Examples Discussed in Class

CSE 6341

Operator Precedence and Associativity

We discussed the following ambiguous context-free grammar:

\[
\begin{align*}
\langle expr \rangle &::= \langle term \rangle \mid \langle expr \rangle + \langle expr \rangle \mid \langle expr \rangle * \langle expr \rangle \\
\langle term \rangle &::= x \mid y \mid z \mid (\langle expr \rangle)
\end{align*}
\]

As an example, for \(x+y+z \) this grammar allows two different parse trees. In one tree the first + is “deeper” in the tree (i.e., the + operator is left-associative). The resulting assembly code produced by a compiler may look something like

```
ADD R1, x, y
ADD R2, R1, z
```

Here \(R1 \) and \(R2 \) are registers. The first instruction adds the values in variables \(x \) and \(y \) and stores the result in \(R1 \). The second instruction adds the values in \(R1 \) and \(z \) and stores the result in \(R2 \). In the other possible parse tree, the second + is deeper (i.e., the + operator is right-associative). The assembly code may look something like

```
ADD R1, y, z
ADD R2, x, R1
```

As another example, for \(x+y*z \) this grammar allows two parse tree. For the tree where the + is deeper, the + operator has higher precedence than the * operator. For the tree where the * is deeper, the * operator has higher precedence than the + operator. Clearly, these different parse trees result in different computed values: \((v_1 + v_2)v_3 \) vs \(v_1 + v_2v_3 \), where \(v_1 \) denotes the value stored in variable \(x \), etc.

In real languages, operator precedence and associativity is well-defined: for example, + and * are left-associative, and * has higher precedence. To remove the ambiguity and to achieve this precedence and associativity, the grammar can be modified as follows:

\[
\begin{align*}
\langle expr \rangle &::= \langle term \rangle \mid \langle expr \rangle + \langle term \rangle \\
\langle term \rangle &::= \langle factor \rangle \mid \langle term \rangle * \langle factor \rangle \\
\langle factor \rangle &::= x \mid y \mid z \mid (\langle expr \rangle)
\end{align*}
\]

Simple Expression Language with \texttt{let}

Consider a slightly generalized version of the attribute grammar for simple expressions, based on the following context-free grammar:
\((S) ::= \langle E \rangle \)
\((E)_1 ::= \text{const} \mid \langle I \rangle \mid (\langle E \rangle_2 + \langle E \rangle_3) \mid \text{let } \langle I \rangle = \langle E \rangle_2 \text{ in } \langle E \rangle_3 \text{ end} \)
\((I) ::= \text{id} \)

Assume that terminal \text{const} represents integer constants and has an attribute \text{lexval} of type integer, representing the value of the constant. Similarly to \text{id.lexval}, the value of \text{const.lexval} is initialized by the lexical analyzer (also referred to as “scanner”). The evaluation rule for \((E)_1 ::= \text{const} \) is as expected: \((E)_1.val := \text{const}.\text{lexval} \).

Consider the following expression:

\[
\text{let } x = 1 \text{ in let } y = (x+5) \text{ in let } x = (x+y) \text{ in } (y+x) \text{ end end end}
\]

The value of this expression is 13. Consider the \(\langle E \rangle \) parse tree node whose subtree forms the innermost \text{let} subexpression. According to the evaluation rules presented in class, the value of env for that \(\langle E \rangle \) node is a map \{x \mapsto 1, y \mapsto 6\}. The second \(\langle E \rangle \) child of that node has a subtree that corresponds to \((y+x)\). The value of env for that node is \{x \mapsto 7, y \mapsto 6\}. (Note: \(a \mapsto b \) is standard math notation for “\(a \) maps to \(b \)”.)

Try this at home: suppose we use a naive evaluation strategy in which every \(\langle E \rangle \) node has a completely separate map. What is the total number of maps and what is the total number of key-value pairs in these maps?

Next, consider a more intelligent implementation in which maps are shared for the following cases: (1) for \((E)_1 ::= (\langle E \rangle_2 + \langle E \rangle_3) \), the two subexpressions just point to the map for the parent; (2) for \((E)_1 ::= \text{let } \langle I \rangle = \langle E \rangle_2 \text{ in } \langle E \rangle_3 \text{ end} \), node \(\langle E \rangle_2 \) just points to the map for the parent. What is the total number of maps and what is the total number of key-value pairs in these maps?