text{dom} \subseteq \text{Nodes} \times \text{Nodes}$: $d \text{ dom } n$
 – The relation is trivially reflexive: $d \text{ dom } d$

• Node m is the immediate dominator of n if
 – $m \neq n$
 – $m \text{ dom } n$
 – For any $d \neq n$ such $d \text{ dom } n$, we have $d \text{ dom } m$

• Every node has a unique immediate dominator
 – Except ENTRY, which is dominated only by itself
This example is artificial: it does not have an EXIT node; nodes 4 and 8 have more than 2 outgoing edges

ENTRY \textit{dom} n \text{ for any } n
1 \textit{dom} n \text{ for any } n \text{ except ENTRY}
2 \text{ does not dominate any other node}
3 \textit{dom} 3, 4, 5, 6, 7, 8, 9, 10
4 \textit{dom} 4, 5, 6, 7, 8, 9, 10
5 \text{ does not dominate any other node}
6 \text{ does not dominate any other node}
7 \textit{dom} 7, 8, 9, 10
8 \textit{dom} 8, 9, 10
9 \text{ does not dominate any other node}
10 \text{ does not dominate any other node}

Immediate dominators:
1 → ENTRY \quad 2 → 1
3 → 1 \quad 4 → 3
5 → 4 \quad 6 → 4
7 → 4 \quad 8 → 7
9 → 8 \quad 10 → 8
A Few Observations

• For any acyclic path from ENTRY to \(n \), all dominators of \(n \) appear along the path, always in the same order (for all such paths)

• Dominance is a **transitive** relation: \(a \text{ dom } b \) and \(b \text{ dom } c \) means \(a \text{ dom } c \)

• Dominance is an **anti-symmetric** relation: \(a \text{ dom } b \) and \(b \text{ dom } a \) means that \(a \) and \(b \) must be the same
 – Reflexive, anti-symmetric, transitive: **partial order**

• If \(a \) and \(b \) are two dominators of some \(n \), either \(a \text{ dom } b \) or \(b \text{ dom } a \)

• Minor exercise: prove these properties for yourself
Dominator Tree

• The parent of n is its immediate dominator

The path from n to the root contains all and only dominators of n

Post-Dominance

- A CFG node \(d \) post-dominates another node \(n \) if every path from \(n \) to EXIT goes through \(d \)
 - Implicit assumption: EXIT is reachable from every node
 - A relation \(pdom \subseteq \text{Nodes} \times \text{Nodes}: \ d \ pdom \ n \)
 - The relation is trivially reflexive: \(d \ pdom \ d \)

- Node \(m \) is the immediate post-dominator of \(n \) if
 - \(m \neq n; \ m \ pdom \ n; \ \forall d \neq n. \ d \ pdom \ n \Rightarrow d \ pdom \ m \)
 - Every \(n \) has a unique immediate post-dominator

- Post-dominance on a CFG is equivalent to dominance on the reverse CFG (all edges reversed)
- **Post-dominator tree**: the parent of \(n \) is its immediate post-dominator; root is EXIT
Extend the previous example with EXIT

ENTRY does not post-dominate any other \(n\\)
1 \(pdom\) ENTRY, 1, 9
2 does not post-dominate any other \(n\\)
3 \(pdom\) ENTRY, 1, 2, 3, 9
4 \(pdom\) ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other \(n\\)
6 does not post-dominate any other \(n\\)
7 \(pdom\) ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 \(pdom\) ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other \(n\\)
10 \(pdom\) ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT \(pdom\) \(n\) for any \(n\\)

Immediate post-dominators:
ENTRY → 1 1 → 3
2 → 3 3 → 4
4 → 7 5 → 7
6 → 7 7 → 8
8 → 10 9 → 1
10 → EXIT
The path from \(n \) to the root contains all and only post-dominators of \(n \).

Constructing the post-dominator tree: use any algorithm for constructing the dominator tree; just “pretend” that the edges are reversed.
Part 3: Control Dependence: Informally

• A node n is control dependent on a node c if
 – There exists an edge e_1 coming out of c that definitely causes n to execute
 – There exists some edge e_2 coming out of c that is the start of some path that avoids the execution of n

• The decision made at c affects whether n gets executed: if e_1 is followed, n definitely is executed; if e_2 is followed, there is the possibility that n is not executed at all
 – Thus, n is control dependent on c – the control-flow leading to n depends on what c does
Control Dependence: Formally

• (part 1) \(n \) is control dependent on \(c \) if
 – \(n \neq c \)
 – \(n \) does not post-dominate \(c \)
 – there exists a path from \(c \) to \(n \) such that \(n \) post-dominates every node on the path except \(c \)

• (part 2) \(n \) is control dependent on \(n \) if
 – there exists a path from \(n \) to \(n \) (with at least one edge) such that \(n \) post-dominates every node on the path
 • this implies that \(n \) has two outgoing edges
 • this case applies to the header of a loop (more later)
Consider all branch nodes c: 1, 4, 7, 8, 10

[replicated for convenience]
ENTRY does not post-dominate any other n
1 $pdom$ ENTRY, 1, 9
2 does not post-dominate any other n
3 $pdom$ ENTRY, 1, 2, 3, 9
4 $pdom$ ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other n
6 does not post-dominate any other n
7 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other n
10 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT $pdom\ n$ for any n

2 is control dependent on 1
3, 4, 5, 6 are control dependent on 4
4, 7 are control dependent on 7
9, 1, 3, 4, 7, 8 are control dependent on 8
7, 8, 10 are control dependent on 10
Finding All Control Dependences

• Consider all CFG edges \((c, x)\) such that \(x\) does not post-dominate \(c\) (therefore, \(c\) is a branch node)

• Traverse the post-dominator tree bottom-up
 – \(n = x\)
 – while \((n \neq \text{parent of } c\) in the post-dominator tree)
 • report that \(n\) is control dependent on \(c\)
 • \(n = \text{parent of } n\) in the post-dominator tree
 – Example: for CFG edge \((8, 9)\) from the previous slide, traverse and report \(9, 1, 3, 4, 7, 8\) (stop before 10)

• Other algorithms exist, but this one is simple and works quite well
Why Does This Work?

- Given: edge \((c, x)\) such that \(x\) does not post-dominate \(c\) (and thus \(c\) is a branch node)
- For any traversed node \(n \neq c\), we know that
 - \(n\) does not post-dominate \(c\)
 - This is why we stop before the parent of \(c\)
 - \(n\) does post-dominate \(x\): thus, if we follow the \((c, x)\) edge, we are guaranteed to execute \(n\)
 - Easy to show that this is equivalent to part 1 of the definition of control dependence given earlier
- If we traverse \(c\) itself, this means that \(c\) post-dominates \(x\) (thus, part 2 of the definition holds)
Part 4: Loops in CFGs

- **Cycle**: sequence of edges that starts and ends at the same node
 - Example:

- **Strongly-connected component (SCC)**: a maximal set of nodes such as each node in the set is reachable from every other node in the set
 - Example:

- **Loop**: informally, a strongly-connected component with a single entry point
 - An SCC that is not a loop:
Back Edges and Natural Loops

• Back edge: a CFG edge \((n,h)\) where \(h\) dominates \(n\)
 – Easy to see that \(n\) and \(h\) belong to the same SCC

• Natural loop for a back edge \((n,h)\)
 – The set of all nodes \(m\) that can reach node \(n\) without going through node \(h\) (trivially, this set includes \(h\))
 – Easy to see that \(h\) dominates all such nodes \(m\)
 – Node \(h\) is the header of the natural loop

• Trivial algorithm to find the natural loop of \((n,h)\)
 – Mark \(h\) as visited
 – Perform graph traversal starting from \(n\), but CFG edges are in reverse direction; stop at already-visited nodes
 – All and only visited nodes are in the natural loop
Immediate dominators:

<table>
<thead>
<tr>
<th></th>
<th>ENTRY</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>EXIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENTRY</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Back edges: 4 → 3, 7 → 4, 8 → 3, 9 → 1, 10 → 7

Loop(10 → 7) = \{ 7, 8, 10 \}

Loop(7 → 4) = \{ 4, 5, 6, 7, 8, 10 \}

Note: Loop(10 → 7) ⊆ Loop(7 → 4)

Loop(4 → 3) = \{ 3, 4, 5, 6, 7, 8, 10 \}

Note: Loop(7 → 4) ⊆ Loop(4 → 3)

Loop(8 → 3) = \{ 3, 4, 5, 6, 7, 8, 10 \}

Note: Loop(8 → 3) = Loop(4 → 3)

Loop(9 → 1) = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}

Note: Loop(4 → 3) ⊆ Loop(9 → 1)
Loops in the CFG

• Find all back edges; each target \(h \) of at least one back edge defines a loop \(L \) with \(\text{header}(L) = h \)

• \(\text{body}(L) \) is the union of the natural loops of all back edges whose target is \(\text{header}(L) \)
 – Note that \(\text{header}(L) \in \text{body}(L) \)

• Example: this is a single loop with header node 1

• For two CFG loops \(L_1 \) and \(L_2 \)
 – \(\text{header}(L_1) \) is different from \(\text{header}(L_2) \)
 – \(\text{body}(L_1) \) and \(\text{body}(L_2) \) are either disjoint, or one is a proper subset of the other (nesting – inner/outer)
Flashback to Graph Algorithms

• Depth-first search in the CFG [Cormen et al. book]
 – Set each node’s color as white
 – Call DFS(ENTRY)
 – DFS(n)
 • Set the color of n to grey
 • For each successor m: if color is white, call DFS(m)
 • Set the color of n to black

• Inside DFS(n), seeing a grey successor m means that (n,m) is a retreating edge
 – Note: m could be n itself, if there is an edge (n,n)

• The order in which we consider the successors matters: the set of retreating edges depends on it
Reducible Control-Flow Graphs

• For reducible CFGs, the retreating edges discovered during DFS are all and only back edges
 – The order during DFS traversal is irrelevant: all DFS traversals produce the same set of retreating edges
 – Why the term “reducible”? Details on p. 677

• For irreducible CFGs: a DFS traversal may produce retreating edges that are not back edges
 – Each traversal may produce different retreating edges
 – Example:
 • No back edges
 • One traversal produces the retreating edge 3 → 2
 • The other one produces the retreating edge 2 → 3
Reducibility

- The essence of irreducibility: a SCC with multiple possible entry points
 - If the original program was written using if-then, if-then-else, while-do, do-while, break, and continue, the resulting CFG is always reducible
 - If goto was used by the programmer, the CFG could be irreducible (but, in practice, it typically is reducible)
- Optimizations of the intermediate code, done by the compiler, could introduce irreducibility
- Code obfuscation: e.g., Java bytecode can be transformed to be irreducible, making it impossible to reverse-engineer a valid Java source program
Project 6

• Input: the output of your Project 5
 – A C program that is essentially three-address code
 – Parsed into ROSE to generate the Sage AST

• Goal 1: analyze the AST to generate the CFG

• Goal 2: analyze the CFG to find
 – Back edges (slide 25)
 – Loops (slide 24)
 – We will assume that the CFG is reducible

• Goal 3: print statistics