
CSE2421 Systems1
Introduction to Low-Level Programming and Computer Organization

Kitty Reeves
TWRF 12:40-1:35pm
TWRF 3:00-3:55pm

Autumn 2012

1

CSE2421 = Alice in Wonderland

A look into the rabbit hole…
http://code.google.com/p/corkami/wiki/PE101?show=content

2

http://code.google.com/p/corkami/wiki/PE101?show=content

Introduction

Website
http://www.cse.ohio-state.edu/~reeves

Syllabus
Course Description
Pre-requisites
Objectives
Textbook – Safari online an option
Grading Policy
Lab locations – submission info given on Day 2
Academic Misconduct

Thursday possible lab day
BE0310 definitely for the 1st two weeks

3

http://www.cse.ohio-state.edu/~reeves
http://www.cse.ohio-state.edu/~reeves
http://www.cse.ohio-state.edu/~reeves

Why C?

Age has its advantages
C has been around for ~40 years

C is a great language for expressing common ideas in
programming in a way that most people are comfortable
with (procedural language)
Portable, versatile, simple, straight-forward
Reasonably close to the machine

Low-level access to memory
Provide language constructs that map efficiently to machine
instructions
Requires minimal run-time support

*** C has the best combination of speed, low memory use,
low-level access to the hardware, and popularity ***

FYI: Comparing Languages: http://www.cprogramming.com/langs.html
If you dare: http://en.wikipedia.org/wiki/C_(programming_language)

4

http://www.cprogramming.com/langs.html
http://www.cprogramming.com/langs.html

OK, really… why C?

Is there a size problem?
Size is part of the issue, but so is speed.
C is lightweight and fast.

I hate garbage
No garbage collection
Fun memory leaks to debug

Wonderfully, yet irritatingly, obedient
you type something incorrectly, and it has a way of
compiling fine and just doing something you don't expect
at run-time.

Power…
To optimize
Write drivers
Get a job in micro processing technology
Write my own OS

5

Welcome to C

Going from Java to C is like going from an
automatic transmission to a stick shift

Lower level: much more is left for you to do
Unsafe: you can set your computer on fire
C standard library: is much smaller
Similar syntax: can both help and confuse
Not object oriented: paradigm shift

6

Happiness is… programming in C

C is procedural, not object-oriented
C is fully compiled (to machine code), not to
bytecode
C allows direct manipulation of memory via
pointers
C does not have garbage collection
Many of the basic language constructs in C
act in similar ways to the way they work in
Java
C has many important, yet subtle, details

7

C vs Java/C++

Programming language rankings
 Speed - Portability - Object Orientation

Pointers to memory
Platform dependent
types
Programmer
allocated memory
Declare variables at
start of block

References to
objects
Types have well
defined sizes
Automatic garbage
collection
Declare variable
anywhere

8

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

C does not…

C is a procedural language, and does not support
objects. That is, it does not support entities
which contain data and model behavior. We can
botch together something of the sort in C, but it
is still far from what we would ever consider a
class.
C does not support Encapsulation. While you
may set up a group of data types to only be
accessible through a structure collection, it still
can be accessed from anywhere, by anything, as
long as the collection exists within a scope seen
by what is trying to access it.

9

C History and background

What is C?
C is a programming language originally created for developing the Unix
operating system. It is a low-level and powerful language, but it lacks many
modern and useful constructs.
C is a simple programming language with few keywords and a relatively
simple to understand syntax.
C is also useless (whaaaaaaaaaaaaaattt???). C itself has no input/output
commands, doesn't have support for strings as a fundamental (atomic) data
type. No useful math functions built in.
Because C is useless by itself, it requires the use of libraries. This increases
the complexity of C. The issue of standard libraries is resolved through the
use of ANSI libraries and other methods.

Three traditional aspects of the C language:

Characters are promoted to integers before being used for any type of
arithmetic.
The default character type, either signed or unsigned, is not specified by the
Standard so that the implementer can choose whichever is most efficient for
a particular machine.
There is no range checking on array subscripts.

10

BRIAN KERNIGHAN QUOTES

Controlling complexity is the essence of computer programming.
Software Tools (1976), p. 319 (with P. J. Plauger)

The most effective debugging tool is still careful thought, coupled with judiciously
placed print statements.

"Unix for Beginners" (1979)

Everyone knows that debugging is twice as hard as writing a program in the first
place. So if you're as clever as you can be when you write it, how will you ever
debug it?

"The Elements of Programming Style", 2nd edition, chapter 2

Do what you think is interesting, do something that you think is fun and
worthwhile, because otherwise you won't do it well anyway.

An Interview with Brian Kernighan from the PC Report Romania[1]

Advice to students: Leap in and try things. If you succeed, you can have enormous
influence. If you fail, you have still learned something, and your next attempt is
sure to be better for it.

Advice to graduates: Do something you really enjoy doing. If it isn’t fun to get up
in the morning and do your job or your school program, you’re in the wrong field.

"Leap In and Try Things: Interview with Brian Kernighan"[2] from Harmony at Work blog[3]

11

http://en.wikipedia.org/wiki/P._J._Plauger
http://en.wikipedia.org/wiki/P._J._Plauger
http://www.cs.cmu.edu/~mihaib/kernighan-interview/
http://www.cs.cmu.edu/~mihaib/kernighan-interview/
http://www.harmonyatwork.in/blog/2009/10/leap-in-and-try-things-brian-kernighan/
http://www.harmonyatwork.in/blog/
http://www.harmonyatwork.in/blog/

Your first C program

#include <stdio.h>
void main(void)
{
 printf(“Hello, world!\n”);
}

Reminder There are a lot of different ways to solve the same problem.
TO-DO: Experiment with leaving out parts of the program, to see what error

messages you get.

#include <stdio.h>
main() {
 printf("Hello, world!\n");
 return 0; }

#include <stdio.h>
int main(void) {
 printf("Hello, world!\n");
 return (0); }

#include <stdio.h>
int main(void) {
 printf("Hello, world!\n");
 getchar();
 return 0; }

#include <stdio.h>
void main(void) {
 printf(“Hello, “);
 printf(“world!”);
 printf(“\n”); }

Which one is best?

12

C compilation model… hello.c to hello

Type in program using an editor of
your choice (file.c); plain text

.c + .h = .i which is the “ultimate source
code”? i.e. # includes expanded and
#defines replaced

.i .s which is assembler source code

.s .o which is an object file; fragments of
machine code with unresolved symbols i.e.
some addresses not yet known (vars/subrs).

.o + library links a.out (default name);
resolves symbols, generates an executable.

hello.c

hello

%gcc -o hello hello.c

%hello
13

Standard Header Files

Functions, types and macros of the standard library
are declared in standard headers:

A header can be accessed by

#include <header>
Notice, these do not end with a semi-colon

Headers can be included in any order and any number
of times
Must be included outside of any external declaration
or definition; and before any use of anything it
declares
Need not be a source file

<assert.h> <float.h> <math.h> <stdarg.h> <stdlib.h>
<ctype.h> <limits.h> <setjmp.h> <stddef.h> <string.h>
<errno.h> <locale.h> <signal.h> <stdio.h> <time.h>

14

The main() function

Every full C program begins inside a function called
"main". A function is simply a collection of commands that
do "something". The main function is always called when
the program first executes. From main, we can call other
functions, whether they be written by us or by others or
use built-in language features.

Java programmers may recognize the main() method but note that it is not embedded
within a class. C does not have classes. All methods (simply known as functions) are
written at file scope.

The main() method in Java has the prototype ‘main(String[] args)’ which provides the
program with an array of strings containing the command-line parameters. In C, an array
does not know its own length so an extra parameter (argc) is present to indicate the
number of entries in the argv array.

15

Your first C program (cont)

What is going on?
#include <stdio.h> - Tells the compiler to include this header
file for compilation. To access the standard functions that
comes with your compiler, you need to include a header with
the #include directive.
 What is a header file? They contain prototypes and other

compiler/pre-processor directives. Prototypes are basic abstract
function definitions. More on these later...

 Some common header files are stdio.h, stdlib.h, unistd.h, math.h.
main() - This is a function, in particular the main block.
{ } - These curly braces are equivalent to stating "block begin"
and "block end". The code in between is called a “block”
printf() - Ah... the actual print statement. Thankfully we have
the header file stdio.h! But what does it do? How is it defined?
return 0 - What's this? Every function returns a value…

16

Your first C program (cont)

The return 0 statement. Seems like we are trying to give something back, and it is an integer.
Maybe if we modified our main function definition: int main() Ok, now we are saying that our
main function will be returning an integer! So remember, you should always explicitly declare the
return type on the function! If you don’t, it defaults to a type integer anyway.

Something is still a little fishy... I thought that 0 implied false (which it does)... so isn't it returning
that an int signifying a bad result? Thankfully there is a simple solution to this. Let's add #include
<stdlib.h> to our includes. Let's change our return statement to return EXIT_SUCCESS;. Now it
makes sense!

Let's take a look at printf. Hmm... I wonder what the prototype for printf is. (btw, what’s a
prototype?) Utilizing the man pages we see that printf is: int printf(const char *format, ...); printf
returns an int. The man pages say that printf returns the number of characters printed. Now you
wonder, who cares? Why should you care about this? It is good programming practice to ALWAYS
check for return values. It will not only make your program more readable, but in the end it will
make your programs less error prone. But in this particular case, we don't really need it. So we
cast the function's return to (void). fprintf, fflush, and exit are the only functions where you
should do this. More on this later when we get to I/O. For now, let's just void the return value.

What about documentation? We should probably doc some of our code so that other people can
understand what we are doing. Comments in the C89 standard are noted by: /* */. The comment
begins with /* and ends with */.

Comments cannot be nested!
// is a single line comment i.e. from the location of // to the end of the line is considered a comment

17

Your first C program…
 New and Improved?

Much better! The KEY POINT of this whole introduction is to show you the fundamental
difference between correctness and understandability. All of the sample codes produce the exact
same output in "Hello, world!" However, only the latter example shows better readability in the
code leading to code that is understandable. All codes will have bugs. If you sacrifice code
readability with reduced (or no) comments and cryptic lines, the burden is shifted and magnified
when your code needs to be maintained.

#include <stdio.h>
#include <stdlib.h>

/* Main Function
 * Purpose: Controls program, prints Hello, World!
 * Input: None
 * Output: Returns Exit Status
 */
int main(int argc, char **argv) {
 printf("Hello, world!\n");
 return EXIT_SUCCESS;
}

18

19

Overview of C

Basic Data Types
Constants
Variables
Identifiers
Keywords
Basic I/O

NOTE: There are six classes of tokens: identifiers, keywords, constants, string
literals, operators, and other separators. Blanks, horizontal and vertical tabs,
newlines, form feeds and comments (collectively, ‘‘white space’’) are ignored except
as they separate tokens. Some white space is required to separate otherwise
adjacent identifiers, keywords, and constants

20

Basic Data Types

Integer Types
Char – smallest addressable unit; each byte has its own address
Short – not used so much
Int – default type for an integer constant value
Long – do you really need it?

Floating point Types – are “inexact”
Float – single precision (about 6 digits of precision)
Double – double precision (about 15 digits of precision)
 constant default unless suffixed with ‘f’

21

Note that variables of type char are
guaranteed to always be one byte.

There is no maximum size for a type, but the
following relationships must hold:

sizeof(short) <= sizeof(int) <= sizeof(long)

sizeof(float) <= sizeof(double) <= sizeof(long
double)

C Language Variable Types

22

Derived types

Beside the basic types, there is a conceptually infinite
class of derived types constructed from the
fundamental types in the following ways:

arrays of objects of a given type;
functions returning objects of a given type;
pointers to objects of a given type;
structures containing a sequence of objects of various
types;
unions capable of containing any of one of several objects
of various types.

In general these methods of constructing objects can
be applied recursively

An array of pointers
An array of characters (i.e. a string)
Structures that contain pointers

23

Constants

Special characters
Not convenient to type on a keyboard
Use single quotes i.e. ‘\n’
Looks like two characters but is really only one

\a alert (bell) character \\ backslash

\b backspace \? question mark

\f formfeed \’ single quote

\n newline \" double quote

\r carriage return \ooo octal number

\t horizontal tab \xhh hexadecimal number

\v vertical tab

24

Symbolic constants

A name that substitutes for a value that cannot be changed
Can be used to define a:

Constant
Statement
Mathematical expression

Uses a preprocessor directive
#define <name> <value>
 No semi-colon
Coding style is to use all capital letters for the name

Can be used any place you would use the actual value
All occurrences are replaced when the program is compiled
Examples:

The use of EXIT_SUCCESS in hello.c code
#define PI 3.141593
#define TRUE 1
#define floatingpointnum float

25

Variable Declarations

Purpose: define a variable before it is used.
Format: type identifier [, identifier] ;
Initial value: can be assigned

int i, j, k;
char a, b, c = ‘D’;
int i = 123;
float f = 3.1415926535;
double f = 3.1415926535;
strings later… array of characters

Type conversion: aka, type casting
Coercion, be very cautious.
(type) identifier;
 int i = 65; /* what if 258 */
 char a; /* range -128 to 127 */
 a = (char) i; /* What is the value of a? */

26

Variable vs Identifier

An identifier, also called a token or symbol, is a
lexical token that “names” an entity

An entity can be: variables, types, labels, functions,
packages, etc.
Naming entities makes it possible to refer to them

A variable

Allows access and information about what is in
memory i.e. a storage location
A symbolic name (an identifier) that is associated
with a value and whose associated value may be
changed
The usual way to reference a stored value

27

Identifier Naming Style

Rules for identifiers
a-z, A-Z, 0-9, and _
Case sensitive
The first character must be a letter or _
Keywords are reserved words, and may not be used as
identifiers

Identifier Naming Style

Separate words with ‘_’ or capitalize the first character
Use all UPPERCASE for symbolic constant, macro definitions,
etc
Be consistent
Be meaningful

Sample Identifiers

i0, j1, abc, stu_score, __st__, data_t, MAXOF, MINOF ...

28

Keywords

Purpose: reserves a word or identifier to have a particular
meaning

The meaning of keywords — and, indeed, the meaning of the
notion of keyword — differs widely from language to language.
You shouldn't use them for any other purpose in a C program.
They are allowed, of course, within double quotation marks.

29

Basic I/O

There is no input or output defined in C itself
Character based (no format specifiers) – character by character I/O

getchar() - input
putchar(c) - output

Formatted - standard I/O
scanf(stuff goes in here) - input *** white space is important!!!
printf(stuff goes in here) - output
Format Specifiers (% before specifier) – see next slide

#include <stdio.h>
int main() { /* check1.c */
 int x;
 scanf(“%d\n”, &x);
 printf(“x=%d\n”, x); }

Q. Why are pointers given to scanf?
A. Needs a pointer to the variable if
it is going to change the variable
itself i.e. assign a value to x.

#include <stdio.h>
int main(void) {
 int i = 65; /* what if 258 instead of 65? */
 char a;
 printf("i=\n",i);
 printf("output with a putchar ");
 putchar(i);
 a = (char) i;
 printf("a=\n",a);
 getchar();
 return(0); } /* check.c */

30

C Language Conversion Characters

Conversion Character Displays Argument (Variable’s Contents) As

%c Single character

%d Signed decimal integer (int)

%e Signed floating-point value in E notation

%f Signed floating-point value (float)

%g
Signed value in %e or %f format, whichever is
shorter

%i Signed decimal integer (int)

%o Unsigned octal (base 8) integer (int)

%s String of text

%u Unsigned decimal integer (int)

%x Unsigned hexadecimal (base 16) integer (int)

%% (percent character)

When programming in C, you use conversion characters — the percent sign

and a letter, for the most part — as placeholders for variables you want to

display. The following table shows the conversion characters and what they

display:

31

Answers: check.c and check1.c

#include <stdio.h>
int main(void) {
 int i = 65;
 /* what if 258 instead of 65? */
 char a;
 printf("i=%d\n",i);
 printf("output with a putchar ");
 putchar(i);
 printf("\ni=%i",i);
 a = (char) i;
 printf("\na=%c\n",a);
 i=getchar();
 printf("i=%c\n",i);
 printf("i=0x%x\n",i);
 printf("i=%d\n",i);
 return (0);
}

#include <stdio.h>
#define PI 3.14159265358979323846
int main() {
 int x;
 scanf("%d", &x); /* why need & ? */
 printf("%d\n", x);
 float var;
 scanf("%f",&var);
 scanf("%d",&var);
 scanf("%lf", &var);
 int first, second;
 scanf("enter value ", &var);
 scanf("%d%d", &first, &second);
 int i, j;
 scanf(" %d %*d %*d%*d %d ", &i, &j)
 return 0; }

32

Printf formatted output conversions

Character Argument type; Printed As

d,i int; signed decimal notation.

o int; unsigned octal notation (without a leading zero).

x,X

unsigned int; unsigned hexadecimal notation (without a leading 0x or 0X), using abcdef for 0x or

ABCDEF for 0X.

u int; unsigned decimal notation.

c int; single character, after conversion to unsigned char

s

characters from the string are printed until a ’\0’ is reached or until the number of characters
indicated by the precision have been printed.

f

double; decimal notation of the form [-]mmm.ddd, where the number of d’s is given by the
precision. The default precision is 6; a precision of 0 suppresses the decimal point.

e,E

double; decimal notation of the form [-]m.dddddde+/-xx or [-]m.ddddddE+/-xx, where the
number of d’s is specified by the precision. The default precision is 6; a precision of 0 suppresses
the decimal point.

g,G

double; %e or %E is used if the exponent is less than -4 or greater than or equal to the precision;
otherwise % f is used. Trailing zeros and a trailing decimal point are not printed.

33

Decimal & Floating point

%d print as decimal integer

%6d print as decimal integer, at least 6 characters wide

%f print as floating point

%6f print as floating point, at least 6 characters wide

%.2f print as floating point, 2 characters after decimal

point

%6.2f print as floating point, at least 6 wide and 2 after

decimal point

Width of the whole number portion
Is for decimal integers

The character width for float
includes the decimal point position

34

Printf examples

causes the values of the two integers fahr and celsius to be printed, with a tab (\t)
between them
 printf("%d\t%d\n", fahr, celsius);

to print the first number of each line in a field three
digits wide, and the second in a field six digits wide
 printf("%3d %6d\n", fahr, celsius);

 Each % construction in the first argument of
printf is paired with the corresponding second
argument, third argument, etc.;
they must match up properly by number and
type, or you will get wrong answers.

printf("\na=%f\nb=%f\nc=%f\nPI=%f",a,b,c,d); c = a + b;
printf("%d + %d = %d\n", a, b, c);

35

Printf and Scanf

Both formatted I/O
Both sent to “standard I/O” location
Printf

Converts values to character form according to
the format string

Scanf
Converts characters according to the format
string, and followed by pointer arguments
indicating where the resulting values are stored

36

Scanf (cont)

Scanf requires two inputs:
String argument - with format specifiers
Set of additional arguments (pointers to variables)

Consists of % at the beginning and a type indicator at the end
Skips over all leading white space (spaces, tabs, and newlines) prior to finding first input value
In between options:

* = used to suppress input
maximum field-width indicator
type indicator modifier

Input stops when:
End of format string
Input read does not match what the format string specifies i.e. pointer arguments MUST BE the right type
The next call to scanf resumes searching immediately after the last character already converted.

Return value = # of values converted

FORMAT MEANING VARIABLE TYPE

%d read an integer value int

%ld read a long integer value long

%f read a real value float

%lf read a double precision real value double
%c read a character char

%s read a character string from the input array of char

37

Scanf examples

int day, month, year;
scanf("%d/%d/%d", &month, &day, &year);
Input:
01/29/64

int anInt;

scanf("%*s %i", &anInt);

Input:

Age: 29
anInt==29 result

int anInt, anInt2;
scanf("%2i", &anInt);
scanf(“%2i”, &anInt2);
Input:
2345
anInt==23
anInt2==45

string s;
scanf("%9s", s);
Input:
VeryLongString
s==“VeryLongS”

double d;
scanf("%lf", &d);
Input:
3.14
d==3.14

int anInt;
scanf("%i%%", &anInt);
Input:
23%
anInt==23

int anInt; long l;
scanf("%d %ld", &anInt, &l);
Input:
-23 200
anInt==-23
l==200

NOTE: pressing the
enter key means you

have entered a
character…

38

more Scanf examples

Letter Type of Matching Argument
Auto-skip; Leading
White-Space

Example
Sample Matching
Input

% % (a literal, matched but not
converted or assigned)

no int anInt;
scanf("%i%%", &anInt);

23%

d int yes int anInt; long l;
scanf("%d %ld", &anInt, &l);

-23 200

i int yes int anInt;
scanf("%i", &anInt);

0x23

o unsigned int yes unsigned int aUInt;
scanf("%o", &aUInt);

023

u unsigned int yes unsigned int aUInt;
scanf("%u", &aUInt);

23

x unsigned int yes unsigned int aUInt;
scanf("%d", &aUInt);

1A

a, e, f,
g

float or double yes float f; double d;
scanf("%f %lf", &f, &d);

1.2 3.4

c char no char ch;
scanf(" %c", &ch);

Q

s array of char yes char s[30];
scanf("%29s", s);

hello

n int no int x, cnt;
scanf("X: %d%n", &x, &cnt);

X: 123 (cnt==6)

[array of char no char s1[64], s2[64];
scanf(" %[^\n]", s1);
scanf("%[^\t] %[^\t]", s1, s2);

Hello World
field1 field2

39

Scanf (cont)

You can use this function even with spaces in
the input:

scanf(” %[^\n]s”,a);

40

C Language operators

41

Arithmetic type issues

Type combination and promotion
(‘a’ – 32) = 97 – 32 = 65 = ‘A’
Smaller type (char) is “promoted” to be the same
size as the larger type (int)
Determined at compile time - based purely on
the types of the values in the expressions
Does not lose information – convert from type to
compatible large type

42

Arithmetic operators

Mathematical Symbols
+ - * / %
addition, subtraction, multiplication, division, modulus

Works for both int and float
+ - * /
 / operator performs integer division if both operands are integer

i.e. truncates; otherwise, float

% operator divides two integer operands with an
integer result of the remainder
Precedence – left to right

() always first
* / %
+ -

43

Arithmetic type conversions

Usual Arithmetic Conversions Many operators cause conversions and yield result types in
a similar way. The effect is to bring operands into a common type, which is also the type of
the result. This pattern is called the usual arithmetic conversions.

NOTE: There are two changes here. First, arithmetic on float operands may be done in single precision, rather
than double; the first edition specified that all floating arithmetic was double precision. Second, shorter
unsigned types, when combined with a larger signed type, do not propagate the unsigned property to the
result type; in the first edition, the unsigned always dominated. The new rules are slightly more complicated,
but reduce somewhat the surprises that may occur when an unsigned quantity meets signed. Unexpected
results may still occur when an unsigned expression is compared to a signed expression of the same size.

If either operand is long double, the other is converted to long double.
If either operand is double, the other is converted to double.
If either operand is float, the other is converted to float.

Otherwise, the integral promotions are performed on both operands;

If either operand is unsigned long int, the other is converted to unsigned long int.
If one operand is long int and the other is unsigned int, the effect depends on whether a long int can represent all
values of an unsigned int; if so, the unsigned int operand is converted to long int; if not, both are converted to unsigned
long int.
If one operand is long int, the other is converted to long int.
If either operand is unsigned int, the other is converted to unsigned int.

Otherwise, both operands have type int.

44

Arithmetic Expressions – A bug’s life

Pitfall -- int Overflow
“I once had a piece of code which tried to compute the number of bytes in a
buffer with the expression (k * 1024) where k was an int representing the
number of kilobytes I wanted. Unfortunately this was on a machine where int
happened to be 16 bits. Since k and 1024 were both int, there was no
promotion. For values of k >= 32, the product was too big to fit in the 16 bit
int resulting in an overflow. The compiler can do whatever it wants in
overflow situations -- typically the high order bits just vanish. One way to fix
the code was to rewrite it as (k * 1024L) -- the long constant forced the
promotion of the int. This was not a fun bug to track down -- the expression
sure looked reasonable in the source code. Only stepping past the key line in
the debugger showed the overflow problem. "Professional Programmer's
Language." This example also demonstrates the way that C only promotes
based on the types in an expression. The compiler does not consider the
values 32 or 1024 to realize that the operation will overflow (in general, the
values don't exist until run time anyway). The compiler just looks at the
compile time types, int and int in this case, and thinks everything is fine.”

45

Arithmetic expressions - Truncation

Pitfall -- int vs. float Arithmetic
Here's an example of the sort of code where int vs. float arithmetic can cause
problems. Suppose the following code is supposed to scale a homework score in the
range 0..20 to be in the range 0..100.
{
int score;
...// suppose score gets set in the range 0..20 somehow
7
score = (score / 20) * 100; // NO -- score/20 truncates to 0
...

Unfortunately, score will almost always be set to 0 for this code because the integer
division in the expression (score/20) will be 0 for every value of score less than 20.
The fix is to force the quotient to be computed as a floating point number...

score = ((double)score / 20) * 100; // OK -- floating point division from cast
score = (score / 20.0) * 100; // OK -- floating point division from 20.0
score = (int)(score / 20.0) * 100; // NO -- the (int) truncates the floating

// quotient back to 0

46

Example

#include <stdio.h>

int main()
{
 int first, second, add;
 float divide;

 printf("Enter two integers\n");
 scanf("%d %d", &first, &second);

 add = first + second;
 divide = first / (float)second;

 printf("Sum = %d\n",add);
 printf("Division = %.2f\n",divide);

 return 0;
}

Variables
Function calls

Input
Output

Operators
Typecasting

47

Relational Operators

Used to compare two values
< <= > >=
== !=
Precedence order given above; then left to right
“else” equivalences (respectively)

>= > <= <
!= ==

Arithmetic operators have higher precedence than relational
operators
A true statement is one that evaluates to a nonzero number. A
false statement evaluates to zero. When you perform comparison
with the relational operators, the operator will return 1 if the
comparison is true, or 0 if the comparison is false.

For example, the check 0 == 2 evaluates to 0. The check 2 == 2
evaluates to a 1.

 TRY: printf(“%d”,2==1);

48

Example

#include <stdio.h>
 /* print Fahrenheit-Celsius table for fahr = 0, 20, ..., 300
 where the conversion factor is C = (5/9) x (F-32) */
main()
{
 int fahr, celsius;
 int lower, upper, step;
 lower = 0; /* lower limit of temperature scale */
 upper = 300; /* upper limit */
 step = 20; /* step size */
 fahr = lower;
 while (fahr <= upper) {
 celsius = 5 * (fahr-32) / 9; // problem? 9.0? Typecast?
 printf("%d\t%d\n", fahr, celsius);
 fahr = fahr + step; }
 return 0;
}

49

Example

#include <stdio.h>
#define MAGIC 10
int main(void)
{
 int i, fact, quotient;
 while (i++ < 3) // value of i? need to initialize
 {
 printf(”Guess a factor of MAGIC larger than 1: ");
 scanf("%d”, &fact);
 quotient = MAGIC % fact;
 if (0 == quotient)
 printf(”You got it!\n”);
 else
 printf(”Sorry, You missed it!\n”);
 }
 return 0;
}

i++ is the same as:
 i = i + 1
How evaluate?
 i = i + 1 < 3
 3 1 2

Problem, but…
 (i = i + 1) < 3

50

Assignment operator

In C, assignments are expressions, not statements.
Embedded assignments - legal anywhere an expression is legal

This allows multiple assignment a = b = c = 1;
Assignment operators

Same precedence; right to left
= assignment
Perform the indicated operation between the left and right
operands, then assign the result to the left operand
 += add to
 -= subtract from
 *= multiply by
 /= divide by
 %= modulo by

Example1: a=x=y+3; so a = x, right?
Example2: r=s+(t=u-v)/3; give “same as” code.

NOTE: using an assignment operator (=) is legal anywhere it is legal to
compare for equality (==), so it is not a syntax error (depends on compiler;
may give a warning) because there is not a distinct boolean type in C.

Same as:
c=1;
b=c;
a=b;

51

Boolean Operators

C does not have a distinct boolean type
int is used instead

Treats integer 0 as FALSE and all non-zero values as TRUE

i = 0;
while (i - 10) {
 ... }
will execute until the variable i takes on the value 10 at which time the
expression (i - 10) will become false (i.e. 0).

A sampling of Logical/Boolean Operators:
&&, ||, and ! AND, OR, and NOT

For example, && is used to compare two objects
x != 0 && y != 0

Short-Circuit Evaluation: In the above example, if x != 0 evaluates to
false, the whole statement is false regardless of the outcome of y != 0

same for OR if first condition is true

52

Logical/Boolean Operators (cont)

The boolean operators function in a similar way to the comparison (relational) operators: each returns 0 if
evaluates to FALSE or 1 if it evaluates to TRUE.

NOT: The NOT operator accepts one input. If that input is TRUE, it returns FALSE, and if that input is FALSE, it
returns TRUE. For example, NOT (1) evaluates to 0, and NOT (0) evaluates to 1. NOT (any number but zero)
evaluates to 0. In C, NOT is written as !

AND: This is another important command. AND returns TRUE if both inputs are TRUE (if 'this' AND 'that' are
true). (1) AND (0) would evaluate to zero because one of the inputs is false (both must be TRUE for it to evaluate
to TRUE). (1) AND (1) evaluates to 1. (any number but 0) AND (0) evaluates to 0. The AND operator is written &&
in C. Do not be confused by thinking it checks equality between numbers: it does not.

OR: Very useful is the OR statement! If either (or both) of the two values it checks are TRUE then it returns TRUE.
For example, (1) OR (0) evaluates to 1. (0) OR (0) evaluates to 0. The OR is written as || in C. Those are the pipe
characters. On your keyboard, they may look like a stretched colon. On my computer the pipe shares its key with
\. A “unary” operator since it only works on one operand.

PRECEDENCE

NOT is evaluated prior to both AND and OR. Also multiple NOTs are evaluated from right to left.
AND operator is evaluated before the OR operator. Also, multiple ANDs are evaluated from left to right.
OR will be evaluated after AND. Also, multiple ORs are evaluated from left to right.

AND (&&) : Returns true only if both operand are true.
OR (||) : Returns true if one of the operand is true.
NOT (!) : Converts false to true and true to false.

53

Boolean Examples

A. ! (1 || 0) ANSWER: 0

B. ! (1 || 1 && 0) ANSWER: 0 (AND is evaluated before OR)

C. ! ((1 || 0) && 0) ANSWER: 1 (Parenthesis are useful)

Operator Operator's Name Example Result

&& AND 3>2 && 3>1 1(true)

&& AND 3>2 && 3<1 0(false)

&& AND 3<2 && 3<1 0(false)

|| OR 3>2 || 3>1 1(true)

|| OR 3>2 || 3<1 1(true)

|| OR 3<2 || 3<1 0(false)

! NOT !(3==2) 1(true)

! NOT !(3==3) 0(false)

54

Loop constructs

for (init; cond; modify) {
 statement(s); }

while (cond) {
 statement(s); }

do {
 statement(s);
} while (cond);

#include <stdio.h>

int main () {
 int n, sum;
 sum = 0;
 for (n = 1; n <= 10; n=n+1)
 {
 sum = sum + n;
 }
 printf("\n The sum of integers from 1 to 10 is %d, have a nice day", sum);
 return 0;
}

n=1;
while (n<=10) {
 sum=sum+n;
 n=n+1; }

n=0;
do {
 n=n+1;
 sum=sum+n;
} while (n<10);

Statement(s) only execute when the condition is TRUE.
Notice the semi-colon locations.
Do/while always executes at least once (not necessarily true for
the other two constructs).
For loop initialize a value, test the condition, if condition is
true, execute the statements (if condition is false, exit the loop),
modify the value, test the condition, if the condition is true,
execute the statements, etc.

55

Loop construct examples

#include <stdio.h>
int main()
{ int x;
 x = 0;
 do {
 printf("Hello, world!\n");
 }
 while (x != 0);
 getchar();
 return 0;
}

/* "Hello, world!" is printed at
least one time even though the
condition is false */

#include <stdio.h>
int main()
{ int x = 0; /* Don't forget to declare variables */
 while (x < 10) { /* While x is less than 10 */
 printf("%d\n", x);
 x++; } /* Update x so the condition can be met eventually */
 getchar();
 return 0; }

#include <stdio.h>
int main()
{ int x;
 for (x = 0; x < 10; x++) {
 printf("%d\n", x); }
 getchar();
 return 0; }
/* The loop goes while x < 10, and x increases by one every loop*/

56

Break, Continue, goto

Keywords that are very important to looping are break and
continue.
BREAK command will

exit the most immediately surrounding loop regardless of what
the conditions of the loop are.
Break is useful if we want to exit a loop under special
circumstances.

CONTINUE is another keyword that controls the flow of
loops. If you are executing a loop and hit a continue
statement, the loop will stop its current iteration, update
itself (in the case of FOR loops) and begin to execute again
from the top. Essentially, the continue statement is saying
"this iteration of the loop is done, let's continue with the
loop without executing whatever code comes after me.“
GOTO next slide (really, continued on the next slide)

57

Jump Statement

Goto plus a labeled statement
goto identifier ;
identifier: statement;

Have to declare the identifier???
NO!

A statement label is meaningful only to a goto statement; in any other context, a
labeled statement is executed without regard to the label (i.e. is ignored).

A jump-statement must reside in the same function and can appear before only
one statement in the same function.
The set of identifier names following a goto has its own name space so the names
do not interfere with other identifiers.
Labels cannot be redeclared.

It is good programming style to use the break, continue, and return statement in
preference to goto whenever possible. However, since the break statement only
exits from one level of the loop, a goto may be necessary for exiting a loop from
within a deeply nested loop.

58

Break, Continue EXAMPLES

while (true) {
 if (someone_has_won() || someone_wants_to_quit() == TRUE)
 {break;}
 take_turn(player1);
 if (someone_has_won() || someone_wants_to_quit() == TRUE)
 {break;}
 take_turn(player2); } /* checkers */

for (player = 1; someone_has_won == FALSE; player++) {
 if (player > total_number_of_players) {
 player = 1;}
 if (is_bankrupt(player)) {
 continue; }
 take_turn(player); } /* monopoly */

59

Goto example

#include <stdio.h>
int main() {
 int i, j;
 for (i = 0; i < 10; i++)
 {
 printf_s("Outer loop executing. i = %d\n", i);
 for (j = 0; j < 3; j++)
 {
 printf_s(" Inner loop executing. j = %d\n", j);
 if (i == 5)
 goto stop;
 }
 }
 /* This message does not print: */
 printf_s("Loop exited. i = %d\n", i);
 stop: printf("Jumped to stop. i = %d\n", i);
 return 0; }

In this example, a goto statement
transfers control to the point
labeled stop when i equals 5.

60

If, else-if, switch-case
conditional statements

if (condition) {
 statement(s); }
else if (condition) {
 statement(s); }
else {
 statement(s); }

if (TRUE) {
 /* Execute these stmts if
 TRUE */ }
else {
 /* Execute these stmts if
 FALSE */ }

switch (<variable>) {
 case this-value: /* Note the :, not a ; */
 Code to execute if <variable> == this-value;
 break;
 case that-value:
 Code to execute if <variable> == that-value;
 break;
... default:
 Code to execute if <variable> does not equal
 the value following any of the cases break; }

SWITCH NOTES:
Notice, no {} blocks within each case.
Notice the colon for each case and value.
The “condition” of a switch statement is a value.
The default case is optional, but it is wise to
include it as it handles any unexpected cases.
Chooses first match…

61

ElseIF example

#include <stdio.h>
int main() {
 int age; /* Need a variable... */
 printf("Please enter your age"); /* Asks for age */
 scanf("%d", &age); /* The input is put in age */
 if (age < 100) { /* If the age is less than 100 */
 printf ("You are pretty young!\n"); } /* Just to show you it works... */
 else if (age == 100) { /* use else to show an example */
 printf("You are old\n"); } /* how rude! */
 else {
 printf("You are really old\n"); } /* do this if no other block exec */
 return 0;
}

NOTE: You do not have to use {} if only one statement in the block. None of the
above brackets in the IF structure are necessary! Check out where the semi-colon
goes (and where it doesn’t).

62

Switch example

switch (x) {
case 'a':
 /* Do stuff when x is 'a' */
 break;
case 'b':
case 'c':
case 'd':
 /* Fallthrough technique...
 cases b,c,d all use this code */
 break;
default:
 /* Handle cases when x is not
 a,b,c or d. ALWAYS have a
 default case*/
 break; }

#include <stdio.h>
void playgame() { printf("Play game called"); }
void loadgame() { printf("Load game called"); }
void playmultiplayer() { printf("Play multiplayer game called"
); }
int main() {

int input;
printf("1. Play game\n");
printf("2. Load game\n");
printf("3. Play multiplayer\n");
printf("4. Exit\n");
printf("Selection: ");
scanf("%d", &input);
switch (input) {
 case 1:
 playgame();
 break;
 case 2:
 loadgame();
 break;
 case 3:
 playmultiplayer();
 break;
 case 4:
 printf("Thanks for playing!\n");
 break;
 default:
 printf("Bad input, quitting!\n");
 break; }
getchar();
return 0; }

63

What is GDB?

GDB: The GNU Project Debugger
Allows you to see what is going on “inside” another program
while it executes -- or what another program was doing at
the moment it crashed.
GDB can do four main kinds of things (plus other things in
support of these) to help you catch bugs in the act*:

Start your program, specifying anything that might affect its
behavior.
Make your program stop on specified conditions.
Examine what has happened, when your program has stopped.
Change things in your program, so you can experiment with
correcting the effects of one bug and go on to learn about
another.

* or just for fun to see what is going on behind the scenes :o)

64

Using GDB

%nl gdbincl.c > gdbinclnl
gdbtestnl is a text file so no extension necessary
Use an editor to open gdbinclnl
Now can reference line numbers

%more gdbincl.c
Shows your program on the screen

Need to compile with –g option
gcc –g –o hello hello.c

COMMANDS/tutorial
 http://www.yolinux.com/TUTORIALS/GDB-Commands.html
 http://www.cprogramming.com/gdb.html

help – lists gdb command topics
info xxx – where xxx be to list the breakpoints, breakpoint
numbers, registers, etc
run – starts execution
quit – short cut is just q

65

http://www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.cprogramming.com/gdb.html
http://www.cprogramming.com/gdb.html

GDB command (cont)

Break and watch commands
break/tbreak followed by:
 Function name, line number
clear – delete breakpoints
watch – followed by a condition
 Suspends processing when condition is met
delete – delete all break/watch points
continue – exec until next break/watch point
finish – continue to end of function

Line execution commands

step – step to next line of code (will step into a function)
next – execute next line of code (will not enter functions)
until - Continue processing until you reacha a specified
line number

66

More about BOOLEAN issues

int i; if (i) is better seen as if (i == 0)

float x; if (!x) is better seen as if (x != 0.0)

char c; if (c) is better seen as (c == '\0')

An exception is made for pointers, since 0 is the only

language-level representation for the null pointer.

/* The symbol NULL is not part of the core language - you

have to include a special header file to get it defined */

In short, pretend that C has an actual boolean type which is

returned by the logical operators and expected by the test

constructs, and pretend that the null pointer is a synonym for

false.

Write an INFINITE LOOP as:

for (;;) ...

while (1) ...

The former is idiomatic

among C programmers, and

is more visually distinctive.

Every boolean test is an implicit comparison against zero (0).
However, zero is not a simple concept. It represents:

the integer zero for all integral types
the floating point 0.0 (positive or negative)
the nul character (‘\0’)
the null pointer

In order to make your intentions clear, explicitly show the comparison with zero for
all scalars, floating-point numbers, and characters.

67

Unary Operators: ++ --

++a and a++ are both the same as a = a + 1
--a and a-- are both the same as a = a – 1
HOWEVER…

++a a incremented BEFORE a is used
--a a decremented BEFORE a is used
a++ a is incremented AFTER a has been used
a-- a is decremented AFTER a has been used

int main()
{
 int a = 1;
 printf (“ a is %d”, ++a)
 return 0;
}
/* 2 will be printed */

In both examples, the final value of a will be 2, BUT…

int main()
{
 int a = 1;
 printf (“ a is %d”, a++)
 return 0;
 }
/* 1 will be printed */

68

Unary Operators ++ and -- (cont)

int i = 1, j = 1;
printf("\t%d %d\n",++i, j++);
printf("\t%d %d\n",i, j);

Output:
2 1
2 2

i=1; j=1;
printf("\t%d \n",i=j++);
printf("\t%d \n",i=++j);

Output:
1
3

i = 0; j = 0;

if ((i++ == 1) && (j++ == 1))
 printf(“what will happen?\n”);
printf("\t%d %d\n",i, j);

Will i and j get incremented?

2nd printf output: 1 0

The answer is NO! Because the
expression in the left of '&&' resolves
to false the compiler does NOT
execute the expression on the right
and so 'j' does not get executed!

69

Size of operator

sizeof will return the number of bytes reserved for a variable or data type.
Returning the length of a data type (ex.1)
Length of a variable (ex.2)
Number of bytes reserved for a structure (ex.3)
size_t is type designation for the unsigned integer result of the sizeof keyword

Example 1:
/* How big is an int?
expect an answer of 4. */
main() {
 printf("%d \n", sizeof(int)); }

Example 2:
main() {
 char String[20];
 printf ("%d \n", sizeof String);
 printf ("%d \n", sizeof (String)); }
// brackets optional but rec

Example 3:
/* Will print 8 on most machines. */
main()
{
 struct
 {
 int a;
 int b;
 } TwoInts;

 printf("%d \n", sizeof(TwoInts));
}

70

Pointer definition

Values of variables are stored in memory, at a particular location
A location is identified and referenced with an address

Analogous to identifying a house’s location via an address
A pointer is a variable that contains the address of another variable
* is used in the declaration of a pointer type

int *p means variable p is a pointer that points to an integer
& (unary operator) gives the “address of” an object

p = &c means the address of c is assigned to the variable p
* (unary not arithmetic operator) is a dereferencing operator when applied to
pointers

When applied to a pointer, it accesses the object the pointer points to
* in front of a pointer variable means “get the value at that address” i.e. “contents of”
int a = *p means get the value at the address designated by p and assign it to
*p = 1 means assign the value of 1 to the memory location designated by the address of p

Every pointer points to a specific data type
Exception = void (a generic pointer); pointer to void holds any type of pointer but can’t be
dereferenced (i.e. cannot get the “contents of”)

Ah, yes. POINTERS. At last, we arrive at THE MOST DREADED WORD in the lexicon of the C
student. Pointers are indeed so dreaded that Java has completely done away with pointers
and wrapped their functionality into the (admittedly safer) concept of references. C++, as a
transitional step, has both pointers and references.

 address in memory
 Value
 variable

71

Declaring Pointers

int* ptr_a;
int *ptr_a;
The first style leads to mistakes

int* ptr_b, ptr_c, ptr_d
 b is a pointer but c and d are integers
int *ptr_b, *ptr_c, *ptr_d
 3 pointers are declared here

Char example
char ch = 'c';
char *chptr = &ch;
char *ptr = chptr;
 see last example in previous slide

72

Pointer example

EXAMPLE:
int x=1, y=2, z[10];
int *ip;
ip = &x;
y = *ip;
*ip = 0;
ip = &z[0];

VARIABLE
ADDRESS (in

decimal)
MEMORY (assuming 4 bytes per word

and each block is a byte)*

ip 0 Is a pointer; holds an addr; 8… 16

 4

x 8 1… 0

y 12 2… 1

z 16 z[0]

 20 z[1]

 24 z[2]

 28 etc

 32

 36

 40

 44

* not going to worry about "size" right now

Reminders:
* in a declaration says “I am a pointer” that points to a certain type of value
& “address of”
* In front of a pointer type says “get the value at that address” i.e. “contents of” operator

73

Pointer examples… more!

Every pointer points to a specific data type.
one exception:
a ‘‘pointer to void’’ is used to hold any type of pointer but cannot be dereferenced itself
(later)

If ip points to the integer x (ip=&x) then *ip can occur in any context where x
could

Example: *ip = *ip + 10 x=x+10; increments the contents of the address at ip by 10

The unary operators * and & bind more tightly than arithmetic operators

Example: y = *ip + 1 takes whatever ip points at, adds 1, and assigns the result to y
Other ways to increment by 1:
 *ip += 1 *ip = *ip + 1
 ++*ip
 (*ip)++

 The parentheses are necessary; without them, the expression would increment ip instead of what it points to,
because unary operators like * and ++ associate right to left.

Pointers are variables so can be used without dereferencing.
Example: int *iq, *ip

 iq = ip
 copies the contents of ip (an address) into iq, thus making iq point to whatever ip pointed to.

74

/* EXAMPLE 3 */
#include <stdio.h>
 int main(void) {
 char ch = 'c';
 char *chptr = &ch;
 int i = 20;
 int *intptr = &i;
 float f = 1.20000;
 float *fptr = &f;
 char *ptr = "I am a string";
 printf("\n [%c], [%d], [%f], [%c], [%s]\n", *chptr, *intptr, *fptr, *ptr, ptr);
 return 0; }

You try…

/* EXAMPLE 1 */
#include<stdio.h>
int main() {
 float i=10, *j;
 void *k;
 k=&i;
 j=k;
 printf("%f\n", *j);
 return 0; }

/* EXAMPLE 2 */
#include <stdio.h>
#include <stdlib.h>
main() {
 int x, *p;
 p = &x;
 *p = 0;
 printf("x is %d\n", x);
 printf("*p is %d\n", *p);
 *p += 1;
 printf("x is %d\n", x);
 (*p)++;
 printf("x is %d\n", x);
 return 0; }

75

C functions

Similar to Java methods but…
Not part of a class
Not associated with an object
No “this”

76

Function definition

Function prototype
Return type*
Argument definition
return_type function_name (type1 arg1,type2 arg2,..,typen
argn)

Function calls
Basic syntax
Parameter passing*

Standard library and function calls

NOTES:

 Functions should be short and sweet.

 Functions do not nest.

 Variables have to be communicated through function

arguments or global variables.

 * If no return type or no argument type, then it defaults to int

Sample: http://www.cprogrammingexpert.com/images/Function.gif

int add(int p,int q)
 {
 return p+q;
 }

z = add(a,b);

int add(int p,int q);

77

Pointers and Functions

Pass By Value
Passing a variable by value makes a copy of the variable before
passing it onto a function. This means that if you try to modify the
value inside a function, it will only have the modified value inside
that function. Once the function returns, the variable you passed it
will have the same value it had before you passed it into the
function.

Pass By Reference

There are two instances where a variable is passed by reference:
 When you modify the value of the passed variable locally (inside the callee)

and the value of the variable in the calling function as well.
 To avoid making a copy of the variable for efficiency reasons.
Technically, C does not “pass by reference” as typically seen in other
programming languages. Actually, when you pass a pointer (an
address) , a copy is made of that variable so two variables point to
the same address (one from the callee and one from the caller).

78

Function Prototypes

A number of statements grouped into a single logical unit are called a
function
REMINDER It is necessary to have a single function ‘main’ in every C
program.
A function prototype is a function declaration or definition which
includes:

Information about the number of arguments
Information about the types of the arguments

Although you are allowed not to specify any information about a
function's arguments in a declaration, it is purely because of backwards
compatibility with Old C and should be avoided (poor coding style).

A declaration without any information about the arguments is not a
prototype.

Only one function with a given name may be defined. Unlike Java, C does
not support overloading (i.e., two functions with the same name but
different signatures).

79

Pointers and Function arguments

Since C passes arguments to functions by value and make a copy local to swap; so there is no
direct way for the called function (callee) to alter a variable in the calling function (caller).
Because of call by value, swap can’t affect the arguments a and b in the routine that called it.
The way to obtain the desired effect is for the calling program to pass pointers to the values to be
changed:
Since the operator & produces the address of a variable, &a is a pointer to a. In swap itself, the
parameters are declared as pointers, and the operands are accessed indirectly through them.
NOW KNOW WHY SCANF NEEDS & SYMBOLS!!!

/* WRONG */
void swap(int x, int y)
{
 int temp;
 temp = x;
 x = y;
 y = temp;
}

/* interchange *px and *py */
void swap(int *px, int *py)
{
 int temp;
 temp = *px;
 *px = *py;
 *py = temp;
}

Call: swap(a,b); Call: swap(&a,&b);

80

The RETURN statement

Every function except those returning void should
have at least one, each return showing what value is
supposed to be returned at that point.
Although it is possible to return from a function by
falling through the last }, unless the function returns
void, an unknown value will be returned, resulting in
undefined behavior.
The type of expression returned must match the type
of the function, or be capable of being converted to it
as if an assignment statement were in use.
Following the return keyword with an expression is
not permitted if the function returns void.

81

Another Function example

#include <stdio.h>
#include <stdlib.h>
main () /* was-could be void pmax(); now considered bad practice */
{ void pmax(int first, int second); /* declaration prototype */
 int i,j;
 for(i = -10; i <= 10; i++)
 { for(j = -10; j <= 10; j++)
 { pmax(i,j);
 }
 }
 return 0;
}
/* Prints larger of its two arguments. */
void pmax (int a1, int a2) /* definition */
{ int biggest;
 if (a1 > a2)
 { biggest = a1; }
 else{ biggest = a2; }
 printf("larger of %d and %d is %d\n", a1, a2, biggest);
}

82

Function example

#include <stdio.h>
#include <stdlib.h>

void printtotal(int total);
void addxy(int x, int y, int total);
void subxy(int x, int y, int *total);

void main() {
 int x, y, total;
 x = 10;
 y = 5;
 total = 0;
 printtotal(total);
 addxy(x, y, total);
 printtotal(total);
 subxy(x, y, &total);
 printtotal(total); }

void printtotal(int total) {
 printf("Total in Main: %dn", total);
}

void addxy(int x, int y, int total) {
 total = x + y;
 printf("Total from inside addxy: %dn",
total); }

void subxy(int x, int y, int *total) {
 *total = x - y;
 printf("Total from inside subxy: %dn",
*total);
}

Program continued…

83

Another Function example

#include <stdio.h>
#include <stdlib.h>

void date(int *, int *); /* declare the function */

main() {
 int month, day;
 date (&day, &month);
 printf("day is %d, month is %d\n", day, month);
 return 0;}

void date(int *day_p, int *month_p) {
 int day_ret, month_ret;
 /* * At this point, calculate the day and month *
 values in day_ret and month_ret respectively. */
 *day_p = day_ret;
 *month_p = month_ret; }

84

Function Summary

Functions can be called recursively.
Functions can return any type that you can declare, except for
arrays and functions (you can get around that restriction to some
extent by using pointers).
Functions returning no value should return void.
Always use function prototypes.
Undefined behavior results if you call or define a function
anywhere in a program unless either

a prototype is always in scope for every call or definition, or
you are very, very careful.

Assuming that you are using prototypes, the values of the
arguments to a function call are converted to the types of the
formal parameters exactly as if they had been assigned using the =
operator.
Functions taking no arguments should have a prototype with (void)
as the argument specification.

85

Declaration of Arrays

An array is a way to store many values under the same name in
adjacent memory locations.
Arrays must be declared before they can be used in the program.
Standard array declaration is as

<type> <name> [<size>];
<size> elements i.e. values of the array, are stored using an
index/subscript number from 0 to <size>-1

Examples
double height[10]; // height[0] to height[9]
float width[20]; //width[0] to width[19]
int min[9]; // etc
char name[20]; // a string!

Why first index/subscript=0???
Address of min = address of min[0]

86

in memory:

min --> [0] [1] [2] [3] [4] [5] [6] [7] [8]
address --> +0 +4 +8 +12 etc

Index checking

Index access is not checked by the compiler
Check for valid range manually
Especially important for user entered indices

Index checking means that, in all expressions indexing an array, first
check the index value against the bounds of the array which were
established when the array was defined, and should an index be out of
bounds, further execution is suspended via some sort of error (buffer
overflow, segmentation fault, bug).
Important to understand how arrays are used “behind the scenes”
Performing bounds checking during every usage is time-consuming
C never performs automatic bounds checking in order to raise speed
It depends on the OS to ensure that you are accessing valid memory.
There’s a difference in being outside array bounds but inside your
allotted memory; and outside the array bounds and outside your allotted
memory!
Yet… sizeof (array) works, but that’s the total number of bytes not the
index bounds themselves

87

Initializing Arrays

The initializing values are enclosed within the curly braces in the
declaration and placed following an equal sign after the array name.
Initialize an individual array location (name[sub]) like any other
variable/memory location.
An array location can be used like any other single variable:

x = array[3]
array[5]=x+y

//initialize and print all the elements of the array
int myArray [5] = {1,2,3,4,5};
for (int i=0;i<5;i++)
{ printf("%d", myArray[i]);
}

int studentAge[4];
studentAge[0]=14;
studentAge[1]=13;
studentAge[2]=15;
studentAge[3]=16;

88

Copying Arrays

There is no such statement in C language which can
directly copy an array into another array. So we have to
copy each item separately into another array.

#include <stdio.h>
int main()
{ int iMarks[4] = {78, 64, 66, 74};
 int newMarks[4];
 int i,j;
 for(i=0; i<4; i++)
 newMarks[i]=iMarks[i];
 for(j=0; j<4; j++)
 printf("%d\n", newMarks[j]);
return 0; }

89

Manipulating Arrays

C Language treats the name of the array as if it were a pointer to the first
element

see handout ArrayInOutSwapReverse.docx
The name of the array refers to the whole array. It works by representing a
pointer to the start of the array.

Prototype/Call

void intSwap(int *x, int *y)
intSwap(&a[i],&a[n-i-1]);

void printIntArray(int a[], int n)
printIntArray(x,hmny);

int getIntArray(int a[], int nmax, int sentinel)
hmny = getIntArray(x, 10, 0);

void reverseIntArray(int a[], int n)
reverseIntArray(x,hmny);

When we pass arrays into
functions, the compiler
automatically converts
the array into a pointer
to the first element of
the array. In short, the
array without any
brackets will act like a
pointer. So we just pass
the array directly without
using the ampersand.

90

Multi-dimensional Arrays

Declarations – [row][col] subscript order
float table [50] [50];
char line [24] [40];
int values [3] [4] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }
 How stored? row order

91

columns

0 1 2 3

rows

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

in memory:
values --> [0][0] [0][1] [0][2] [0][3] [1][0] [1][1] [1][2] [1][3] [2][0] [2][1] etc
address --> +0 +4 +8 +12 etc

Multi-dimensional Arrays Example

92

#include <stdio.h>
int main()
{ int x; int y; int array[8][8]; /* Declares an array like a gameboard or matrix*/
 for (x = 0; x < 8; x++)
 { for (y = 0; y < 8; y++)
 array[x][y] = x * y; /* Set each element to a value */
 }
 printf("Array Indices:\n");
 for (x = 0; x < 8;x++)
 { for (y = 0; y < 8; y++)
 { printf("[%d][%d]=%d", x, y, array[x][y]);
 }
 printf("\n");
 }
 getchar();
 return 0;
}

Character Arrays i.e. Strings

Declarations:
char arr[] = {'c','o','d','e','\0'};
 The null byte is required as a terminating byte when

string is read as a whole.

char arr[] = "code";
 Implies that there are 4 characters along with the NUL

byte (i.e. the \0 character) so a “length” of 5.

This type of array allocation, where the size of
the array is determined at compile-time, is
called static allocation.

93

Pointers and Strings

A string is an array of characters.
So we have no string pointers in C. Its the character pointers that are used in
case of strings too.
When we point a pointer to a string, by default it holds the address of the
first character of the string (just like an array)

Gives the memory address without a reference operator(&)
char *ptr;
char str[40];
ptr = str;

Strings end with an implied \0 by default
“I am a string” = I_am_a_string\0
sizeof operator says size = ??
strlen() function is in the string.h header file
The strlen function returns the length of the null-terminated string s in
bytes. In other words, it returns the offset (i.e. starting at position zero) of
the terminating null character within the array.
 char string[32] = "hello, world";
 sizeof (string) ⇒ 32
 strlen (string) ⇒ 12
 this will not work unless string is the character array itself, not a pointer to it

94

Character Array (i.e. string) example

95

#include<stdio.h>
#include<string.h>

int main(void)
{ char arr[4]; // for accommodating 3 characters and one null '\0' byte
 char *ptr = "abc"; // a string containing 'a', 'b', 'c', '\0'

 //reset all the bytes so that none of the byte contains any junk value
 memset(arr, '\0', sizeof(arr));

 strncpy(arr, ptr, sizeof("abc")); // Copy the string "abc" into the array arr
 printf ("\n %s \n",arr); // print the array as string
 arr[0] = 'p'; // change the first character in the array
 printf("\n %s \n",arr); // again print the array as string
 return 0;
}

Dynamic Memory Functions

Can be found in the stdlib.h library:
To allocate space for an array in memory you use
 calloc()
To allocate a memory block you use
 malloc()
To de-allocate previously allocated memory you
use
 free()

Each function is used to initialize a pointer
with memory from free store (a section of
memory available to all programs)

96

malloc

The function malloc() will allocate a block of memory that is size bytes large. If
the requested memory can be allocated a pointer is returned to the beginning of
the memory block.

 Note: the content of the received block of memory is not initialized.
Usage of malloc():

void * malloc (size_t size);
Parameters:

Size of the memory block in bytes.
Return value:

If the request is successful then a pointer to the memory block is returned.
If the function failed to allocate the requested block of memory, a null pointer is returned.

Example
http://www.codingunit.com/c-reference-stdlib-h-function-malloc

Another example:
#include <stdlib.h>
int *ptr = malloc(sizeof (int));
 set ptr to point to a memory address of size int
int *ptr = malloc(sizeof (*ptr));
 is slightly cleaner to write malloc statements by taking the size of the variable pointed to by using the pointer

directly
float *ptr = malloc(sizeof (*ptr));
 float *ptr;
 /* hundreds of lines of code */
 ptr = malloc(sizeof(*ptr));

97

http://www.codingunit.com/c-reference-stdlib-h-function-malloc
http://www.codingunit.com/c-reference-stdlib-h-function-malloc
http://www.codingunit.com/c-reference-stdlib-h-function-malloc
http://www.codingunit.com/c-reference-stdlib-h-function-malloc
http://www.codingunit.com/c-reference-stdlib-h-function-malloc
http://www.codingunit.com/c-reference-stdlib-h-function-malloc
http://www.codingunit.com/c-reference-stdlib-h-function-malloc
http://www.codingunit.com/c-reference-stdlib-h-function-malloc
http://www.codingunit.com/c-reference-stdlib-h-function-malloc
http://www.codingunit.com/c-reference-stdlib-h-function-malloc
http://www.codingunit.com/c-reference-stdlib-h-function-malloc
http://www.codingunit.com/c-reference-stdlib-h-function-malloc

calloc

Usage of calloc():
void * calloc (size_t num, size_t size);

Parameters:
Number of elements (array) to allocate and the size
of elements.

Return value:
Will return a pointer to the memory block. If the
request fails, a NULL pointer is returned.

Example:
 http://www.codingunit.com/c-reference-stdlib-h-function-

calloc
 note: ptr_data = (int*) calloc (a,sizeof(int));

98

http://www.codingunit.com/c-reference-stdlib-h-function-calloc
http://www.codingunit.com/c-reference-stdlib-h-function-calloc
http://www.codingunit.com/c-reference-stdlib-h-function-calloc
http://www.codingunit.com/c-reference-stdlib-h-function-calloc
http://www.codingunit.com/c-reference-stdlib-h-function-calloc
http://www.codingunit.com/c-reference-stdlib-h-function-calloc
http://www.codingunit.com/c-reference-stdlib-h-function-calloc
http://www.codingunit.com/c-reference-stdlib-h-function-calloc
http://www.codingunit.com/c-reference-stdlib-h-function-calloc
http://www.codingunit.com/c-reference-stdlib-h-function-calloc
http://www.codingunit.com/c-reference-stdlib-h-function-calloc
http://www.codingunit.com/c-reference-stdlib-h-function-calloc

Difference Between Malloc and Calloc

The number of arguments. malloc() takes a
single argument (memory required in bytes),
while calloc() needs two arguments.
malloc() does not initialize the memory
allocated, while calloc() initializes the
allocated memory to ZERO.

99

FYI… the exit function

Syntax:
#include <stdlib.h>
void exit(int exit_code);

Description:
The exit() function stops the program. exit_code is
passed on to be the return value of the program,
where usually zero indicates success and non-zero
indicates an error.

Example:
http://www.codingunit.com/c-reference-stdlib-h-
function-exit

100

http://www.codingunit.com/c-reference-stdlib-h-function-exit
http://www.codingunit.com/c-reference-stdlib-h-function-exit
http://www.codingunit.com/c-reference-stdlib-h-function-exit
http://www.codingunit.com/c-reference-stdlib-h-function-exit
http://www.codingunit.com/c-reference-stdlib-h-function-exit
http://www.codingunit.com/c-reference-stdlib-h-function-exit
http://www.codingunit.com/c-reference-stdlib-h-function-exit
http://www.codingunit.com/c-reference-stdlib-h-function-exit
http://www.codingunit.com/c-reference-stdlib-h-function-exit
http://www.codingunit.com/c-reference-stdlib-h-function-exit
http://www.codingunit.com/c-reference-stdlib-h-function-exit
http://www.codingunit.com/c-reference-stdlib-h-function-exit

Static arrays are used when we know the amount of bytes in array at
compile time.

Static arrays are ones that reside on the stack
char arr[10];

A dynamic array is used where we come to know about the size on run
time.

Dynamic arrays is a popular name given to a series of bytes allocated on the
heap.
char *ptr = (char*) malloc(10);
allocates a memory of 10 bytes on heap and we have taken the starting
address of this series of bytes in a character pointer ptr.
Fine if know number of characters, but what if don’t?
 Read in one char/byte at a time until the user presses the enter key

malloc (memory allocation) is used to dynamically allocate memory at
run time. Possible uses for this function are:

Read records of an unknown length.
Read an unknown number of database records.
Link lists.

Static and Dynamic Arrays

101

free

The free function returns memory to the operating system.
free(ptr);
After freeing a pointer, it is a good idea to reset it to point
to 0.

NOTE: When 0 is assigned to a pointer, the pointer becomes
a null pointer…in other words, it points to nothing. By doing
this, when you do something foolish with the pointer (it
happens a lot, even with experienced programmers), you
find out immediately instead of later, when you have done
considerable damage.

102

Pointer Arithmetic

When you add to or subtract from a pointer, the amount by which you do
that is multiplied by the size of the type the pointer points to.
In the case of our three increments, each 1 that you added was
multiplied by sizeof(int).

int array[] = { 45, 67, 89 };
int *array_ptr = array;
printf(" first element: %i\n", *(array_ptr++));1
printf("second element: %i\n", *(array_ptr++));
printf(" third element: %i\n", *array_ptr);

Output:
first element: 45
second element: 67
third element: 89

NOTE 1: 1==4 (programmer humor?!)
 *(array_ptr++) == *array_ptr++

*(array_ptr++) 1
vs

(*array_ptr)++

find the value at that
address, output, then add
“1” to the address
 VS
Find the value at the
address, output, then add
one to the value at that
address

B
T
W

Pointer Arithmetic (cont)

Expression Assuming p is a
pointer to a…

… and the size
of *p is…

Value added
to the pointer

p+1 char 1 1

p+1 short 2 2

p+1 int 4 4

p+1 double 8 8

p+2 char 1 2

p+2 short 2 4

p+2 int 4 8

p+2 double 8 16

104

Pointer Arithmetic (again)

pointer (+ or -) integer
Only for pointers that are pointing at an element of
an array
Also works with malloc
Watch for bounds (begin and end)
 Ok to go one beyond the array but not a valid dereference

pointer#1 – pointer#2

Only allowed when both point to elements of the
same array and p1 index < p2 index
Measured in array elements not bytes
If p1 array[i] and p2 array[j] then p2-p1 == j - i

105

Pointer Indexing

The subscript operator (the [] in array[0]) has nothing to do with arrays.
In most contexts, arrays decay to pointers. This is one of them: That's a
pointer you passed to that operator, not an array.

106

int array[] = { 45, 67, 89 };
int *array_ptr = &array[1];
printf("%i\n", array_ptr[1]);
//output is 89 (whoooooooaaaahhhhtttt??!!)

int array[] = { 45, 67, 89 };
printf("%i\n", array[0]); // output is 45
// array and array[0] point to same thing

array points to the first element of the array;
array[1] == *(array + 1)

array_ptr is set to &array[1], so it points to the second element of the
array.
So array_ptr[1] is equivalent to array[2]

NULL vs 0 vs ‘\0’

NULL is a macro defined in several standard headers
0 is an integer constant
'\0' is a character constant, and

nul is the name of the character constant.

All of these are *not* interchangeable

NULL is to be used for pointers only since it may be defined as
((void *) 0), this would cause problems with anything but pointers.

0 can be used anywhere, it is the generic symbol for each type's
zero value and the compiler will sort things out.

'\0' should be used only in a character context.

nul is not defined in C or C++, it shouldn't be used unless you define
it yourself in a suitable manner, like:
 #define nul '\0'

107

NULL pointer and VOID

0 (an integer value) is convertible to a null pointer value if assigned to a pointer type
VOID – no value at all – literally means “nothing”

So it is type-less (no type defined) so can hold any type of pointer
We cannot perform arithmetic on void pointers (no type defined)
Cannot dereference (can’t say, “get the value at that address” – no type defined)

NULL is defined as 0 cast to a void * pointer
#define NULL (void *) 0;

FYI: However, NULL and zero are not the same as no returned value at all, which is what is meant
by a void return value (see your first C program examples)

Is there any difference between the following two statements?
 char *p=0;
 char *t=NULL;
NO difference. NULL is #defined as 0 in the 'stdio.h' file. Thus, both p and t are NULL
pointers.

Is this a correct way for NULL pointer assignment?
 int i=0;
 char *q=(char*)i; // char * cannot point to an int type… even for a moment in time
NO. Correct char *q=0 (or) char *q=(char*)0

Is the NULL pointer same as an uninitialized pointer? NO

108

R and L values

L-value = something that can appear on the left side of an
equal sign

A place i.e. memory location for a value to be stored
R-value is something that can appear on the right side of
an equal sign

A value
Example:

a = b+25 vs b+25 = a
Example:

int a[30];
a[b+10]=0;

Example:
int a, *pi;
pi = &a;
*pi = 20;

109

R and L values (cont)

Given:
char ch = ‘a’;
char *cp = &ch;

NOTE: the ? is the
location that follows ch

110

Problem Expression R-value L-value
1 ch yes yes
2 &ch yes illegal
3 cp yes yes
4 &cp yes illegal
5 *cp yes yes
6 *c+1 yes illegal
7 *(c+1) yes yes
8 ++cp yes illegal
9 cp++ yes illegal

10 *++cp yes yes
11 *cp++ yes yes
12 ++*cp yes illegal
13 (*cp)++ yes illegal
14 ++*++cp yes illegal
15 ++*cp++ yes illegal

cp ch

a ?

An Array of Character Pointers

111

#include<stdio.h>
int main()
{ // Declaring/Initializing 3 characters pointers
 char *ptr1 = "Himanshu";
 char *ptr2 = "Arora";
 char *ptr3 = "TheGeekStuff";
 //Declaring an array of 3 char pointers
 char* arr[3];
 // Initializing the array with values
 arr[0] = ptr1;
 arr[1] = ptr2;
 arr[2] = ptr3;
 //Printing the values stored in array
 printf("\n [%s]\n", arr[0]);
 printf("\n [%s]\n", arr[1]);
 printf("\n [%s]\n", arr[2]);
 return 0;
}

Pointers to Arrays

<data type> (*<name of ptr>)[<an integer>]
Declares a pointer ptr to an array of 5 integers.
 int(*ptr)[5];

112

#include<stdio.h>
int main(void)
{ char arr[3];
 char (*ptr)[3];
 arr[0] = 'a';
 arr[1] = 'b';
 arr[2] = 'c';
 ptr = &arr;
 return 0;
}

Declares and initializes an array ‘arr’ and then
declares a pointer ‘ptr’ to an array of 3
characters. Then initializes ptr with the address
of array ‘arr’.

int *arr[8]; // An array of int pointers.
int (*arr)[8]; // A pointer to an array of integers

Structures

What is a structure?
One or more values, called members, with possibly
dissimilar types that are stored together.
Used to group together different types of variables under
the same name.
Aggregates a fixed set of labeled objects, possibly of
different types, into a single object (like a record)

What is a structure NOT?
Since members are NOT the same type/size, they are not
as easy to access as array elements that are the same
size.
Structure variable names are NOT replaced with a pointer
in an expression (like arrays)
A structure is NOT an array of its members so can NOT
use subscripts.

113

Structure Declarations (preview)

114

struct tag {member_list} variable_list;
struct S {
 int a;
 float b;
} x;

struct {
int a;
float b;
} z;

struct S y;

struct S {
int a;
float b;
};

struct S;
Declares x to
be a structure
having two
members, a
and b. In
addition, the
structure tag S
is created for
use in future
declarations.

Omitting the
tag field;
cannot
create any
more
variables
with the
same type
as z

Incomplete
declaration
which informs
the compiler
that S is a
structure tag
to be defined
later

Omitting the
member list
declares
another
structure
variable y
with the
same type
as x

Omitting the
variable list
defines the
tag S for use
in later
declarations

Struct storage issues

A struct declaration consists of a list of fields,
each of which can have any type. The total
storage required for a struct object is the sum
of the storage requirements of all the fields,
plus any internal padding.

115

Structure Example Preview

This declaration introduces the type struct fraction (both words are
required) as a new type.
 C uses the period (.) to access the fields in a record.
You can copy two records of the same type using a single assignment
statement, however == does not work on structs (see note link).

116

struct fraction {
 int numerator;
 int denominator; // can’t initialize
};

struct fraction f1, f2; // declare two fractions
f1.numerator = 25;
f1.denominator = 10;
f2 = f1; // this copies over the whole struct

Structure Declarations (cont)

So tag, member_list and variable_list are all optional,
but cannot all be omitted; at least two must appear
for a complete declaration.

117

struct {
 int a;
 char b;
 float c;
} x;

struct {
 int a;
 char b;
 float c;
} y[20], *z;

Single variable x contains 3 members

An array of 20 structures (y); and
A pointer to a structure of this type (z)

Treated different by the compiler
DIFFERENT TYPES
i.e. z = &x is ILLEGAL

So all structures of a given type must
be created in a single declaration? NO.

More Structure Declarations

The TAG field
Allows a name to be given to the member list so that it
can be referenced in subsequent declarations
Allows many declarations to use the same member list
and thus create structures of the same type

118

struct SIMPLE {
 int a;
 char b;
 float c;
} ;

So struct SIMPLE x;
 struct SIMPLE y[20], *z;

Now x, y, and z are all the same
kind of structure Associates tag with

member list; does not
create any variables

Typedefs typedef <type> <name>;

Ex1:
#define true 1
#define false 0
typedef int bool;
bool flag = false;

Ex2:
char *ptr_to_char; // new variable
typedef char * ptr_to_char; // new type
ptr_to_char a; // new variable

119

Using typedefs with Structures

A typedef statement introduces a shorthand
name for a type. The syntax is...

typedef <type> <name>;
 shorter to write
 can simplify more complex type definitions

120

typedef struct {
 int a;
 char b;
 float c;
} Simple;

So Simple x;
 Simple y[20], *z;

Now x, y, and z are all the same
TYPE.

Similar to int x;
 int y[20], *z;

Typedef Structure Example

121

#include <stdio.h>
typedef struct {
 int x;
 int y;
} point;
int main(void)
{ /* Define a variable p of type point, and initialize all its members inline! */
 point p = {1,2};
 point q;
 q = p; // q.x = 1 and q.y=2
 q.x = 2;
/* Demonstrate we have a copy and that they are now different. */
 if (p.x != q.x)
 printf("The members are not equal! %d != %d", p.x, q.x);
return 0; }

Structures and Pointers

122

#include<stdio.h>

typedef struct
{ char *name;
 int number;
} TELEPHONE;

int main()
{ TELEPHONE index;
 TELEPHONE *ptr_myindex;
 ptr_myindex = &index;
 ptr_myindex->name = "Jane Doe";
 ptr_myindex->number = 12345;
 printf("Name: %s\n", ptr_myindex->name);
 printf("Telephone number: %d\n", ptr_myindex->number);
 return 0; }

What is going on
here?

Remember:
TELEPHONE is a type
of structure;

Structures and Pointers

123

#include<stdio.h>
#include <stdlib.h>
typedef struct rec
{ int i;
 float PI;
 char A; } RECORD;
int main()
{ RECORD *ptr_one;
 ptr_one = (RECORD *) malloc (sizeof(RECORD));
 (*ptr_one).i = 10;
 (*ptr_one).PI = 3.14;
 (*ptr_one).A = 'a';
 printf("First value: %d\n",(*ptr_one).i);
 printf("Second value: %f\n", (*ptr_one).PI);
 printf("Third value: %c\n", (*ptr_one).A);
 free(ptr_one);
 return 0; }

struct rec *ptr_one;
ptr_one =(struct rec *) malloc (sizeof(struct rec));

ptr_one->i = 10;
ptr_one->PI = 3.14;

ptr_one->A = 'a';
printf("First value: %d\n", ptr_one->i);

printf("Second value: %f\n", ptr_one->PI);
printf("Third value: %c\n", ptr_one->A);

“rec” is not necessary for
given/left code, but is
necessary for below code
update

For below, without RECORD,
warning: useless storage class
specifier in empty declaration

More on Structure Declarations

MEMBERS
Any kind of variable that can be
declared outside a structure may
also be used as a structure
member.
Structure members can be
scalars, arrays, pointers and even
other structures.

ACCESS using dot operator
Two operands

Left = name of structure variable
Right = name of the desired
member
Result = the designated member

OPERATOR PRECEDENCE
The subscript and dot operators
have the same precedence and
all associate left to right.
The dot operator has higher
precedence then the indirection

124

struct COMPLEX {
 float f;
 int a[20];
 long *lp;
 struct SIMPLE s;
 struct SIMPLE sa[10];
 struct SIMPLE *sp;
} cmplx, cmp[10];

Pointer2Structure
 operator
Left = *must* be a pointer to a
structure
Right = member

Example
(*sp).a == spa
Indirection built into arrow/infix
operator
Follow the address to the
structure

Structures and Pointers

125

struct mystruct {
 int a;
 char* b; } ; //note: could put st here instead
struct mystruct st;
char* pb = (char*)&st + offsetof(struct mystruct, b);

offsetof tells you the offset of a
variable within a structure (stddef.h)
should set "pb" to be a pointer to
member “b” within structure “mystruct".

Self-Referential Structures

Illegal - infinite

126

struct SELF_REF {
 int a;
 struct SELF_REF b;
 int c;
} ;

Correction
struct SELF_REF {
 int a;
 struct SELF_REF *b;
 int c;
} ;

Watch out
typedef struct {
 int a;
 struct SELF_REF *b;
 int c;
} SELF_REF ;

Correction
typedef struct SELF_REF_TAG {
 int a;
 struct SELF_REF_TAG *b;
 int c;
} SELF_REF ;

Incomplete Declarations

Structures that are mutually dependent
As with self referential structures, at least one of the
structures must refer to the other only through pointers
So, which one gets declared first???

127

struct B;

struct A {
 struct B *partner;
 /* etc */
} ;

struct B {
 struct A *partner;
 /* etc */
} ;

• Declares an identifier to be a structure tag
• Use this tag in declarations where the size of

the structure is not needed (pointer!)
• Needed in the member list of A

• Doesn’t have to be a pointer

Initializing Structures

Missing values cause the remaining members to get default
initialization… whatever that might be!

128

typedef struct {
 int a;
 char b;
 float c;
} Simple;

struct INIT_EX {
 int a;
 short b[10];
 Simple c;
} x = { 10,
 { 1, 2, 3, 4, 5 } ,
 { 25, ‘x’, 1.9 }
} ;

What goes here (hint in blue below)?

struct INIT_EX y = { 0 , {10, 20, 30, 40, 50,
 60, 70, 80, 90, 100 },
 { 1000, ‘a’, 3.14 }
 } ;
Name all the variables and their initial values:
y.a = 0;
y.b[0] = 10; y.b[1] = 20; y.b[2] = 30; etc
y.c.a = 1000;
y.c.b = ‘a’;
y.c.c = 3.14;

Structure memory (again)

What does memory look like?

129

typedef struct {
 int a;
 short b[2];
} Ex2;

typedef struct EX {
 int a;
 char b[3];
 Ex2 c;
 struct EX *d;
} Ex;

Given the following declaration, fill in the above
memory locations:
 Ex x = { 10, “Hi”, { 5 , { -1, 25 } } , 0 };
 Ex *px = &x;

x

px

Structures as Function arguments

Legal to pass a structure to a function similar to
any other variable but often inefficient

130

/* electronic cash register individual
transaction receipt */
#define PRODUCT_SIZE 20;
typedef struct {
 char product[PRODUCT_SIZE];
 int qty;
 float unit_price;
 float total_amount;
} Transaction;

void print_receipt (Transaction trans) {
 printf(“%s\n, trans.product);
 printf(%d @ %.2f total %.2f\n”, trans.qty, trans.unit_price, trans.total_amount);
}

Function call:
print_receipt(current_trans);
Copy by value copies 32 bytes to the
stack which can then be discarded later

Instead…
 (Transaction *trans)
trans->product // fyi: (*trans).product
trans->qty
trans->unit_price
trans->total_amount
print_receipt(¤t_trans);
void print_receipt(Transaction *trans)

Dynamic Memory Allocation (again?!)

Dynamic allocation allows a program to create space for a structure
whose size isn’t known until runtime.

memory is more explicitly (but more flexibly) managed, typically, by
allocating it from the heap, an area of memory structured for this purpose.

The malloc and calloc functions both allocate memory and return a void
pointer to it; NULL is returned if the requested allocation could not be
performed (in stdlib.h)… MUST check for this!

malloc
 Argument: # of bytes needed
 Leaves the memory uninitialized
calloc
 Arguments: number of elements AND the size of each element
 Initializes the memory to zero before returning

The free function
You may not pass a pointer to this function that was not obtained from an
earlier call to malloc/calloc.
Memory must not be accessed after it has been freed.

Memory Leaks
Memory that has been dynamically allocated but has not been freed and is
no longer in use.
Negative because it increases the size of the program and lead to problems.

131

DMA Example

132

int *pi_save, *pi;
pi = malloc(20);

if (pi == NULL)
{
 printf(“Out of memory!\n”);
 exit(1);
}

for (int x = 0; x < 5; x +=1)
 *pi++ = 0;

// print

Set each element of the newly allocated integer array of five
elements to zero instead of declaring int_array[5]

QUESTIONS
1. What are the values in the new

memory before initializing to zero?
2. Where is pi pointing to after the for

loop?
3. What does the print loop look like?
4. How update to use calloc?
5. How free the memory?

(see dma1.c)

Linked List Node structure

133

/* Node Structure */
struct node {
 int data;
 struct node *next; }

A linked list is…a data structure consisting of a group of
nodes which together represent a sequence
Simply, each node is composed of a data and a reference
(in other words, a link) to the next node in the sequence
Allows for efficient insertion or removal of elements from
any position in the sequence (vs an array).
Data items need not be stored contiguously in memory
Major Disadvantage:

does not allow random access to the data or any form of
efficient indexing

A linked list whose nodes contain two fields: an

integer value and a link to the next node. The last

node is linked to a terminator used to signify the end

of the list.

http://en.wikipedia.org/wiki/File:Singly-linked-list.svg

DMA structure (linked list)

134

struct myRecord {
 char firstName[20];
 char lastName[25];
 int employeeID;
 struct myRecord * nextRecord;
};

// point to first structure in the list
struct myRecord *headPtr;

headPtr = (struct myRecord *) malloc(sizeof(myRecord));
// when allocate another structure,
// the pointer returned should be assigned to the first record’s pointer

(see linklst1.c) push and print

Redirection File I/O

Part of the operating system (linux)
% lab2p2file < lab2p2in >! lab2p2out
! overwrites if the file already exists

135

input = 0;
scanf(…, input);
while (input != 0)
 { loop stuff…
 input = 0;
 scanf(…, input);
 }

Input File:
War_Eagle!
How_many_WORDS_workhere?
i
$hake_u_r_booty:)_!
Og_sbuCk!!!
REALLy_really_really_really___really_long??!!_
Hi.01234_How_R_U_?
|

Linked List setup

136

data

next

NODE structure

data

next

data

next

data

next=NULL

head

end (optional)

NEED TO:
Allocate a new node structure with DMA
Add information to data section

data

next

new

Linked List ADD/DELETE node

FRONT

137

END MIDDLE

new->next = head
head = new

ptr->next = new
new->next = NULL

OPERATION

ADD
new->next = ptr->next
ptr-> next= new

head = ptr->next
// what if only node?

//if ptr->next=NULL

prev = ptr
prev->next = NULL

DELETE
(fyi: free ptr)

prev->next = ptr->next

found = false;
ptr = head;
while(ptr != NULL) //what if nothing in list?
{ if(ptr->data = = val) // found what searching for
 { found = true;
 break; }
 else { ptr = ptr->next; }
} // if found still false, didn’t find

SEARCH

Linked List operations

Initialize the list
Push/Insert a value onto the list
Search the list
Pop/Remove a value off of the list
Print the list

138

void InitList(struct list *sList);

/* Initializes the list structure */
void InitList(struct list *sList) {
 sList->start = NULL; }

void push(struct list *sList, int data);

/* Adds a value to the front of the list */
void push(struct list *sList, int data) {
 struct node *p;
 p = malloc(sizeof(struct node));
 p->data = data;
 p->next = sList->start;
 sList->start = p; }

void pop(struct list *sList)

/* Removes the first value of the list */
void pop(struct list *sList) {
 if(sList->start != NULL) {
 struct node *p = sList->start;
 sList->start = sList->start->next;
 free(p); } }

(see linklst2.c)

Bitwise Operations

Many situation, need to operate on the bits
of a data word –
 Register inputs or outputs
 Controlling attached devices
 Obtaining status

Corresponding bits of both operands are

combined by the usual logic operations.

Apply to all kinds of integer types
Signed and unsigned
char, short, int, long, long long

139

Bitwise Operations (cont)

140

• & – AND
• Result is 1 if both

operand bits are 1

• | – OR
• Result is 1 if either

operand bit is 1

• ^ – Exclusive OR
• Result is 1 if operand

bits are different

• ~ – Complement
• Each bit is reversed

• << – Shift left
• Multiply by 2

• >> – Shift right
• Divide by 2

Examples

141

1 1 1 1 0 0 0 0 a

1 0 1 0 1 0 1 0 b

unsigned int c, a, b;

c = a & b; // 1010 0000

c = a | b; // 1111 1010

c = a ^ b; // 0101 1010

c = ~a // 0000 1111

c = a << 2; // 1100 0000

c = a >> 3; // 0001 1110

NOTE: when signed all the same
FYI: integers are really 32 bits so what is the “real” value?
 ~a has preceding 1’s and a<<2 is 0x 3c0

Bitwise AND/OR

142

‘A’ = 0x41 = 0100 0001
‘a’ = 0x61 = 0110 0001

char x = ‘A’;
tolower(x) returns ‘a’… HOW?

char y = ‘a’;
toupper(y) returns ‘A’… HOW?

“mask” = 0010 0000
Use OR

‘A’ = 0100 0001
mask = 0010 0000 |
 ‘a’ 0110 0001

“mask” = 1101 1111
Use AND

‘a’ = 0110 0001
mask = 1101 1111 &
 ‘A’ 0100 0001

Notice the masks are complements of each other
TRY: char digit to a numeric digit

Bitwise XOR

The bitwise XOR may be used to invert selected
bits in a register (toggle)
XOR as a short-cut to setting the value of a
register to zero

143

0100 0010
0000 1010 XOR (toggle)
0100 1000

Bitwise left/right shifts

Possible overflow issues
Exact behavior is implementation dependent

144

When you shift left by k bits ==
 multiplying by 2K

When you shift right by k bits ==
 dividing by 2K

*** If it's signed, then it's***
implementation dependent.

Bitwise right shifts

145

unsigned int c, a;

c = a >> 3;

signed int c, a, b;

c = b >> 3;

c = a >> 3;

1 1 1 1 0 0 0 0 a 1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0 c 1 1 1 1 0 0 0 0

0 1 0 1 0 1 0 1 b 0 1 0 1 0 1 0 1

EXAMPLE: 8-bit instruction format
101 01000 // ADD 8 ALU adds ACC reg to value at address 8
To get just the instruction i.e. 101… shift right by 5
To get just the address i.e. 01001… shift left by 3, then right by 3

0 0 0

0 1 0 1 0 1 0 1 c 0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0 c 1 1 1 1 0 0 0 0

0 0 0

0 0 0

C example…

Output is:
b >> 3 is aaa
a >> 3 is 1e1e
binary = 41
char a = A

146

#include <stdio.h>
void main()
{
 signed int c, d, a, b, e, f;
 a = 0xF0F0;
 b = 0x5555;
 e = 0b01000001;
 f = 'A';

 c = b >> 3;
 d = a >> 3;

 printf("b >> 3 is %x\n",c);
 printf("a >> 3 is %x\n",d);
 printf("binary = %x\n",e);
 printf("char a = %c",f);
}

Traditional Bit Definition

147

8-bit Printer Status Register

#define EMPTY 01

#define JAM 02

#define LOW_INK 16

#define CLEAN 64

char status;

if (status == (EMPTY | JAM)) ...;

if (status == EMPTY || status == JAM) ...;

while (! status & LOW_INK) ...;

int flags |= CLEAN /* turns on CLEAN bit */

int flags &= ~JAM /* turns off JAM bit */

Traditional Bit Definitions

148

Used very widely in C
 Including a lot of existing code

No checking
 You are on your own to be sure the right bits are set

Machine dependent
 Need to know bit order in bytes, byte order in words

Integer fields within a register
 Need to AND and shift to extract
 Need to shift and OR to insert

Modern Bit-field Definitions

struct statusReg {
unsigned int empty :1;
unsigned int jam :1;
 :2; //???
unsigned int lowInk :1;
 :1; //???
unsigned int needsCleaning :1;
 :1; //???

};

struct statusReg s;

if (s.empty && s.jam) ...;

while(! s.lowInk) ...;

s.needsCleaning = true;

s.Jam = false;

Conditional Operator

Consists of two symbols
Question mark
Colon

Syntax: exp1 ? exp2 : exp3
Evaluation:

If exp1 is true, then exp2 is the resulting value
If exp1 is false, then exp3 is the resulting value

Example: if a = 10 and b = 15
x = (a > b) ? a : b
b is the resulting value and assigned to x
Parentheses not necessary
Similar, but shorter than, if/else statement

150

The Comma Operator

Used to link related expressions together
Evaluated from left to right
The value of the right most expression is the value of
the combined expression
Example:

Value = (x = 10, y = 5, x + y);
Comma operator has lowest precedence

Parentheses are necessary!
For loop:

for (n=1, m=10; n<=m; n++, m--)
While:

while (c=getchar(), c!= ‘10’)
Exchanging values:

t=x, x=y, y=t;

 151

File function summary

Open/Close files
fopen() – open a stream for a file
fclose() – closes a stream

One character at a time:
fgetc() – similar to getchar()
fputc() – similar to putchar()

One line at a time:
fprintf()/fputs() – similar to printf()
fscanf()/fgets() – similar to scanf()

File errors
perror() – reports an error in a system call

152

Text Streams

Files accessed through the FILE mechanism provided
by <stdio.h>

 http://www.acm.uiuc.edu/webmonkeys/book/c_guide/2.12.html
Text streams are composed of lines.
Each line has zero or more characters and are
terminated by a new-line character which is the last
character in a line.
Conversions may occur on text streams during input
and output.
Text streams consist of only printable characters, the
tab character, and the new-line character.
Spaces cannot appear before a newline character,
although it is implementation-defined whether or not
reading a text stream removes these spaces.

153

File constants <stdio.h>

FILE – a variable type suitable for string information for a file
stream

fpos_t – a variable type suitable for starting any position in a file

NULL – value of a null pointer constant

EOF – negative integer which indicates end-of-file has been
reached

FOPEN_MAX – integer which represents the maximum number of
files that the system can guarantee that can be opened
simultaneously

FILENAME_MAX – integer which represents the longest length of a
char array

stderr/stdin/stdout – pointers to FILE types which correspond to
the standard streams

154

File usage

When a program begins, there are already three available streams
which are predefined and need not be opened explicitly and are of
type “pointer to FILE”

standard input
standard output
standard error

Files are associated with streams and must be opened to be used.
The point of I/O within a file is determined by the file position.
When a file is opened, the file position points to the beginning of
the file (unless the file is opened for an append operation in which
case the position points to the end of the file).
The file position follows read and write operations to indicate
where the next operation will occur.
When a file is closed, no more actions can be taken on it until it is
opened again.
Exiting from the main function causes all open files to be closed.

155

Open/Read a File – one char at a time

156

#include<stdio.h>
#include<stdlib.h>
int main() {
 char ch;
 FILE *fp;
 fp = fopen("lab2p2in","r"); // read mode
 if(fp == NULL) {
 perror("Error while opening the file.\n");
 exit(EXIT_FAILURE); }
 printf("The contents of the file is :- \n\n");
 while((ch = fgetc(fp)) != EOF)
 printf("%c",ch);
 fclose(fp);
return 0; }

C programming
code to open a
file and print
its contents to
the screen, one
character at a
time.
//fileio1.c

(1) fgetc returns the value of an int that is converted from the character
(2) What happens if delete lab2p2in file? i.e. it can’t be found to open?

File open and close

FILE *fopen(const char *filename, const char *mode);
Mode… (lots more!)

r – read text mode
w – write text mode (truncates file to zero length or creates a new
file)
If the file does not exist and it is opened with read mode (r), then the
open fails need to check for this

Declaration: int fclose(FILE *stream);
Closes the stream.
If successful, it returns zero.
On error it returns EOF.

perror
void perror(const char *str);
Prints a descriptive error message to stderr. First the string str is
printed followed by a colon then a space (your error message). Then
an error message based on the current setting of the variable errno
is printed (system error message).

157

fgetc and fputc

Declaration: int fgetc(FILE *stream);
Gets the next character (an unsigned char) from the specified
stream and advances the position indicator for the stream.
On success the character is returned.
If the end-of-file is encountered, then EOF is returned and the
end-of-file indicator is set.
If an error occurs then the error indicator for the stream is set
and EOF is returned.

Declaration: int fputc(int char, FILE *stream);
Writes a character (an unsigned char) specified by the
argument char to the specified stream and advances the
position indicator for the stream.
On success the character is returned.
If an error occurs, the error indicator for the stream is set and
EOF is returned.

158

Open/Read/Write/Close… one char at
a time

159

#include<stdio.h>
#include<stdlib.h>
int main() {
 char ch, chout;
 FILE *fpin, *fpout;
 fpin = fopen("lab2p2in","r"); // read mode
 fpout = fopen("lab2p2inout","w"); // write mode
 if(fpin == NULL) {
 perror("Error while opening the input file.\n");
 exit(EXIT_FAILURE); }
 if (fpout == NULL) {
 perror("Error while opening the output file.\n");
 exit(EXIT_FAILURE); }
 while((ch = fgetc(fpin)) != EOF && chout != EOF)
 chout = fputc(ch,fpout); // ret char if success ow EOF
 fclose(fpin);
 fclose(fpout);
return 0; }

C programming
code to open a
file and print
its contents to
the another
file, one
character at a
time.
//fileio2.c

Lab2p2 excerpt example

160

FILE *infp, *outfp;
char * mode = "r";
char outfile[] = "lab2p2out";

char input[101], save_first_letter;
char *inptr;
int first_letter = TRUE, n=101;

 infp = fopen("lab2p2in","r");
 if (infp == NULL){
 fprintf(stderr, "can't open input file lab2p2in!\n");
 exit(EXIT_FAILURE); }

 outfp = fopen(outfile,"w");
 if (outfp == NULL) {
 fprintf(stderr, "Can't open output file %s!\n", outfile);
 exit(EXIT_FAILURE); }

 fgets(input,n,infp);
 while (!feof(infp))
 { // etc
 fgets(input,n,infp);
 }
//close files

fgets(buffer,size,stdin);
buffer is the location of
your string storage
space or buffer.
size is the number of
characters to input. This
sets a limit on input
Note that fgets() also
reads in the carriage
return (enter key;
newline character) at
the end of the line. That
character becomes part
of the string you input.
 fscanf(infp,"%s",input);
while (!feof(infp))

fgets vs fscanf

Declaration: char *fgets(char *str, int n, FILE *stream);
Reads a line from the specified stream and stores it into the string
pointed to by str.
It stops when either (n-1) characters are read, the newline character
is read, or the end-of-file is reached, whichever comes first.
The newline character is copied to the string.
A null character is appended to the end of the string.
On error a null pointer is returned. If the end-of-file occurs before
any characters have been read, the string remains unchanged.

Declaration: int fscanf(FILE *stream, const char *format, ...);
Reading an input field (designated with a conversion specifier) ends
when an incompatible character is met, or the width field is satisfied.
On success the number of input fields converted and stored are
returned. If an input failure occurred, then EOF is returned.
Returns EOF in case of errors or if it reaches eof

161

fprintf and feof

162

Declaration:
int fprintf(FILE *stream, const char *format, ...);
sends formatted output to a stream
Just like printf, but puts file pointer as first argument
In lab2p2:
 fprintf(outfp, “Your sipher coded message is %s\n”,input);

Declaration: int feof(FILE *stream);

Tests the end-of-file indicator for the given stream
If the stream is at the end-of-file, then it returns a nonzero
value. If it is not at the end of the file, then it returns zero.

Lab3 fileio example

See handout

163

1
abc
2
3
def
4
5
ghi
6
7
jkl
8
9
mno
10

1 abc 2
3 def 4
5 ghi 6
7 jkl 8
9 mno 10

lab3chin

lab3chin2

Enumerated Data Types

164

#include <stdio.h>
main() {
 char *pwest="west",*pnorth="north", *peast="east", *psouth="south";
 enum location { east=1, west=2, south=3, north=4};
 enum location direction;
 direction = east;
 if(direction == east)
 printf("Cannot go %s\n", peast); }

 enum month { jan = 1, feb=2, mar=3, apr=4, may=5, jun=6, jul=7,
 aug=8, sep=9, oct=10, nov=11, dec=12 } this_month;
 this_month = feb;
 printf(“What month is it? %d\n",this_month);
}

Enumerated Data Types explained

An enumerated type is one whose values are symbolic
constant rather than literal.
Declaration example:

enum Jar_Type {CUP, PINT, QUART, HALF_GALLON,
GALLON};

The above example declares a type called Jar_Type
Variables of this type are declared like this:

enum Jar_Type milk_jug, gas_can, medicine_bottle;
If there is only one declaration of variables of a
particular enumerated type (i.e. no type name), both
statements may be combined:

enum { CUP, PINT, QUARTER, HALF_GALLON, GALLON}
 milk_jug, gas_can, medicine_bottle;

165

Enumerated Data Type (cont)

Variables declared with an enumerated type are
actually stored as integers.
Internally, the symbolic names are treated as
integer constants

By default, CUP =0, PINT=1, QUART=2, etc.
Caution: don’t mix them indiscriminately with
integers – even though it is viable.

milk_jug = -623;
int a = PINT;

The variable cannot be assigned any values
outside those specified in the initialization list for
the declaration of the enum type

166

Constant Variables

The values of some variable may be required to remain constant
throughout the program.

using the qualifier const at the time of initialization in 2 ways:
 const int size = 40;
 int const size = 40;

The const data type qualifier tells the compiler that the value of
the int variable size may not be modified in the program.

Assignment

At declaration
During function call for const parameters

Different from #define – both creating named constants

#define MAX_ELEMENTS 50 // literal constant
int const max_elements = 50; // variable constant
Constant variable can only be used where variables are allowed;
literal constant is allowed wherever a constant is allowed, such as in
declaring the size of arrays.

167

Pointers and Constants

int *pi;
pointer to int

int const *pci;

point to constant int

int *const cpi;

constant pointer to int

int const *const cpci;

constant point to constant int

168

Storage Class

Refers to the type of memory in which the variable’s value is stored
which in turn defines different characters for the variable

Ordinary memory
Runtime stack
Hardware registers

Determines when the variable is created and destroyed and how long it
will retain its value

Introduction

Auto automatic
 Local variable known only to the function in which it is declared; default storage class;

stored in RAM (i.e. on the stack).
Static
 Local variable which exists and retains its value even after the control is transferred to

the calling function; automatically initialized to zero; initialized only once during
compilation; commonly used along with functions; stored in ordinary memory.

Register
 Local variables that are stored in the CPU memory register; must be initialized explicitly;

The default storage class for a variable depends on where it is declared

169

Storage Classes - blocks

Outside any blocks
Always stored in static memory (ordinary memory)
No way to specify any other storage class for these variables
Static variables are created before the program begins to run
and exist throughout its entire execution.
They retain whatever value they were assigned until a
different value is assigned or until the program completes

Within a block
Default storage class is automatic
Stored on the stack
Keyword auto rarely used because doesn’t change default
Created just before the program execution enters the block in
which they are declared;
Discarded just as execution leaves that block
New copies created each time the block is executed

170

Storage Classes – static

Variables declared within a block but with the
keyword static changes storage class from
automatic to static
Static storage class exists for the entire duration
of the program, rather than just the duration of
the block in which it is declared
NOTE: the changing of the storage class of a
variable does not change its scope; it is still
accessible by name only from within the block
FYI: formal parameters to a function cannot be
declared static, because arguments are always
passed on the stack to support recursion

171

Storage Classes – static (cont)

When used in function definitions, or
declarations of variables that appear outside
of blocks

The keyword static changes the linkage from
external to internal*
The storage class and scope are not affected
Accessible only from within the source file in
which they were declared

* Explain when go over linkage

172

Storage classes - register

Can be used on automatic variables to indicate that they
should be stored in the machine’s hardware registers
rather than in memory.
WHY? To be accessed more efficiently
FYI – compiler can ignore if necessary i.e. too many
designated as register (first come first served) rest are
automatic
Smart Compiler? One that does its own register
optimization so may ignore register class altogether and
decide for itself skynet, is that you?

Typically declare heavily used variables as register
variables
Created and destroyed at the same time as automatic
variables (long story – previous values? will revisit; note:
not allowed to take the address of a register variable)

173

Identifier Storage Class Summary

Designated before the type
Automatic

Default
Local to a block
Discarded on exit from block
Can have auto specifier
Can have register specifier
 Stored in fast registers of the machine if possible instead of RAM

Static

Default for global variables
 Declared prior to the main() function
Can also be defined within a function
Initialized at compile time and retains its value between
calls… initial value must be a constant… be careful!

174

Example

Suppose you want to write two functions, x
and y, in the same source file, that use the
variables given below. How and where would
you write the declarations? NOTE: all
initializations must be made in the
declarations themselves, not by any
executable statements in the functions

The trick is to realize that function y can be
put ahead of x in the file; after that, the rest
is straightforward. Watch for assignment
statements though; the problem specifies no
executable statements in the functions.

175

static char b = 2;
void y(void)
{
}
int a = 1;

void x(void)
{
int c = 3;
static float d = 4;
}

Nm/Ty STORAGE LINKAGE SCOPE & INITIAL VALUE
a = int static external accessible to x but not y with init value = 1
b = char static none accessible to x and y with init value = 2
c = int automatic none local to x with init value = 3
d = float static none local to x with init value = 4

Linkage

After the individual source files comprising a
program are compiled, the object files are
linked together with functions from one or
more libraries to form the executable
program
When the same identifier appears in more
than one source file, do they refer to the
same entity or to different entities???

176

Linkage Types

Determines how multiple occurrences of an identifier are
treated
The scope of an identifier is related to its linkage, but the
two properties are not the same
3 types

None
 identifiers that have no linkage are always individuals i.e. multiple

declarations of the same identifier are always treated as separate
and distinct entities

Internal
 All declarations of the identifier within one source file refer to a

single entity, but declarations of the same identifier in other source
files refer to different entities

External
 All references to an identifier refer to the same entity
 Global variable known to all functions in the file; declared outside

the main() function; automatically initialized to zero.

177

Scope

An area in the program in which an identifier may be used
For example, the scope of a function’s local variables is limited to
the body of the function
This means:

No other function may access these variables by their names
because the names are not valid outside of their scope
It is legal to declare different variables with the same names so long
as they are not declared in the same scope.

Scope types:
File
Function
Block
Prototype

THE LOCATION WHERE AN IDENTIFIER IS DECLARED DETERMINES

ITS SCOPE

178

Block scope

A block is a list of statement enclosed in braces
Any identifiers declared at the beginning of the block
are accessible to all statements in the block
The formal parameters (not prototypes) of a function
definition also have block scope in the function’s body

Local variables declared in the outermost block cannot
have the same name as any of the parameters because
they are all declared in the same scope

Nested blocks having declarations of variables with
the same name

The outer block variable cannot be referenced by name
from within the inner block (try to avoid)

179

File scope

Any identifier declared outside of all blocks
Means that the identifier may be accessed
anywhere from its declaration to the end of
the source file in which it was declared

180

Prototype scope

Applies only to argument names declared in
function prototypes
Reminder:

 argument names need not appear. If given, any names can be
chosen as they need not match either the formal parameter
names given in the function definition or the names of the
actual arguments used when the function is called

Prevents these name from conflicting with
any other names in the program
Only possible conflict is using the same name
more than once in the same prototype

181

Function scope

182

Only applies to statement labels which are
used with goto statements
One simple rule: all statement labels in a
function must be unique

• I hope you never use this knowledge!

Scope Example

183

int a;
int b (int c);
int d (int e)
{
 int f;
 int g (int h);
 …
 {
 int f, g, i;
 …
 }
 {
 int i;
 …
 }
}

1 int a;
2 int b 3 int c
4 int d 5 int e

6 int f
7 int g 8 int h

9 int f, g, i

10 int i

File scope = 1,2
Prototype scope = 3,8
Block = 6, 7, 9, 10 (f?)
5 = block scope in function body
? What if 6 had included an e?

184

ScopeExample.docx
Name (Line) Storage Class Scope Linkage Initial Value
w (1) static 1–8, 17–31 internal 5
x (2) static 2–18, 23–31 external Note a
func1 (4) – 4–31 external –
a (4) auto 5–18, 23 none Note b
b, c (4) auto 5–11, 16–23 none Note b
d (6) auto 6–8, 17, 23 none garbage
e (6) auto 6–8, 17–23 none 1
d (9) auto 9–11, 16 none garbage
e, w (9) auto 9–16 none garbage
b, c, d (12) auto 12–15 none garbage
y (13) static 13–15 none 2
a, d, x (19) register 19–22 none garbage
y (20) static 20–22 external Note a
y (24) static 24–31 internal zero
func2 (26) – 26–31 external –
a (26) auto 27–31 none Note b
y (28) static 28–31 Note c see y (24)
z (29) static 29–31 none zero

Note a: If the variable is not initialized in any other declaration, it will have an initial value of zero.
Note b: The initial value of a function parameter is the argument that was passed when the
function was called.
Note c: The extern keyword doesn’t change the linkage of y that was declared in line 24.

SUMMARY

185

Variable Type

Where

Declared

Stored on

Stack Scope If Declared static

global

outside of

all blocks no (1)

remainder of

this source file

prevents access from

other source files

local

beginning

of a block yes (2)

throughout the

block (3)

variable is not stored on

the stack, keeps its value

for the entire duration of

the program

formal

parameters

function

header yes (2)

throughout the

function (3) not allowed

(1) variables stored on the stack retain their values only while the block to which

they are local is active. When execution leaves the block, the values are lost

(2) Variables *not* stored on the stack are created when the program begins

executing and retain their values throughout execution, regardless of whether

they are local or global

(3) except in nested blocks that declare identical names

Int main(with arguments)

Options:
int main(void);
int main();
int main(int argc, char **argv);
int main(int argc, char *argv[]);

The parameters given on a command line are passed to a C
program with two predefined variables

The count of the command-line arguments in argc
The individual arguments as a character strings in the pointer array
argv
The names of argc and argv may be any valid identifier in C, but it is
common convention to use these names

But wait… There is no guarantee that the strings are stored as a
contiguous group (per normal arrays)

186

http://en.wikipedia.org/wiki/Main_function
http://en.wikipedia.org/wiki/Main_function

int main(argc, *arv[])

The name of the program, argv[0], may be useful
when printing diagnostic messages
The individual values of the parameters can be
accessed:

187

*argv[] also seen as **argv

4

argc

…

argv

myFilt\0

p1\0

p2\0

p3\0
Array of pointers where each
element is a pointer to a character

Command Line Arguments

It is guaranteed that argc is non-negative and
that argv[argc] is a null pointer.
By convention, the command-line arguments
specified by argc and argv include the name of
the program as the first element if argc is greater
than 0
For example, if a user types a command of "rm
file", the shell will initialize the rm process with
argc = 2 and argv = ["rm", "file", NULL?]
The main() function is special; normally every C
program must define it exactly once.

188

CLA - Example 1

189

#include <stdio.h>
int main(int argc, char *argv[]) {
 if (argc != 3)
 printf("Usage:\n %s Integer1 Integer2\n",argv[0]);
 else
 // ascii to integer
 printf("%s + %s = %d\n",argv[1],argv[2], atoi(argv[1])+atoi(argv[2]));
 return 0;
}

CLA – Example 2

190

#include <stdio.h>
main(int argc, char *argv[])
{ FILE *in_file, *out_file, *fopen();
int c;
if(argc != 3) {
 printf("Incorrect, format is FCOPY source dest\n");
 exit(2); }
in_file = fopen(argv[1], "r");
if(in_file == NULL)
 printf("Cannot open %s for reading\n", argv[1]);
else { out_file = fopen(argv[2], "w");
 if (out_file == NULL)
 printf("Cannot open %s for writing\n", argv[2]);
 else { printf("File copy program, copying %s to %s\n", argv[1], argv[2]);
 while ((c=getc(in_file)) != EOF)
 putc(c, out_file);
 putc(c, out_file); /* copy EOF */
 printf("File has been copied.\n"); fclose(out_file); } fclose(in_file); } }

Rewrite the
program which
copies files, ie,
FCOPY.C to accept
the source and
destination
filenames from the
command line.
Include a check on
the number of
arguments passed.

Header and Makefile example

191

Start here

What is happening?

The -c option on the gcc command only
compiles the files listed
Once all 3 C files are correctly compiled, then
using gcc with the -o option allows object
files (notice the .o extensions) to be merged
into one executable file.
Notice where all “mkfunc.h” is included

192

Library includes

The compiler supports two different types of
#includes

Library files
Local files

#include <filename>
#include “filename”

By convention, the names of the standard library
header files end with a .h suffix

Where? /usr/include

193

Creating header files

In our case, be sure to save your header file in a
‘directory where you are going to save the program’
(NOTE: This is important. Both the header file and the
program must be in the same directory, if not the
program will not be able to detect your header file).

The header file cannot be included by

#include <headerfilename.h>

The only way to include the header file is to treat the
filename in the same way you treat a string.

#include “headerfilename.h”

194

Makefile Overview

Makefiles are a UNIX thing, not a programming language thing
Makefiles contain UNIX commands and will run them in a specified
sequence.
You name of your makefile has to be: makefile or Makefile
The directory you put the makefile in matters!
You can only have one makefile per directory.
Anything that can be entered at the UNIX command prompt can
be in the makefile.
Each command must be preceded by a TAB and is immediately
followed by a carriage return
MAKEFILES ARE UNFORGIVING WHEN IT COMES TO WHITESPACE!
To execute… must be in the directory where the makefile is:

% make tag-name (also called section name)

195

Makefile Details

Compiling our example would look like:
gcc -o mkhello mkmain.c mkhello.c mkfact.c
OR
gcc mkmain.c mkhello.c mkfact.c -o mkhello

The basic makefile is composed of lines:

target: dependencies [tab] system command
“all” is the default target for makefiles
 all: gcc -o mkhello mkmain.c mkhello.c mkfact.c
The make utility will execute this target, “all”, if no
other one is specified.

196

Makefile dependencies

Useful to use different targets
Because if you modify a single project, you don’t have to
recompile everything, only what you modified

In the class example of the makefile:
All has only dependencies, no system commands
If order for make to execute correctly, it has to meet all
the dependencies of the called target (i.e. in this case all)
Each of the dependencies are searched through all the
targets available and executed if found.
make clean
 Fast way to get rid of all the object and executable files (to free

disk space)
 -f do not prompt
 -r remove directories and their contents recursively

197

