Control-Flow Analysis

Chapter 8, Section 8.4
Chapter 9, Section 9.6
Phases of the Compilation Process

• Front end
 – Lexical analysis
 – Syntax analysis
 – Semantic analysis (e.g., type checking)
 – Generation of three-address code

• Back end
 – Code optimization: machine-independent optimization of three-address code
 – Code generation: target code (e.g., assembly)
Control-Flow Graphs

• Control-flow graph (CFG) for a procedure/method
 – A node is a basic block: a single-entry-single-exit sequence of three-address instructions
 – An edge represents the potential flow of control from one basic block to another

• Uses of a control-flow graph
 – Inside a basic block: local code optimizations; done as part of the code generation phase (e.g., Section 8.5)
 – Across basic blocks: global code optimizations; done as part of the code optimization phase
 – Other aspects of code generation: e.g., global register allocation
Control-Flow Analysis

• Part 1: Constructing a CFG
• Part 2: Finding dominators and post-dominators
• Part 3: Finding loops in a CFG
 – What exactly is a loop? Cannot simply say “whatever CFG subgraph is generated by while, do-while, and for statements” – need a general graph-theoretic definition
• Part 4: Finding control dependences in a CFG
 – Needed for optimizations: cannot violate dependences
 – Needed for analyses in software tools: e.g., slicing
Part 1: Constructing a CFG

• Nodes: basic blocks; edges: possible control flow

• Basic block: maximal sequence of consecutive three-address instructions such that
 – The flow of control can enter only through the first instruction (i.e., no jumps to the middle of the block)
 – Can exit only at the last instruction

• Advantages of using basic blocks
 – Reduces the cost and complexity of compile-time analysis
 – Intra-BB optimizations are relatively easy
CFG Construction

• Given: the entire sequence of instructions

• First, find the leaders (starting instructions of all basic blocks)
 – The first instruction
 – The target of any conditional/unconditional jump
 – Any instruction that immediately follows a conditional or unconditional jump

• Next, find the basic blocks: for each leader, its basic block contains itself and all instructions up to (but not including) the next leader
Example

1. \(i = 1 \)
2. \(j = 1 \)
3. \(t1 = 10 \times i \)
4. \(t2 = t1 + j \)
5. \(t3 = 8 \times t2 \)
6. \(t4 = t3 - 88 \)
7. \(a[t4] = 0.0 \)
8. \(j = j + 1 \)
9. \(\text{if} (j \leq 10) \text{goto} (3) \)
10. \(i = i + 1 \)
11. \(\text{if} (i \leq 10) \text{goto} (2) \)
12. \(i = 1 \)
13. \(t5 = i - 1 \)
14. \(t6 = 88 \times t5 \)
15. \(a[t6] = 1.0 \)
16. \(i = i + 1 \)
17. \(\text{if} (i \leq 10) \text{goto} (13) \)

First instruction
Target of 11
Target of 9
Follows 9
Follows 11
Target of 17

Note: this example sets array elements \(a[i][j] \) to 0.0, for \(1 \leq i,j \leq 10 \) (instructions 1-11). It then sets \(a[i][i] \) to 1.0, for \(1 \leq i \leq 10 \) (instructions 12-17). The array accesses in instructions 7 and 15 are done with offsets computed as described in Section 6.4.3, assuming row-major order, 8-byte array elements, and array indexing that starts from 1, not from 0.
Artificial ENTRY and EXIT nodes are often added for convenience.

There is an edge from B_p to B_q if it is possible for the first instruction of B_q to be executed immediately after the last instruction of B_p. This is conservative: e.g., if $(3.14 > 2.78)$ still generates two edges.
Single Exit Node

• Single-exit CFG
 – If there are multiple exits (e.g., multiple return statements), redirect them to the artificial EXIT node
 – Use an artificial return variable \textit{ret}
 – \texttt{return expr;} becomes \texttt{ret = expr; goto exit;}

• It gets ugly with exceptions
 – Java: throw; uncaught exceptions (e.g., null pointer exception, or an exception thrown by a callee)
 – C: setjmp and longjmp
 – Usually we will ignore these

• Common assumption
 – Every node is reachable from the entry node
 – The exit node is reachable from every node
 • Not always true: e.g., a server thread could be \texttt{while(true) ...}
 – A number of techniques depend on having a single exit and on the reachability assumption
Practical Considerations

• The usual data structures for graphs can be used
 – The graphs are sparse (i.e., have relatively few edges), so an adjacency list representation is the usual choice
 • Number of edges is at most 2 * number of nodes

• Nodes are basic blocks; edges are between basic blocks, not between instructions
 – Inside each node, some additional data structures for the sequence of instructions in the block (e.g., a linked list of instructions)
 – Often convenient to maintain both a list of successors (i.e., outgoing edges) and a list of predecessors (i.e., incoming edges) for each basic block
Part 2: Dominance

- A CFG node d dominates another node n if every path from ENTR\(\)Y to n goes through d
 - Implicit assumption: every node is reachable from ENTR\(\)Y (i.e., there is no dead code)
 - A dominance relation $dom \subseteq \text{Nodes} \times \text{Nodes}$: $d \dom n$
 - The relation is trivially reflexive: $d \dom d$

- Node m is the immediate dominator of n if
 - $m \neq n$
 - $m \dom n$
 - For any $d \neq n$ such $d \dom n$, we have $d \dom m$

- Every node has a unique immediate dominator
 - Except ENTR\(\)Y, which is dominated only by itself
ENTRY dom n for any n

1 dom n for any n except ENTRY

2 does not dominate any other node

3 dom 3, 4, 5, 6, 7, 8, 9, 10, EXIT

4 dom 4, 5, 6, 7, 8, 9, 10, EXIT

5 does not dominate any other node

6 does not dominate any other node

7 dom 7, 8, 9, 10, EXIT

8 dom 8, 9, 10, EXIT

9 does not dominate any other node

10 dom 10, EXIT

Immediate dominators:

1 \rightarrow ENTRY 2 \rightarrow 1

3 \rightarrow 1 4 \rightarrow 3

5 \rightarrow 4 6 \rightarrow 4

7 \rightarrow 4 8 \rightarrow 7

9 \rightarrow 8 10 \rightarrow 8

EXIT \rightarrow 10
A Few Observations

• Dominance is a transitive relation: \(a \ dom \ b \) and \(b \ dom \ c \) means \(a \ dom \ c \)

• Dominance is an anti-symmetric relation: \(a \ dom \ b \) and \(b \ dom \ a \) means that \(a \) and \(b \) must be the same
 – Reflexive, anti-symmetric, transitive: partial order

• If \(a \) and \(b \) are two dominators of some \(n \), either \(a \ dom \ b \) or \(b \ dom \ a \)
 – Therefore, \(dom \) is a total order for \(n \)’s dominator set
 – Corollary: for any acyclic path from ENTRY to \(n \), all dominators of \(n \) appear along the path, always in the same order; the last one is the immediate dominator
Dominator Tree

- The parent of \(n \) is its immediate dominator

The path from \(n \) to the root contains all and only dominators of \(n \)

Post-Dominance

- A CFG node d post-dominates another node n if every path from n to EXIT goes through d
 - Implicit assumption: EXIT is reachable from every node
 - A relation $pdom \subseteq \text{Nodes} \times \text{Nodes}$: $d \ pdom \ n$
 - The relation is trivially reflexive: $d \ pdom \ d$

- Node m is the immediate post-dominator of n if
 - $m \neq n$; $m \ pdom \ n$; $\forall d \neq n. \ d \ pdom \ n \Rightarrow d \ pdom \ m$
 - Every n has a unique immediate post-dominator

- Post-dominance on a CFG is equivalent to dominance on the reverse CFG (all edges reversed)

- Post-dominator tree: the parent of n is its immediate post-dominator; root is EXIT
ENTRY does not post-dominate any other n

1 $pdom$ ENTRY, 1, 9
2 does not post-dominate any other n
3 $pdom$ ENTRY, 1, 2, 3, 9
4 $pdom$ ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other n
6 does not post-dominate any other n
7 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other n
10 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

EXIT $pdom$ n for any n

Immediate post-dominators:
ENTRY \rightarrow 1 1 \rightarrow 3
2 \rightarrow 3 3 \rightarrow 4
4 \rightarrow 7 5 \rightarrow 7
6 \rightarrow 7 7 \rightarrow 8
8 \rightarrow 10 9 \rightarrow 1
10 \rightarrow EXIT
The path from \(n \) to the root contains all and only post-dominators of \(n \)

Constructing the post-dominator tree: use any algorithm for constructing the dominator tree; just “pretend” that the edges are reversed
Part 3: Loops in CFGs

- **Cycle**: sequence of edges that starts and ends at the same node
 - Example:

- **Strongly-connected component (SCC)**: a maximal set of nodes such as each node in the set is reachable from every other node in the set
 - Example:

- **Loop**: informally, a strongly-connected component with a single entry point
 - An SCC that is not a loop:
Back Edges and Natural Loops

• Back edge: a CFG edge \((n,h)\) where \(h\) dominates \(n\)
 – Easy to see that \(n\) and \(h\) belong to the same SCC

• Natural loop for a back edge \((n,h)\)
 – The set of all nodes \(m\) that can reach node \(n\) without going through node \(h\) (trivially, this set includes \(h\))
 – Easy to see that \(h\) dominates all such nodes \(m\)
 – Node \(h\) is the header of the natural loop

• Trivial algorithm to find the natural loop of \((n,h)\)
 – Mark \(h\) as visited
 – Perform depth-first search (or breadth-first) starting from \(n\), but follow the CFG edges in reverse direction
 – All and only visited nodes are in the natural loop
Immediate dominators:
1 → ENTRY 2 → 1 3 → 1 4 → 3 5 → 4 6 → 4 7 → 4 8 → 7 9 → 8 10 → 8 EXIT → 10

Back edges: 4 → 3, 7 → 4, 8 → 3, 9 → 1, 10 → 7

Loop(10 → 7) = { 7, 8, 10 }
Loop(7 → 4) = { 4, 5, 6, 7, 8, 10 }
 Note: Loop(10 → 7) ⊆ Loop(7 → 4)

Loop(4 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
 Note: Loop(7 → 4) ⊆ Loop(4 → 3)

Loop(8 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
 Note: Loop(8 → 3) = Loop(4 → 3)

Loop(9 → 1) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
 Note: Loop(4 → 3) ⊆ Loop(9 → 1)
Loops in the CFG

• Find all back edges; each target h of at least one back edge defines a loop L with $\text{header}(L) = h$

• $body(L)$ is the union of the natural loops of all back edges whose target is $\text{header}(L)$
 – Note that $\text{header}(L) \in body(L)$

• Example: this is a single loop with header node 1

• For two CFG loops L_1 and L_2
 – $\text{header}(L_1)$ is different from $\text{header}(L_2)$
 – $body(L_1)$ and $body(L_2)$ are either disjoint, or one is a proper subset of the other (nesting – inner/outer)
Flashback to Graph Algorithms

• Depth-first search in the CFG [Cormen et al. book, p. 604]
 – Set each node’s color as *white*
 – Call DFS(ENTRY)
 – DFS(\(n\))
 • Set the color of \(n\) to *grey*
 • For each successor \(m\): if color is *white*, call DFS(\(m\))
 • Set the color of \(n\) to *black*

• Inside DFS(\(n\)), seeing a grey successor \(m\) means that \((n,m)\) is a *retreating edge*
 – Note: \(m\) could be \(n\) itself, if there is an edge \((n,n)\)

• The order in which we consider the successors matters: the set of retreating edges depends on it
Reducible Control-Flow Graphs

• For reducible CFGs, the retreating edges discovered during DFS are all and only back edges
 – The order during DFS traversal is irrelevant: all DFS traversals produce the same set of retreating edges
• For irreducible CFGs: a DFS traversal may produce retreating edges that are not back edges
 – Each traversal may produce different retreating edges
 – Example:

 • No back edges
 • One traversal produces the retreating edge 3 → 2
 • The other one produces the retreating edge 2 → 3
Reducibility

• A number of equivalent definitions
 – One of them is on the previous page
• Another definition: the graph can be reduced to a single node with the application of the following two rules
 – Given a node \(n \) with a single predecessor \(m \), merge \(n \) into \(m \); all successors of \(n \) become successors of \(m \)
 – Remove an edge \(n \rightarrow n \)
• Try this on the graphs from the previous slides
• More details: p. 677 in the textbook
Reducibility

• The essence of irreducibility: a SCC with multiple possible entry points
 – If the original program was written using `if-then`, `if-then-else`, `while-do`, `do-while`, `break`, and `continue`, the resulting CFG is always reducible
 – If `goto` was used by the programmer, the CFG could be irreducible (but, in practice, it typically is reducible)

• Optimizations of the intermediate code, done by the compiler, could introduce irreducibility

• Code obfuscation: e.g., Java bytecode can be transformed to be irreducible, making it impossible to reverse-engineer a valid Java source program
Part 4: Control Dependence: Informally

• The decision made at branch node c affects whether node n gets executed
 – Thus, n is control dependent on c – the control-flow leading to n depends on what c does

• A node n is control dependent on a node c if
 – There exists an edge e_1 coming out of c that definitely causes n to execute
 – There exists some edge e_2 coming out of c that is the start of some path that avoids the execution of n

• Informally: n postdominates some successor of c, but does not postdominate c itself
Control Dependence: Formally

• (part 1) n is control dependent on c if
 – $n \neq c$
 – n does not post-dominate c
 – there is an edge $c \rightarrow m$ such that n post-dominates m

• (part 2) n is control dependent on n if
 – there exists a path from n to n such that n post-dominates every node on the path
 • this happens in the presence of loops; n is the source node of a loop exit edge
Consider all branch nodes \(c: 1, 4, 7, 8, 10 \)
ENTRY does not post-dominate any other \(n \)
1 \(pdom \) ENTRY, 1, 9
2 does not post-dominate any other \(n \)
3 \(pdom \) ENTRY, 1, 2, 3, 9
4 \(pdom \) ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other \(n \)
6 does not post-dominate any other \(n \)
7 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other \(n \)
10 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT \(pdom \) \(n \) for any \(n \)

2 is control dependent on 1
3, 4, 5, 6 are control dependent on 4
4, 7 are control dependent on 7
9, 1, 3, 4, 7, 8 are control dependent on 8
7, 8, 10 are control dependent on 10
Finding All Control Dependences

• Consider all CFG edges \((c,x)\) such that \(x\) does not post-dominate \(c\) (therefore, \(c\) is a branch node)

• Traverse the post-dominator tree bottom-up
 – \(n = x\)
 – while \((n \neq \text{parent of } c \text{ in the post-dominator tree})\)
 • report that \(n\) is control dependent on \(c\)
 • \(n = \text{parent of } n\) in the post-dominator tree
 – Example: for CFG edge \((8,9)\) from the previous slide, traverse and report \(9, 1, 3, 4, 7, 8\) (stop before 10)

• Other algorithms exist, but this one is simple and works quite well
Why Does This Work?

• Given: edge \((c,x)\) such that \(x\) does not post-dominate \(c\)

• For any traversed node \(n \neq c\), we know that
 - \(n\) does not post-dominate \(c\)
 - This is why we stop before the parent of \(c\)
 - \(n\) does post-dominate \(x\): thus, if we follow the \((c,x)\) edge, we are guaranteed to execute \(n\)
 - Easy to show that this is equivalent to part 1 of the definition of control dependence given earlier

• If we traverse \(c\) itself, this means that \(c\) post-dominates \(x\) (thus, part 2 of the definition holds)