Functional Languages

Chapter 10
Functional Programming Paradigm

• The program is a collection of **functions**
 – A function computes and returns a value
 – No side-effects (i.e., no changes to state)
 – No program variables whose values change
 • Basically, no assignments

• Languages: LISP, Scheme (dialect of LISP from MIT, mid-70s), ML, Haskell, ...

• Functions as first-class entities
 – A function can be a **parameter** of another function
 – A function can be the **return value** of another function
 – A function could be an **element of a data structure**
 – A function can be created at run time
Data Objects in Scheme

• **Atoms**
 – Numeric constants: 5, 20, -100, 2.788
 – Boolean constants: #t (true) and #f (false)
 – String constants: “hi there”
 – Character constants: \a
 – **Symbols**: f, x, +, *, null?, set!
 • Roughly speaking, equivalent to identifiers in imperative languages
 – Empty list: ()

• **S-expressions**
 – Lists are a special case of S-expressions
S-expressions

• Every atom is an S-expression

• If s1 and s2 are S-expressions, so is \((s_1 . s_2)\)
 – Essentially, a binary tree: left child is the tree for s1, and right child is the tree for s2
 – Atoms are leaves of the tree
 • \((3 . 5)\)
 • \(((3 . 4) . (5 . 6))\)
 • \((3 . (5 . ()))\)
Primitive Functions for S-expressions

- **car**: unary; produces the S-expression corresponding to the left child of the argument
 - Not defined for atoms
- **cdr**: unary; produces the S-expression corresponding to the right child of the argument
 - Not defined for atoms
- **cons**: binary; produces a new S-expr with left child = 1st arg and right child = 2nd arg
Lists

• Special category of S-expressions

• Recursive definition
 – The empty list () is a list; length is 0
 – If the S-expression \(Y \) is a list, the S-expression \((X . Y)\) is also a list; length is 1 + length of \(Y \)
 • \(((3 . 4) . (5 . 6))\) is not a list
 • \((3 . (5 . ()))\) is a list, with length 2

• Notation: \((e_1 . (e_2 . (... (e_n . ()))))\) is written as \((e_1 e_2 ... e_n)\)
Lists

• Another view of lists: a binary tree in which
 – the rightmost leaf is ()
 – the S-expressions hanging from the rightmost “spine” of the tree are the list elements

• List elements can be atoms, other lists, and general S-expressions
 – ((3 4) 5 (6)) is a list with 3 elements
 – Thus, lists are heterogeneous: the elements do not have to be of the same type

• Empty list () - has zero elements
 – Operations car and cdr are not defined for an empty list – run-time error
Lists

• **car** for a list produces the first element of the list (the list **head**)
 – e.g. for \(((A \ B) \ (C \ D) \ E)\) will produce \((A \ B)\)

• **cdr** produces the **tail** of the list: a list containing all elements except the first
 – e.g. for \(((A \ B) \ (C \ D) \ E)\) will produce \(((C \ D) \ E)\)

• **cons** adds to the beginning of the list
 – cons of \(A \) and \((B \ C)\) is \((A \ B \ C)\)
 – e.g., cons of car of \(x \) and cdr of \(x \) is \(x \)
Examples of Lists

- \(((3 \cdot 4) 5)\) is \(((3 \cdot 4) . (5 . ()))\)
- \(((3) (4) 5)\) is \(((3 . ()) . ((4 . ()) . (5 . ())))\)
- \((A B C)\) is \((A . (B . (C . ())))\)
- \(((A B) C)\) is \(((A . (B . ())) . (C . ()))\)
- \((A B (C D))\) is \((A . (B . ((C . (D . ()))) . ()))\)
- \(((A))\) is \(((A . ())) . ()))\)
- \((A (B . C))\) is \((A . ((B . C) . ()))\)
Data vs. Code

• Interpreter for an imperative language: the input is code+data, the output is data (values)

• Everything in Scheme is an S-expression
 – The “program” we are executing is an S-expression
 – The intermediate values and the output values of the program are also S-expressions
 • Data and code are really the same thing

• Example: an expression that represents function application (i.e., function call) is a list \((f \ p1 \ p2 \ ...)\)
 – \(f\) is an S-expression representing the function we are calling; \(p1\) is an S-expression representing the first actual parameter, etc.
Using Scheme

- **Read**: you enter an expression
- **Eval**: the interpreter evaluates the expression
- **Print**: the interpreter prints the resulting value
- **stdlinux**: at the prompt, type `scheme48`

 > type your expression here
 the interpreter prints the value here

 > ,help
 > ,exit
Evaluation of Atoms

• Numeric constants, string constants, and character constants evaluate to themselves

 > 4.5
 4.5
 $> "This is a string"$
 "This is a string"

 $> #t$
 $#t$
 $> #f$
 #f

• Symbols do not have values to start with
 – They may get “bound” to values, as discussed later

 $> x$

 Error: undefined variable x

• The empty list ($()$) does not have a defined value
Function Application

• \((+ 5 6)\)
 – This S-expression is a “program”; here \(+\) is a symbol “bound” to the built-in function for addition
 – The evaluation by the interpreter produces the S-expression 11

• Function application: \((f \ p1 \ p2 \ ...)\)
 – The interpreter evaluates S-expressions f, p1, p2, etc.
 – The interpreter invokes the resulting function on the resulting values
Examples

> (+ 5 6)
11

> (+ (+ 3 5) (* 4 4))
24

> (+ 5 #t)
Error, because “add” is defined only for numeric atoms

> (car 5)
Error, car is not defined for atoms

> (cdr 5)
Same here

> (cons 4 5)
'(4 . 5)
Quoting an Expression

• When the interpreter sees a non-atom, it tries to evaluate it as if it were a function call
 – But for (5 6), what does it mean?
 • “Error: attempt to call a non-procedure”

• We can tell the interpreter to evaluate an expression to itself
 – (quote (5 6)) or simply '(5 6)
 – Evaluates to the S-expression (5 6)
 – The resulting expression is printed by the Scheme interpreter as '(5 6)
Examples

> (+ (+ 3 5) (car (7 . 8)))
Errors
1> Ctrl-D
> (+ (+ 3 5) (car '(7 . 8)))
15
> (car (7 10))
Errors
1> (car '(7 10))
7
1> (+ (car '(7 10)) (cdr '(7 10)))
Errors
2> (+ (car '(7 10)) (cdr '(7 . 10)))
17
More Examples

> (cons (car '(7 . 10)) (cdr '(7 . 10)))
'(7 . 10)

> (cons (car '(7 10)) (cdr '(7 . 10)))
'(7 . 10)

> (cons (car '(7 . 10)) (cdr '(7 10)))
'(7 10)

> (cons (car '(7 10)) (cdr '(7 10)))
'(7 10)

> a
Error

> 'a
'a

> (cdr '(A B))
'(b)

> (cons 'a '(b))
'(a b)

> (car '(A B))
'a

> (cons 'a 'b)
'(a . b)
More Examples

> (equal? #t #f) > (equal? '() #f)
#f
> (equal? #t #t) > (equal? (+ 7 5) (+ 5 7))
#t
> (equal? (cons 'a '(b)) '(a b))
#t
> (pair? '(7 . 10)) > (pair? 7) > (pair? '())
#t #f #f
> (null? '()) > (null? #f) > (null? '(b))
#t #f #f
More Examples

> (even? 7) > (even? 8)
#f #t

> (even? (+ 7 7)) > (even 7) > (even? 'a)
#t Error Error

> (= 5 6) > (< 5 6) > (> 5 6)
#f #t #f

> (= 4.5 4.5 4.5) > (= 4.5 4.5 4.7)
#t #f

> (= 'a 'b)
Error
Conditional Expressions

• \((\text{if } b \ e_1 \ e_2)\)
 – Evaluate \(b\). If the value is not \(\#f\), evaluate \(e_1\) and this is the value to the expression
 – If \(b\) evaluates to \(\#f\), evaluate \(e_2\) and this is the value of the expression

• \((\text{cond } (b_1 \ e_1) \ (b_2 \ e_2) \ldots \ (b_n \ e_n))\)
 – Evaluate \(b_1\). If not \(\#f\), evaluate \(e_1\) and use its value. If \(b_1\) evaluates to \(\#f\), evaluate \(b_2\), etc.
 – If all \(b\) evaluate to \(\#f\): unspecified value for the expression; so, we often have \(\#t\) as the last \(b\)
 – Alternative form: \((\text{cond } (b_1 \ e_1) \ (b_2 \ e_2) \ldots \ (\text{else } e_n))\)
Function Definition

> (define (double x) (+ x x))
; no values returned

> (double 7) > (double 4.4) > (double '(7))
14 8.8 Error

> (define (mydiff x y) (cond ((= x y) #f) (#t #t)))
; no values returned

> (mydiff 4 5) > (mydiff 4 4) > (mydiff '(4) '(4))
#t #f ???
Member of a List?

In text file `mbr.ss` create the following:

```scheme
; this is a comment
; (mbr x list): is x a member of the list?
(define (mbr x list)
  (cond
    ( (null? list) #f )
    ( #t (cond
        ( (equal? x (car list)) #t )
        ( #t (mbr x (cdr list)) ) ) )
  )
)
```

Or we could use just one "cond" ...
Member of a List?

In the interpreter:

```scheme
> (load "mbr.ss") or ,load mbr.ss
mbr.ss
; no values returned
> (mbr 4 '(5 6 4 7))
#t
> (mbr 8 '(5 6 4 7))
#f
```
Union of Two Lists

(define (uni s1 s2)
 (cond
 ((null? s1) s2)
 ((null? s2) s1)
 (#t (cond
 ((mbr (car s1) s2) (uni (cdr s1) s2))
 (#t (cons (car s1) (uni (cdr s1) s2))))))))

> (uni '(4) '(2 3))
'(4 2 3)

> (uni '(3 10 12) '(20 10 12 45))
'(3 20 10 12 45)
Removing Duplicates

; x: a sorted list of numbers; remove duplicates ...

(define (unique x)
 (cond
 ((null? x) x)
 ((null? (cdr x)) x)
 ((equal? (car x) (cdr x)) (unique (cdr x)))
 (#t (cons (car x) (unique (cdr x))))
)
)

> (unique '(2 2 3 4 4 5))
(2 2 3 4 4 5) ;???
Largest Number in a List

; max number in a non-empty list of numbers
(define (maxlist L)
 (cond
 ((null? (cdr L)) (car L))
 ((> (car L) (maxlist (cdr L))) (car L))
 (#t (maxlist (cdr L)))
)
)

What is the running time as a function of list size? How can we improve it?
A Different Approach

; max number in a non-empty list of numbers
(define (maxlist L) (mymax (car L) (cdr L)))
(define (mymax x L)
 (cond
 ((null? L) x)
 ((> x (car L)) (mymax x (cdr L)))
 (#t (mymax (car L) (cdr L)))
)
)

What is the running time as a function of list size?
Semantics of Function Calls

• Consider \((F \ p1 \ p2 \ ...)\)
• Evaluate \(p1, p2, \ldots\) using the current bindings
• “Bind” the resulting values \(v1, v2, \ldots\) to the formal parameters \(f1, f2, \ldots\) of \(F\)
 – add pairs \((f1,v1), (f2,v2), \ldots\) to the current set of bindings
• Evaluate the body of \(F\) using the bindings
 – if we see \(p1\) in the body, we evaluate it to value \(v1\)
• After coming back from the call, the bindings for \(p1, p2, \ldots\) are destroyed
Higher-Order Functions

(define (double x) (+ x x))
(define (twice f x) (f (f x)))
(twice double 2) Returns 8

(define (mymap f list)
 (if (null? list) list
 (cons (f (car list))
 (mymap f (cdr list)))))

(mymap double '(1 2 3 4 5)) Returns '(2 4 6 8 10)
Higher-Order Functions

(define (double x) (+ x x))
(define (id x) x)
((id double) 11) Returns 22

(define (makelist f n)
 (if (= n 0) '()
 (cons f (makelist f (- n 1))))))

(makelist double 4)
Returns '(procedure double, procedure double, procedure double, procedure double)
Higher-Order Functions

(define (newmap x list)
 (if (null? list) list
 (cons ((car list) x) (newmap x (cdr list))))))

What does this function do?

(newmap 11 (makelist double 7))

What is the result of this function application?

(define (f n) (newmap n (makelist double 5)))
(twice f 9)

How about here?
Recursion for Iterating

; Factorial function
(define (fact n)
 (if (= n 0) 1
 (* n (fact (- n 1)))))

Equivalent computation in imperative languages
f := 1;
for (i = 1; i <= n; i++) f := f * i;
Quicksort

Sort list of numbers (for simplicity, no duplicates)

Algorithm:

– If list is empty, we are done
– Choose pivot \(n \) (e.g., first element)
– Partition list into lists A and B with elements \(< n\) in A and elements \(> n\) in B
– Recursively sort A and B
– Append sorted lists and \(n \)
(define (ltlist n list)
 (if (null? list) list
 (if (< (car list) n)
 (cons (car list) (ltlist n (cdr list)))
 (ltlist n (cdr list)))))

Similarly we can define function gtlist
Sorting

\[
\text{(define (qsort list)}
\text{(if (null? list) list}
\text{(append}
\text{(qsort (ltlist (car list) (cdr list))}}
\text{(cons (car list) '()))}
\text{(qsort (gtlist (car list) (cdr list)))))})
\]

(qsort '(4 3 5 1 6 2 8 7))
Returns '(1 2 3 4 5 6 7 8)
A Few Other Language Features

- **(lambda (x y ...) body)**: evaluates to a function
 - `(((lambda (x) (+ x x)) 4)` evaluates to 8
 - `(define (f x y ...) body)` is equivalent to
 `(define f (lambda (x y ...) body))`
 - Comes from the λ-calculus, the theoretical foundation for functional languages (Alonzo Church)

- **let bindings** – give names to values
 - `(let ((x 2) (y 3)) (* x y))` produces 6
 - `(let ((x 2) (y 3)) (let ((x 7) (z (+ x y))) (* z x)))` is 35

- **(define x expr)** and **(define (f x y ...) body)** create global bindings for these names