
CSE2421 Practice Problems 1 | P a g e

Y86 Instruction Set

Byte 0 1 2 3 4 5

pushl rA A 0 rA F

jXX Dest 7 fn Dest

popl rA B 0 rA F

call Dest 8 0 Dest

rrmovl rA, rB 2 0 rA rB

irmovl V, rB 3 0 8 rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

halt 0 0

nop 1 0

cmovXX rA, rB 2 fn rA rB

6 0

6 1

6 2

6 3

Operations

jmp 7 0

jle 7 1

jl 7 2

je 7 3

7 4

7 5

7 6

Branches

rrmovl 2 0

cmovle 2 1

cmovl 2 2

cmove 2 3

cmovne 2 4

cmovge 2 5

cmovg 2 6

Moves

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

0

1

2

3

6

7

4

5

R
E
G
I
S
T
E
R
S

addl

subl

andl

xorl

jne

jge

jg

F

CSE2421 Practice Problems 2 | P a g e

Need to make sure that

the stack does not grow

so large that it

overwrites the code or

other program data

Declare an array of 4 words

starting on a 4 byte boundary

Start address for all Y86
programs

init  we are the OS
now since Y86 doesn’t

have one!

COMPLETE PROGRAM FILE WRITTEN IN Y86 ASSEMBLY CODE
The program contains both data and instructions. Directives indicate where to place code or data and how to
align it. The program also specifies issues such as stack placement, data initialization, program initialization
and program termination.

Save “init” base pointer
Set up new frame for main

routine
Add parameters to the stack to

a call to the “Sum” function

Sum up the values in the array

CSE2421 Practice Problems 3 | P a g e

0x0100: (top of stack)

PROGRAM
WALKTHRU

%esp=0x100
%ebp=0x100
%esp = 0xfc = 0x11

%esp=0xf8=0x100
%ebp=0xf8
%eax=0x4
%esp=0xf4=4
%edx=0x14
%esp=0xf0=0x14
%esp=0xec=0x3d

%esp=0xe8=0xf8
%ebp=0xe8
%ecx=0x14
%edx=4
%eax=0
If %edx=0
 Jump to End
%esi=0x14 value=0xd
%eax=0xd+0=0xd
%ebx=4
%ecx=0x14+4=0x18
%ebx=0xffffffff
%edx=-1+4=3
Zero flag not set,
Loop

ETC

Old %ebp (sum)
Ret addr (sum)
Start param
Count param
Old %ebp (init)
Ret addr (main)

CSE2421 Practice Problems 4 | P a g e

To put the above in a different way:

address STACK description

PROG et all typically up here

ETC

 0x0e8 0xf8 <-- %esp (push %ebp), %ebp

0x0ec 0x3d <-- %esp (call Sum)

0x0f0 0x14 <-- %esp (push %edx)

0x0f4 0x4 <-- %esp (push %eax)

0x0f8 0x100 <-- %esp (push %ebp), %ebp

0x0fc 0x11 <-- %esp (call Main)

stack: 0x100 <-- %esp, %ebp

<------ 4-bytes ------>

 Y86 REGISTERS VALUE
 %eax= 0x4, 0, 0xd, 0xcd, 0xbcd, 0xabcd

 %ebx= 0x4, 0xffffffff, 0x4, 0xffffffff, 0x4, 0xffffffff, 0x4, 0xffffffff
 %ecx= 0x14, 0x18, 0x1c, 0x20, 0x24
 %edx= 0x14, 0x4, 0x3, 0x2, 0x1, 0x0
 %esi= 0xd, 0xc0, 0xb00, 0xa000
 %edi=

 %esp= stack pointer
 %ebp= base pointer

 QUESTIONS
 Why use "xorl %eax,%eax" instead of "irmovl $0, %eax"? to set condition code bits

What are CC bits… for xorl and for irmovl? Z=1, S=0, O=0 for xorl
 for irmovl… starting bits?

Why do "andl %edx,%edx"? to set CC bits for “je” instruction

What are CC bits? Z=0, S=0, O=0
 How many registers used just to sum a list of numbers? only %edi not used

What if stack bumps into where the program is stored? uh oh!

how make this happen? stack .pos < 0x7c + stack size

CSE2421 Practice Problems 5 | P a g e

ORGANIZING PROCESSING INTO STAGES

The processor loops indefinitely, performing these stages. In our simplified implementations,

the processor will stop when any exception occurs: it executes a “halt” or invalid instruction,

or it attempts to read or write an invalid address. In a more complete design, the processor

would enter an exception-handling mode and begin executing special code determined by the

type of exception.

PC Update: The PC is set to the address of the next
instruction

Write back: Writes up to two results to the register file

Memory: Can write data to memory, or may read data
from memory. The value read is referred to as valM

Execute:The ALU either:
1. Performs the operations specified (according to the

value of ifun)
2. Computes the effective address of a memory

reference
3. Increments/decrements the stack pointer
The resulting value is referred to as valE
The conditions codes are possibly set
The jump instruction tests the condition codes and
branch condition (given by ifun) to see whether or not
to take the branch

Decode: Reads up to two operands from the register
file, giving values valA and/or valB.
Note: for some instructions it reads register %esp

Fetch:

 Reads the bytes of an instruction from memory
using the PC as the memory address.

 icode = instruction code (high nibble of first byte)

 ifun = instruction function (low nibble of first byte)

 assigns rA and rB if applicable i.e. if one or both
given as register operands

 valC = 4-byte constant word (if applicable)

 valP = computed to be the address of the
instruction following the current one in sequential
order i.e. value of PC + length of the fetched
instruction

CSE2421 Practice Problems 6 | P a g e

CSE2421 Practice Problems 7 | P a g e

