
Your first C program

#include <stdio.h>
void main(void)
{
 printf(“Hello, world!\n”);
}

Reminder There are a lot of different ways to solve the same problem.
TO-DO: Experiment with leaving out parts of the program, to see what error

messages you get.

#include <stdio.h>
main() {
 printf("Hello, world!\n");
 return 0; }

#include <stdio.h>
int main(void) {
 printf("Hello, world!\n");
 return (0); }

#include <stdio.h>
int main(void) {
 printf("Hello, world!\n");
 getchar();
 return 0; }

#include <stdio.h>
void main(void) {
 printf(“Hello, “);
 printf(“world!”);
 printf(“\n”); }

Which one is best?

C compilation model… hello.c to hello

Type in program using an editor of
your choice (file.c); plain text

.c + .h = .i which is the “ultimate source
code”? i.e. # includes expanded and
#defines replaced

.i .s which is assembler source code

.s .o which is an object file; fragments of
machine code with unresolved symbols i.e.
some addresses not yet known (vars/subrs).

.o + library links a.out (default name);
resolves symbols, generates an executable.

hello.c

hello

%gcc -o hello hello.c

%hello

Standard Header Files

Functions, types and macros of the standard library are
declared in standard headers:

A header can be accessed by

#include <header>
Notice, these do not end with a semi-colon

Headers can be included in any order and any number of
times
Must be included outside of any external declaration or
definition; and before any use of anything it declares
Need not be a source file
Also called macros

<assert.h> <float.h> <math.h> <stdarg.h> <stdlib.h>
<ctype.h> <limits.h> <setjmp.h> <stddef.h> <string.h>
<errno.h> <locale.h> <signal.h> <stdio.h> <time.h>

The main() function

Every full C program begins inside a function called
"main". A function is simply a collection of commands that
do "something". The main function is always called when
the program first executes. From main, we can call other
functions, whether they be written by us or by others or
use built-in language features.

Java programmers may recognize the main() method but note that it is not embedded
within a class. C does not have classes. All methods (simply known as functions) are
written at file scope.

The main() method in Java has the prototype ‘main(String[] args)’ which provides the
program with an array of strings containing the command-line parameters. In C, an array
does not know its own length so an extra parameter (argc) is present to indicate the
number of entries in the argv array.

Your first C program (cont)

What is going on?
#include <stdio.h> - Tells the compiler to include this header
file for compilation. To access the standard functions that
comes with your compiler, you need to include a header with
the #include directive.
 What is a header file? They contain prototypes and other

compiler/pre-processor directives. Prototypes are basic abstract
function definitions. More on these later...

 Some common header files are stdio.h, stdlib.h, unistd.h, math.h.
main() - This is a function, in particular the main block.
{ } - These curly braces are equivalent to stating "block begin"
and "block end". The code in between is called a “block”
printf() - Ah... the actual print statement. Thankfully we have
the header file stdio.h! But what does it do? How is it defined?
return 0 - What's this? Every function returns a value…

Your first C program (cont)

The return 0 statement. Seems like we are trying to give something back, and it is an integer.
Maybe if we modified our main function definition: int main() Ok, now we are saying that our
main function will be returning an integer! So remember, you should always explicitly declare the
return type on the function! If you don’t, it defaults to a type integer anyway.

Something is still a little fishy... I thought that 0 implied false (which it does)... so isn't it returning
that an int signifying a bad result? Thankfully there is a simple solution to this. Let's add #include
<stdlib.h> to our includes. Let's change our return statement to return EXIT_SUCCESS;. Now it
makes sense!

Let's take a look at printf. Hmm... I wonder what the prototype for printf is. (btw, what’s a
prototype?) Utilizing the man pages we see that printf is: int printf(const char *format, ...); printf
returns an int. The man pages say that printf returns the number of characters printed. Now you
wonder, who cares? Why should you care about this? It is good programming practice to ALWAYS
check for return values. It will not only make your program more readable, but in the end it will
make your programs less error prone. But in this particular case, we don't really need it. So we
cast the function's return to (void). fprintf, fflush, and exit are the only functions where you
should do this. More on this later when we get to I/O. For now, let's just void the return value.

What about documentation? We should probably doc some of our code so that other people can
understand what we are doing. Comments in the C89 standard are noted by: /* */. The comment
begins with /* and ends with */.

Your first C program…
 New and Improved?

Much better! The KEY POINT of this whole introduction is to show you the fundamental
difference between correctness and understandability. All of the sample codes produce the exact
same output in "Hello, world!" However, only the latter example shows better readability in the
code leading to code that is understandable. All codes will have bugs. If you sacrifice code
readability with reduced (or no) comments and cryptic lines, the burden is shifted and magnified
when your code needs to be maintained.

#include <stdio.h>
#include <stdlib.h>

/* Main Function
 * Purpose: Controls program, prints Hello, World!
 * Input: None
 * Output: Returns Exit Status
 */
int main(int argc, char **argv) {
 printf("Hello, world!\n");
 return EXIT_SUCCESS;
}

Overview of C

Basic Data Types
Constants
Variables
Identifiers
Keywords
Basic I/O

NOTE: There are six classes of tokens: identifiers, keywords, constants, string
literals, operators, and other separators. Blanks, horizontal and vertical tabs,
newlines, form feeds and comments (collectively, ‘‘white space’’) are ignored except
as they separate tokens. Some white space is required to separate otherwise
adjacent identifiers, keywords, and constants

Basic Data Types

Integer Types
Char – smallest addressable unit; each byte has its own address
Short – not used so much
Int – default type for an integer constant value
Long – do you really need it?

Floating point Types – are “inexact”
Float – single precision (about 6 digits of precision)
Double – double precision (about 15 digits of precision)
 constant default unless suffixed with ‘f’

Derived types

Beside the basic types, there is a conceptually infinite
class of derived types constructed from the
fundamental types in the following ways:

arrays of objects of a given type;
functions returning objects of a given type;
pointers to objects of a given type;
structures containing a sequence of objects of various
types;
unions capable of containing any of one of several objects
of various types.

In general these methods of constructing objects can
be applied recursively

An array of pointers
An array of characters (i.e. a string)
Structures that contain pointers

Constants

Special characters
Not convenient to type on a keyboard
Use single quotes i.e. ‘\n’
Looks like two characters but is really only one

\a alert (bell) character \\ backslash

\b backspace \? question mark

\f formfeed \’ single quote

\n newline \" double quote

\r carriage return \ooo octal number

\t horizontal tab \xhh hexadecimal number

\v vertical tab

Symbolic constants

A name that substitutes for a value that cannot be changed
Can be used to define a:

Constant
Statement
Mathematical expression

Uses a preprocessor directive
#define <name> <value>
 No semi-colon
Coding style is to use all capital letters for the name

Can be used any place you would use the actual value
All occurrences are replaced when the program is compiled
Examples:

The use of EXIT_SUCCESS in hello.c code
#define PI 3.141593
#define TRUE 1
#define floatingpointnum float

Variable Declarations

Purpose: define a variable before it is used.
Format: type identifier [, identifier] ;
Initial value: can be assigned

int i, j, k;
char a, b, c = ‘D’;
int i = 123;
float f = 3.1415926535;
double f = 3.1415926535;
strings later… array of characters

Type conversion: aka, type casting
Coercion, be very cautious.
(type) identifier;
 int i = 65; /* what if 258 */
 char a; /* range -128 to 127 */
 a = (char) i; /* What is the value of a? */

Variable vs Identifier

An identifier, also called a token or symbol, is a
lexical token that “names” an entity

An entity can be: variables, types, labels, functions,
packages, etc.
Naming entities makes it possible to refer to them

A variable

Allows access and information about what is in
memory i.e. a storage location
A symbolic name (an identifier) that is associated
with a value and whose associated value may be
changed
The usual way to reference a stored value

Identifier Naming Style

Rules for identifiers
a-z, A-Z, 0-9, and _
Case sensitive
The first character must be a letter or _
Keywords are reserved words, and may not be used as
identifiers

Identifier Naming Style

Separate words with ‘_’ or capitalize the first character
Use all UPPERCASE for symbolic constant, macro definitions,
etc
Be consistent
Be meaningful

Sample Identifiers

i0, j1, abc, stu_score, __st__, data_t, MAXOF, MINOF ...

Keywords

Purpose: reserves a word or identifier to have a particular
meaning

The meaning of keywords — and, indeed, the meaning of the
notion of keyword — differs widely from language to language.
You shouldn't use them for any other purpose in a C program.
They are allowed, of course, within double quotation marks.

