
CSE2421 Systems1
Introduction to Low-Level Programming and Computer Organization

Kitty Reeves
TWRF 8:00-8:55am

Spring 2013

1

Pointers to Functions

http://www.newty.de/fpt/fpt.html
Excellent reference/resource

2

http://www.newty.de/fpt/fpt.html
http://www.newty.de/fpt/fpt.html
http://www.newty.de/fpt/fpt.html

What is a function pointer?

A pointer, i.e. a variable, which points to the
address of a function.

You must keep in mind, that a running program gets
a certain space in the main-memory. Both, the
executable compiled program code and the used
variables, are put inside this memory. Thus a
function in the program code is nothing other than
an address. It is only important how you, or better
your compiler/processor, interprets the memory a
pointer points to.

3

Why use function pointers?

Function Pointers provide some extremely interesting, efficient
and elegant programming techniques.
You can use them to:

replace switch/if-statements,
realize your own late-binding (simple discussion later)
implement callbacks
 http://en.wikipedia.org/wiki/Callback_%28computer_programming%29

Which leads to:
Greater flexibility and better code reuse

Why *not* use function pointers

Complicated syntax
Do you really need a function pointer

Why *use* function pointers
They are less error prone than normal pointers because you will
never allocate or deallocate memory with them.
Run-time options

4

Introduction to function pointers

A pointer variable can be declared as pointing to a function. The
declaration of such a pointer is done by,

 int (*func_pointer)();
The parentheses around *func_pointer are necessary, else the
compiler will treat the declaration as a declaration of a function.

To assign the address of a function to the pointer, the statement,
 func_pointer = lookup; // initialize (use &?)

where lookup is the function name, is sufficient.
In the case where no arguments are passed to lookup, the call is

 (*func_pointer)(); // call/use
The parentheses are needed to avoid an error.

If the function lookup returned a value, the function call then
becomes,

 i = (*func_pointer)();
If the function accepted arguments, the call then becomes,

 i = (*func_pointer)(argument1, argument2, argumentn);

5

http://gd.tuwien.ac.at/languages/c/programming-bbrown/c_042.htm

The basics of function pointers

Let's start with a basic function to point to:
 int addInt(int n, int m) {
 return n+m; }

Next, define/declare a pointer to a function which receives 2 ints and
returns an int… parentheses needed:

 int (*functionPtr)(int,int);
Now, point to the function:

give the pointer an initial value (always):
 functionPtr = &addInt;

can also be written (and often is) as
 functionPtr = addInt;

which is also valid since the standard says that a function name in this
context is converted to the address of the function (similar to array name
being a pointer)

To use a pointer to the function:
 int sum = (*functionPtr)(2, 3); // explicitly dereferencing
 OR
 int sum = functionPtr (2,3); //using name of function pointer

6

Function pointers in return values

int (*functionFactory(int n)) (int, int) {
 printf("Got parameter %d", n);
 int (*functionPtr)(int,int) = &addInt;
 return functionPtr; }

What does this do?
// this is a function called functionFactory which
receives parameter n
// and returns a pointer to another function
which receives two ints
// and it returns another int

7

Another example

#include <stdio.h>
void my_int_func(int x)
 { printf("%d\n", x); }
 // no return stmt because no return type
int main() {
 void (*foo)(int);
 /* the ampersand is actually optional */
 foo = &my_int_func;
 int a = 1;
 (*foo)(a);
 return 0;
}

8

In-class assignment

//
 int DoIt (float a, char b, char c) {
 printf("DoIt\n"); return a+b+c; }
 int DoMore(float a, char b, char c) {
 printf("DoMore\n"); return a-b+c; }

//
 int (*pt2Function)(float, char, char) = NULL;

//
 pt2Function = DoIt; // short form
 OR
 pt2Function = &DoMore; // use address operator

//
 if(pt2Function >0){ // check if initialized
 if(pt2Function == &DoIt)
 printf("Pointer points to DoIt\n"); }
 else printf("Pointer not initialized!!\n");

//
 int result1 = pt2Function (12, 'a', 'b'); // C short way
 OR
 int result2 = (*pt2Function) (12, 'a', 'b'); // more clear

9

Switch-Statement vs Function pointer

10

// The four arithmetic operations ... one of these functions is selected at run
time
float Plus (float a, float b) { return a+b; }
float Minus (float a, float b) { return a-b; }
float Multiply(float a, float b) { return a*b; }
float Divide (float a, float b) { return a/b; }
// <opCode> specifies which operation to execute
void Switch(float a, float b, char opCode) {
 float result; // execute operation
 switch(opCode) {
 case '+' : result = Plus (a, b); break;
 case '-' : result = Minus (a, b); break;
 case '*' : result = Multiply (a, b); break;
 case '/' : result = Divide (a, b); break; }
 printf("Switch: 2+5= is %f”, result); // display result }

Switch-Statement vs Function pointer
(cont)

11

What if you want to select one function out of a pool of possible
functions? Can you pass a function pointer as an argument?

// <pt2Func> is a function pointer and points to a function which takes two floats
// and returns a float. The function pointer “specifies” which operation will execute
void Switch_With_Function_Pointer(float a, float b, float (*pt2Func)(float, float)) {
 float result = pt2Func (a, b); // call using function pointer
 printf("Switch replaced by function pointer: 2-5=%f“,result); // display result
// Execute example code
void Replace_A_Switch() {
 printf("Executing function Replace_A_Switch\n“)
 Switch(2, 5, '+');
 Switch_With_Function_Pointer(2, 5, &Minus); }

Important note: A function pointer always points to a function
with a specific signature! Thus all functions, you want to use with
the same function pointer, must have the same parameters and
return-type!

How to return a function pointer

// Function takes a char and returns a pointer to a function
// which is taking two floats and returns a float.
// <opCode> specifies which function to return
 float (*GetPtr1(const char opCode))(float, float) {
 if(opCode == '+') return &Plus;
 else return &Minus; // default if invalid op passed }

// Execute example code
 void Return_A_Function_Pointer() {
 // define a function pointer and initialize it to NULL
 float (*pt2Function)(float, float) = NULL;
 pt2Function=GetPtr1('+'); // get function pointer from 'GetPtr1' **
 float result1 = (*pt2Function)(2, 4); // call function using pointer **
 pt2Function=GetPtr1('-'); // get function pointer from 'GetPtr1'
 float result2 = (*pt2Function)(2, 4); // call function using the pointer }

12

result1 = ? result2 = ?
** NOTE: These two statements are equivalent to: float result1 = GetPtr1(‘+’)(2,4)

Arrays of Function Pointers (ex#1)

Defining and using an array of function pointers offers the option to select a
function using an index.

13

void Array_Of_Function_Pointers() {
// define arrays and init each element to NULL, <funcArr1> and <funcArr2> are arrays
// with 10 pointers to functions which return an int and take a float and two char
//directly defining the array
 int (*funcArr2[10])(float, char, char) = {NULL};
// assign the function's address - 'DoIt' and 'DoMore' are suitable functions
// like defined previously
 funcArr1[0] = funcArr2[1] = &DoIt;
 funcArr1[1] = funcArr2[0] = &DoMore; /* more assignments */
// calling a function using an index to address the function pointer
 printf("%d\n", funcArr1[1](12, 'a', 'b')); // short form
 printf("%d\n", (*funcArr1[0])(12, 'a', 'b')); // "correct" way of calling
 printf("%d\n", (*funcArr2[1])(56, 'a', 'b'));
 printf("%d\n", (*funcArr2[0])(34, 'a', 'b'));
}

Arrays of Function Pointers (ex#2)

C treats pointers to functions
just like pointers to data
therefore we can have arrays
of pointers to functions
This offers the possibility to
select a function using an
index
For example:

Suppose that we’re writing a
program that displays a
menu of commands for the
user to choose from. We can
write functions that
implement these commands,
then store pointers to the
functions in an array

14

void (*file_cmd[]) (void) =
{ new_cmd,
 open_cmd,
 close_cmd,
 save_cmd ,
 save_as_cmd,
 print_cmd,
 exit_cmd
};

If the user selects a command
between 0 and 6, then we can
subscript the file_cmd array to find
out which function to call

file_cmd[n]();

Late/Runtime Binding

Runtime binding—useful when alternative functions
maybe used to perform similar tasks on data (eg
sorting)

Determine sorting function based on type of data
at run time

 Eg: insertion sort for smaller data sets (n <100)

 Eg: Quicksort for large data sets (n > 100000)

 Other sorting algorithms based on type of
data set

15

Sort Example

2/1/2013 16

 In <stdlib.h>, we have a sorting function:
void qsort (void *base , size_t num , size_t size ,

int (*comp_func) (const void *, const void *))

 Consists of three parts
 a comparison that determines the ordering of any pair of objects

 an exchange that reverses their order

 A sorting algorithm that makes comparisons and exchange until the objects are
in order.

 <the sorting algorithm is independent of comparison and exchange operator>

 qsort will sort an array of elements. This is a wild function that
uses a pointer to another function that performs the required
comparisons.

Sort Example

2/1/2013 17

 In <stdlib.h>, we have a sorting function:
void qsort (void *base , size_t num , size_t size ,

int (*comp_func) (const void *, const void *))

 Some explanation
 void * base is a pointer to the array to be sorted. This can be a pointer to any

data type

 size_t num The number of elements.

 size_t size The element size.

 int (*comp_func)(const void *, const void *))This is a pointer to a function.

Sort Example

2/1/2013 18

 qsort thus maintains it's data type independence by giving the
comparison responsibility to the user.

 The compare function must return integer values according to
the comparison result:
 less than zero : if first value is less than the second value

 zero : if first value is equal to the second value

 greater than zero : if first value is greater than the second value

 Some quite complicated data structures can be sorted in this
manner.

 The generic pointer type void * is used for the pointer
arguments, any pointer can be cast to void * and back again
without loss of information.

2/1/2013 19

#include <stdlib.h>

int int_sorter(const void *first_arg, const void

*second_arg){

 int first = *(int*)first_arg; // deref (cast)

 int second = *(int*)second_arg;

 if (first < second) {

 return -1;

 } else if (first == second) {

 return 0;

 } else {

 return 1; } }

int main() {

 int array[10];

 int i;

 /* fill array */

 for (i = 0; i < 10; ++i) {

 array[i] = 10 - i; }

 qsort(array, 10 , sizeof(int), int_sorter);

 for (i = 0; i < 10; ++i) {

 printf ("%d\n" ,array[i]); } }

Reminder: void qsort (void *base , size_t num , size_t size ,
 int (*comp_func) (const void *, const void *))

Structures

What is a structure?
One or more values, called members, with possibly
dissimilar types that are stored together.
Used to group together different types of variables under
the same name.
Aggregates a fixed set of labeled objects, possibly of
different types, into a single object (like a record)

What is a structure NOT?
Since members are NOT the same type/size, they are not
as easy to access as array elements that are the same
size.
Structure variable names are NOT replaced with a pointer
in an expression (like arrays)
A structure is NOT an array of its members so can NOT
use subscripts.

20

Structure Declarations (preview)

21

struct tag {member_list} variable_list;
struct S {
 int a;
 float b;
} x;

struct {
int a;
float b;
} z;

struct S y;

struct S {
int a;
float b;
};

struct S;
Declares x to
be a structure
having two
members, a
and b. In
addition, the
structure tag S
is created for
use in future
declarations.

Omitting the
tag field;
cannot
create any
more
variables
with the
same type
as z

Incomplete
declaration
which informs
the compiler
that S is a
structure tag
to be defined
later

Omitting the
member list
declares
another
structure
variable y
with the
same type
as x

Omitting the
variable list
defines the
tag S for use
in later
declarations

Struct storage issues

A struct declaration consists of a list of fields,
each of which can have any type. The total
storage required for a struct object is the sum
of the storage requirements of all the fields,
plus any internal padding.
A struct has no place in memory until a
variable has been assigned to it.

22

Structure Example Preview

This declaration introduces the type struct fraction (both words are
required) as a new type.
 C uses the period (.) to access the fields in a record.
You can copy two records of the same type using a single assignment
statement, however == does not work on structs (see note link).

23

struct fraction {
 int numerator;
 int denominator; // can’t initialize
};

struct fraction f1, f2; // declare two fractions
f1.numerator = 25;
f1.denominator = 10;
f2 = f1; // this copies over the whole struct

Structure Declarations (cont)

So tag, member_list and variable_list are all optional,
but cannot all be omitted; at least two must appear
for a complete declaration.

24

struct {
 int a;
 char b;
 float c;
} x;

struct {
 int a;
 char b;
 float c;
} y[20], *z;

Single variable x contains 3 members

An array of 20 structures (y); and
A pointer to a structure of this type (z)

Treated different by the compiler
DIFFERENT TYPES
i.e. z = &x is ILLEGAL

So all structures of a given type must
be created in a single declaration? NO.

More Structure Declarations

The TAG field
Allows a name to be given to the member list so that it
can be referenced in subsequent declarations
Allows many declarations to use the same member list
and thus create structures of the same type

25

struct SIMPLE {
 int a;
 char b;
 float c;
} ;

So  struct SIMPLE x;
 struct SIMPLE y[20], *z;

Now x, y, and z are all the same
kind of structure Associates tag with

member list; does not
create any variables

In-class Assignment

How are structure members different from
array elements? Consider the type, the name
and any memory accessing issues.
Complete the following declaration to
initialize x so that the member a is three, b is
the string “hello” and c is zero:

struct { int a; char b[10]; float c; } x =

Given: struct abc {int a; int b; int c;};
How do you access member a?

26

Typedefs  typedef <type> <name>;

Ex1:
#define true 1
#define false 0
typedef int bool;
bool flag = false;

Ex2:
char *ptr_to_char; // new variable
typedef char * ptr_to_char; // new type
ptr_to_char a; // new variable

27

Using typedefs with Structures

A typedef statement introduces a shorthand
name for a type. The syntax is...

typedef <type> <name>;
 shorter to write
 can simplify more complex type definitions

28

typedef struct {
 int a;
 char b;
 float c;
} Simple;

So  Simple x;
 Simple y[20], *z;

Now x, y, and z are all the same
TYPE.

Similar to  int x;
 int y[20], *z;

Typedef Structure Example

29

#include <stdio.h>
typedef struct {
 int x;
 int y;
} point;
int main(void)
{ /* Define a variable p of type point, and initialize all its members inline! */
 point p = {1,2};
 point q;
 q = p; // q.x = 1 and q.y=2
 q.x = 2;
/* Demonstrate we have a copy and that they are now different. */
 if (p.x != q.x)
 printf("The members are not equal! %d != %d", p.x, q.x);
return 0; }

Function pointers and Typedef

We can use function pointers in return values as well
 // this function called functionFactory receives parameter n
 // and returns a pointer to another function which receives
 // two integers and it returns another integer
 int (*functionFactory(int n))(int, int) {
 printf("Got parameter %d", n);
 int (*functionPtr)(int,int) = &addInt;
 return functionPtr; }

But it's much nicer to use a typedef:
 typedef int (*myFuncDef)(int, int);
 // note that the typedef name is indeed myFuncDef

 myFuncDef functionFactory(int n) {
 printf("Got parameter %d", n);
 myFuncDef functionPtr = &addInt;
 return functionPtr; }

30

Typedef with Function Pointers

Original function definition is:
float (*GetPtr1(const char opCode))(float, float)

Using a typedef, define a pointer to a function which
takes two floats and returns a float

typedef float(*pt2Func)(float, float);
Then you can change the function definition to:

pt2Func GetPtr1(const char opCode)

31

Define an Array of Function Pointers:
int (*funcArr2[10])(float, char, char) = {NULL};

Using a typedef:
typedef int (*pt2Function)(float, char, char);

You can define an array of function pointers:
pt2Function funcArr1[10] = {NULL};

Structures and Pointers

32

#include<stdio.h>

typedef struct
{ char *name;
 int number;
} TELEPHONE;

int main()
{ TELEPHONE index;
 TELEPHONE *ptr_myindex;
 ptr_myindex = &index;
 ptr_myindex->name = "Jane Doe"; // (*ptr_myindex).name
 ptr_myindex->number = 12345; // (*ptr_myindex).number
 printf("Name: %s\n", ptr_myindex->name);
 printf("Telephone number: %d\n", ptr_myindex->number);
 return 0; }

What is going on here?
Remember: TELEPHONE is a

type of structure;

-> is a “struct member through
pointer” operator… see operator
precedence (top)

Structures and Pointers

33

#include<stdio.h>
#include <stdlib.h>
typedef struct rec
{ int i;
 float PI;
 char A; } RECORD;
int main()
{ RECORD *ptr_one;
 ptr_one = (RECORD *) malloc (sizeof(RECORD));
 (*ptr_one).i = 10;
 (*ptr_one).PI = 3.14;
 (*ptr_one).A = 'a';
 printf("First value: %d\n",(*ptr_one).i);
 printf("Second value: %f\n", (*ptr_one).PI);
 printf("Third value: %c\n", (*ptr_one).A);
 free(ptr_one);
 return 0; }

struct rec *ptr_one;
ptr_one =(struct rec *) malloc (sizeof(struct rec));

ptr_one->i = 10;
ptr_one->PI = 3.14;

ptr_one->A = 'a';
printf("First value: %d\n", ptr_one->i);

printf("Second value: %f\n", ptr_one->PI);
printf("Third value: %c\n", ptr_one->A);

“rec” is not necessary for
given/left code, but *is*
necessary for below code
update

For below, without RECORD,
warning: useless storage class
specifier in empty declaration

Structures and Pointers

34

struct mystruct {
 int a;
 char* b; } ; //note: could put st here instead
struct mystruct st;
char* pb = (char*)&st + offsetof(struct mystruct, b);

how set "pb" to be a pointer to member “b”
within structure “mystruct“?
offsetof tells you the offset of a variable within
a structure (stddef.h)

Structure memory (again)

What does memory look like?

35

typedef struct {
 int a;
 short b[2];
} Ex2;

typedef struct EX {
 int a;
 char b[3];
 Ex2 c;
 struct EX *d;
} Ex;

Given the following declaration, fill in the above
memory locations:
 Ex x = { 10, “Hi”, { 5 , { -1, 25 } } , 0 };
 Ex *px = &x;

x

px

In-class exercise

Missing values cause the remaining members to get default
initialization… whatever that might be!

36

typedef struct {
 int a;
 char b;
 float c;
} Simple;

struct INIT_EX {
 int a;
 short b[10];
 Simple c;
} x = { 10,
 { 1, 2, 3, 4, 5 } ,
 { 25, ‘x’, 1.9 }
} ;

What goes here (hint in blue below)?

struct INIT_EX y = { 0 , {10, 20, 30, 40, 50,
 60, 70, 80, 90, 100 },
 { 1000, ‘a’, 3.14 }
 } ;
Name all the variables and their initial values:
y.a = 0;
y.b[0] = 10; y.b[1] = 20; y.b[2] = 30; etc
y.c.a = 1000;
y.c.b = ‘a’;
y.c.c = 3.14;

More on Structure Declarations

MEMBERS
Any kind of variable that can be
declared outside a structure may
also be used as a structure
member.
Structure members can be
scalars, arrays, pointers and even
other structures.

ACCESS using dot operator
Two operands

Left = name of structure variable
Right = name of the desired
member
Result = the designated member

OPERATOR PRECEDENCE
The subscript and dot operators
have the same precedence and
all associate left to right.
The dot operator has higher
precedence then the indirection

37

struct COMPLEX {
 float f;
 int a[20];
 long *lp;
 struct SIMPLE s;
 struct SIMPLE sa[10];
 struct SIMPLE *sp;
} cmplx, cmp[10];

Pointer2Structure
 operator
Left = *must* be a pointer to a
structure
Right = member

Example
(*sp).a == spa
Indirection built into arrow/infix
operator
Follow the address to the
structure

Structure example

38

struct SIMPLE {
 int a;
 char b;
 float c; } ;

struct COMPLEX {
 float f;
 int a[20];
 long *lp;
 struct SIMPLE s;
 struct SIMPLE sa[10];
 struct SIMPLE *sp;
} cmplx, cmp[10];

 cmplx.a[1] = 1;
 cmplx.s.a = 2;
 cmplx.sa[1].b = 'A';
 cmplx.sp = &cmplx.s;
 cmp[1].f = 3.14;
 cmp[5].s.a = 3;
 cmp[7].sa[2].b = 'B';

 int z = cmplx.a[1];
 int j = cmplx.s.a;
 char k = cmplx.sa[1].b;
 int x = cmplx.sp->a;
 float r = cmp[1].f;
 int t = cmp[5].s.a;
 char y = cmp[7].sa[2].b;

Self-Referential Structures

Illegal - infinite

39

struct SELF_REF {
 int a;
 struct SELF_REF b;
 int c;
} ;

Correction
struct SELF_REF {
 int a;
 struct SELF_REF *b;
 int c;
} ;

Watch out
typedef struct {
 int a;
 struct SELF_REF *b;
 int c;
} SELF_REF ;

Correction
typedef struct SELF_REF_TAG {
 int a;
 struct SELF_REF_TAG *b;
 int c;
} SELF_REF ;

Incomplete Declarations

Structures that are mutually dependent
As with self referential structures, at least one of the
structures must refer to the other only through pointers
So, which one gets declared first???

40

struct B;

struct A {
 struct B *partner;
 /* etc */
} ;

struct B {
 struct A *partner;
 /* etc */
} ;

• Declares an identifier to be a structure tag
• Use this tag in declarations where the size of

the structure is not needed (pointer!)
• Needed in the member list of A

• Doesn’t have to be a pointer

Structures as Function arguments

Legal to pass a structure to a function similar to
any other variable but often inefficient

41

/* electronic cash register individual
transaction receipt */
#define PRODUCT_SIZE 20;
typedef struct {
 char product[PRODUCT_SIZE];
 int qty;
 float unit_price;
 float total_amount;
} Transaction;

void print_receipt (Transaction trans) {
 printf(“%s\n, trans.product);
 printf(%d @ %.2f total %.2f\n”, trans.qty, trans.unit_price, trans.total_amount);
}

Function call:
print_receipt(current_trans);
Copy by value copies 32 bytes to the
stack which can then be discarded later

Instead…
 (Transaction *trans)
trans->product // fyi: (*trans).product
trans->qty
trans->unit_price
trans->total_amount
print_receipt(¤t_trans);
void print_receipt(Transaction *trans)

