Typedef Structure Example

#include <stdio.h>
struct {
int x;
inty;
} point;
int main(void)
{ /* Define a variable p of type point, and initialize all its members inline! */
point p = {1,2};
point q;
q=p; //9.x=1and q.y=2
q.x = 2;
/* Demonstrate we have a copy and that they are now different. */
if (p.x !=qg.x)
printf("The members are not equal! %d != %d", p.x, g.x);
return 0; }

Structures and Pointers

struct mystruct {

int a;

char* b; }; //note: could put st here instead
struct mystruct st;
char* pb = (char*)&st + offsetof(struct mystruct, b);

offsetof = tells you the offset of a
variable within a structure (stddef.h)
should set "pb" to be a pointer to
member “b” within structure “mystruct".

Structures and Pointers

H#include<stdio.h>

typedef struct

{ char *name;
int number;

}TELEPHONE;

int main()
{ TELEPHONE index;
TELEPHONE *ptr_myindex;
ptr_myindex = &index;
ptr_myindex->name = "Jane Doe";
ptr_myindex->number = 12345;
printf("Name: %s\n", ptr_myindex->name);
printf("Telephone number: %d\n", ptr_myindex->number);
return 0; }

Structures and Pointers

#include<stdio.h>

{

struct
inti;
float PI;
char A; }

int main()

{

RECORD *ptr_one;
ptr_one = (RECORD *) malloc (sizeof(RECORD));
(*ptr_one).i = 10;

(*ptr_one).Pl = 3.14;

(*ptr_one).A ="a";

printf("First value: %d\n",(*ptr_one).i);
printf("Second value: %f\n", (*ptr_one).Pl);
printf("Third value: %c\n", (*ptr_one).A);
free(ptr_one);

return O;

struct rec *ptr_one;

t rec *) malloc (sizeof(struct rec));
ptr_one->i = 10;

ptr_one->Pl =3.14;

ptr_one->A ='a’;

f("First value: %d\n", ptr_one->i);
Second value: %f\n", ptr_one->Pl);
("Third value: %c\n", ptr_one->A);

Struct storage issues

= A struct declaration consists of a list of fields,
each of which can have any type. The total
storage required for a struct object is the sum
of the storage requirements of all the fields,
plus any internal padding.

