Dynamic Dependence Analysis

• CFGs relevant for dynamic analysis: constructed at instrumentation time
 – For simplicity of presentation, we will discuss
 • Intraprocedural: one procedure/method
 • Nodes are individual three-address instructions rather than basic blocks

• Goal 1: tracing (already discussed)
• Goal 2: dynamic control dependences
• Goal 3: dynamic data dependences
Tracing and Dependences

• Each three-address instruction in the code is given an integer ID at instrumentation time
• The simplest possible trace is a sequence of trace events te_i: $\text{trace} = (te_0, te_1, ..., te_n)$
 – Each event contains an instruction ID
• Dependence: pair (te_i, te_k) with $i<k$ such that the first event must happen before the second one
 – E.g., te_i computes a value and writes it to memory; then te_k reads this value from the same location in memory (data dependence)
Dynamic Dependence Analysis

• **Online**: as the instructions get executed, their dependences are discovered on the fly
 – Possible output: trace annotated with dependence info: each trace event has a list of prior events on which it is dependent
 – Another possibility: while the program is running, the on-the-fly dependences are used for correctness checking, computing various metrics, etc.

• **Offline**: just output the trace; after the run, the trace is analyzed for dependences
 – Need more info in the trace: e.g., if an instruction instance reads/writes a memory location, the memory address is recorded in the trace event
Dominance

- Detour into (mild) graph theory for static analysis
- A CFG node d dominates another node n if every path from ENTRY to n goes through d
 - Implicit assumption: every node is reachable from ENTRY (i.e., there is no dead code)
- Many uses of this info
 - E.g., to perform analysis of loops in a CFG
 - Back edge: a CFG edge (n,h) where h dominates n
 - Natural loop for (n,h): the set of all nodes m that can reach node n without going through node h (trivially, includes h)
 - h dominates all such nodes m
 - h is the header of the natural loop
Post-Dominance

• A CFG node d post-dominates another node n if every path from n to EXIT goes through d
 – Implicit assumption: EXIT is reachable from every node
 – A relation $pdom \subseteq \text{Nodes} \times \text{Nodes}$: $d \ pdom \ n$
 – The relation is trivially reflexive: $d \ pdom \ d$

• Post-dominance on a CFG is equivalent to dominance on the reverse CFG (all edges reversed)
Control Dependence: Informally

• A node \(n \) is control dependent on a node \(c \) if
 – There exists an edge \(e_1 \) coming out of \(c \) that definitely causes \(n \) to execute
 – There exists some edge \(e_2 \) coming out of \(c \) that is the start of some path that avoids the execution of \(n \)

• The decision made at \(c \) affects whether \(n \) gets executed: if \(e_1 \) is followed, \(n \) definitely is executed; if \(e_2 \) is followed, there is the possibility that \(n \) is not executed at all
 – Thus, \(n \) is control dependent on \(c \) – whether \(n \) gets executed depends on what \(c \) does
Control Dependence: Formally

• (part 1) n is control dependent on c (where $n \neq c$) if
 – n does not post-dominate c
 – there exists a path from c to n such that n post-dominates every node on the path except c

• (part 2) n is control dependent on n if
 – there exists a path from n to n (with at least one edge) such that n post-dominates every node on the path
 • this implies that n has two outgoing edges
 • this case applies to the header of a loop
Consider all branch nodes \(c \): 1, 4, 7, 8, 10

ENTRY does not post-dominate any other \(n \)
1 \(pdom \) ENTRY, 1, 9
2 does not post-dominate any other \(n \)
3 \(pdom \) ENTRY, 1, 2, 3, 9
4 \(pdom \) ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other \(n \)
6 does not post-dominate any other \(n \)
7 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other \(n \)
10 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

EXIT \(pdom \) \(n \) for any \(n \)

2 is control dependent on 1
3, 4, 5, 6 are control dependent on 4
4, 7 are control dependent on 7
9, 1, 3, 4, 7, 8 are control dependent on 8
7, 8, 10 are control dependent on 10

Note: a node may be control dependent on several other nodes (e.g., node 3)
Dynamic Control Dependences

• Static control dependences are computed at instrumentation time

• Dynamic control dependence \((te_i, te_k)\) for \(i<k\)
 – Event \(te_i\) is an instance of CFG node \(c\)
 – Event \(te_k\) is an instance of CFG node \(n\)
 – Node \(n\) is statically control dependent on \(c\)
 – There does not exist an event \(te_j\) (for \(i<j<k\)) such that \(n\) is statically control dependent on the CFG node corresponding to \(te_j\)

• For any \(te_k\) there is a unique \(te_i\) with this property
 – Or, no such \(te_i\) exists
Online Detection of Control Dependences

- Goal: whenever we write an event te_k to the trace, also write the control dep (te_i, te_k) if it exists
- Maintain a global timestamp TS: the number of events produced up to this point
 - Initialized/incremented as necessary
- For each CFG node c that is a branch, maintain extra info $last(c)$: the value of TS recorded when the last instance of c was executed
 - E.g., map integer instruction ID \rightarrow integer timestamp
- When te_k occurs: if the corresp. CFG node is n, look at all c on which n is statically control dependent, and pick the one with the largest value of $last(c)$
 - This largest timestamp is the i for te_i
Static Data Dependence Analysis

• Goal: identify all connections between variable definitions ("write") and variable uses ("read")
 – \(x = y + z \) has a definition of \(x \) and uses of \(y \) and \(z \)

• A definition \(d \) reaches a use \(u \) if there exists a CFG path that (1) starts at \(d \), (2) ends at \(u \), and (3) does not contain a re-definition (i.e., \(d \) is not "killed")
 – Reaching definitions: standard compile-time analysis
 – Def-use pairs represent static data dependences

• Static analysis is good for scalar variables, but bad for arrays and pointers
 – E.g., \(a[t1] = \ldots \) and \(\ldots = a[t2] \), or \(*p = \ldots \) and \(\ldots = *q \)
Dynamic Data Dependence Analysis

• We cannot simply do what we did for control dep
 – Cannot just maintain timestamp $\text{last}(n)$ for each CFG node n, and look at all static data dependences

• Solution: for each memory location m that could be read or written, maintain $\text{last}(m)$: the value of TS recorded the last time m was written
 – Implementation: shadow memory

• Whenever an event te_k occurs: if this event reads m, the value of $\text{last}(m)$ is the value of i for a dynamic data dependence (te_i, te_k)

• Many possible optimizations to reduce cost