
Implementation Considerations in Enabling Visually Impaired Musicians to Read
Sheet Music Using a Tablet

Laura Housley, Thomas Lynch, Rajiv Ramnath,
Jayashree Ramanathan

Computer Science and Engineering
The Ohio State University

Columbus, Ohio USA
{housley.7, lynch.268, ramnath.6,

ramanathan.2}@osu.edu

Peter F Rogers
Engineering Education Innovation Center

The Ohio State University
Columbus, Ohio USA
rogers.693@osu.edu

Abstract— In this paper, we present the issues to be addressed
and the practical solutions to these issues in a mobile
application framework for reading and displaying musical
scores enhanced to assist the visually impaired in reading and
perform the pieces. This framework, currently operating on
MusicXML input files, provides the structures and methods
for developers to adapt for other music encoding file formats.
It also provides the flexible user-settable colors and
enlargement parameters to meet the needs of users with
various visual impairments. The development challenges fall
into three categories: Variable visual impairment driven
requirements; Musical notation complexity, and screen real-
estate limitations of a 10-inch tablet. The framework’s
practical solutions to each of these challenges are presented
and contrasted with traditional solutions and competing
solutions.

Keywords-accessibilit; mobile computin)

I. INTRODUCTION
Most musicians read sheet music to perform and enjoy

the complex works of current and historic composers.
Though there are great musicians throughout the ages that
were blind, losing the visual ability to read sheet music
through age or accident can be devastating to musicians.
Unlike losing the visual ability to read written words, screen
readers and physical notation (similar to Braille) cannot
provide the need assistance. The screen reader would be
impractical given the amount verbalization required to
communicate the music score and thus would disrupt the
tempo. Braille-like notation on the other hand would require
the musician to perform one handed thus interfering with the
playing of the music.

Currently sheet music is printed with black ink on 9x12
inch white paper with staff lines 1/16th of an inch apart. This
format fails the needs of readers with low vision and other
visual impairments. Simply enlarging the score provides
some relief for some music readers; however it fails to fulfill
the needs for many users for several reasons including
becoming too cumbersome as the paper size increases and/or
requiring too many and too frequent page turns disrupting
the musician’s performance.

Cataracts and other visual impairments may also require
different color schemes according to Elliott. [1] Printing the

scores in a multitude of color schemes is impractical due to
the limited demand compared to the cost.

There are mechanical devices dedicated to aid visually
impaired musicians but they tend to be expensive and heavy.
For example, the Lime Lighter is a standalone tablet-like
device that displays enlarged music that retails around
$3,995. This price does not include the software that costs
several hundred more dollars (Lime).

These issues motivate a solution that dynamically
generates sheet music in the desired size and color set by the
user. An application that runs on a tablet device (that fits
easily on a standard music stand) would allow the user to
immediately see the music score resulting from the setting
they choose. Furthermore, such an application can
automatically scroll the score across the screen at the desired
tempo eliminating page turns and allowing the musician to
concentrate on performing the music. Creating an application
that runs on a multi-functional tablet provides accessibility to
people in a larger range of economic circumstance than an
expensive, single-use dedicated device.

This research focuses on the needed affordances and
framework required to generate musical scores on an
Android tablet from a text-based input (MusicXML) and
displaying the resulting score at various magnifications and
color schemes. The score generated must correctly position
and space musical symbols found in complex compositions.
The output must be aesthetically pleasing and resemble
regular sheet music. The score must scroll across the screen
at the tempo specified by the user. Ideally the framework
would be readily adaptable to other musical formats besides
MusicXML. Most importantly, this system must allow the
visually impaired to continue to read, perform and enjoy
musical scores.

II. BACKGROUND INFORMATION
Before we can address the challenges of this research, the

reader needs general knowledge about musical notation and
the challenges it presents. The following section discusses
the basic elements of music notation, and how they are
structured and interrelated to form sheet music.

Also the reader will need insight to the different obstacles
faced by the visually impaired and their relationship to
reading sheet music. Simply making the notes bigger does

2013 IEEE 37th Annual Computer Software and Applications Conference

0730-3157/13 $26.00 © 2013 IEEE

DOI 10.1109/COMPSAC.2013.107

678

not solve the problem and introduces new problems. The
subsequent section discusses the issues and consideration of
addressing the needs of the visually impaired.

A. Basic Sheet Music
Sheet Music as shown in Fig. 1 is a representation of a

piece of music using symbols and accepted musical notation
so that two users can read the same piece of sheet music and
output the same song. There is some room for interpretation
by the musician, but the timing, pitch and duration that each
note should be played is explicitly stated. This allows many
musicians to play the same music simultaneously in a group
setting such as an orchestra with positive results. It should be
noted that music is always read left to right, in a top to
bottom manner.

Sheet Music is separated into multiple staffs or staves as
shown in Fig. 2, to provide a convenient way to specify that
multiple notes are played simultaneously by one or more
performers. As shown in Fig. 1 (a single staff) and Fig. 2,
each staff has five staff lines enclosing four spaces. These
lines and spaces are used to specify the pitches of the notes.
If two notes are aligned vertically, they should be played
simultaneously. These staffs are representative of one or
more parts. For example, a musical piece with three staffs
can represent two parts: the first part containing one staff
could represent the melody and lyrics, and the second
containing two staffs, the notes for the piano
accompaniment. In this instance, someone could sing the
song while someone else plays the piano from the second
part.

The length of time a note should be played is indicated
by its shading, stem, and flags (Fig. 3). Whole notes are not
shaded and have no stem. Half notes are played for half as
long as whole notes, and quarter notes are played for a
quarter of the time of a whole note. Half notes are not shaded
but have a stem. Quarter notes are shaded and also have a
stem. Eighth, sixteenth, and thirty-second notes follow the
same pattern. For each type of note, there is a corresponding
type of rest. Rests occur when no note is being played for the
specified duration.

Notes whose lengths are in between the simple durations
are marked with a trailing dot indicating its duration is 1.5
times as long as it would be without a dot. For example, a
dotted quarter note has the length of one quarter note plus
one eighth note.

The vertical position of a note in relation to the staff lines
indicates the pitch of the note. Within a single staff, a higher
note represents a higher pitch. Sometimes notes need flat,
natural, or sharp signs next to them to slightly alter the pitch.
An understanding of the specific pitches in a piece of music
is not necessary for the discussion of how to display sheet
music.

Left to right on each staff, the music is divided into
logical groups called measures symbolized by a solid vertical
line from the top of line to the bottom of the staff. Measures
help the reader keep track of the beat. Each piece of music
has a time signature which describes how many notes of
each type are included in each measure. Time signatures
consist of two numbers: the bottom represents the type of
note the signature is based on, and the top number represents
how many of this base note (beats) are in each measure. For
instance, a time signature of 3/4 indicates that there will be
three evenly spaced beats per measure and the quarter note or
its equivalent represents a single beat. A 3/2 time signature
means there are three beats per measure and the half note
gets a beat. This is just the length of each measure, so these
three quarter notes could be written as six eighth notes or one
half note and one quarter note. All that matters is that the
total duration of the notes and rests adds to three quarter
notes for a 3/4 measure.

Beams are used to connect the flags of notes and prevent
a piece of music from being filled up with flags off the
stems. When several notes are to be played in a row, they are
connected together to show they are played as a group as
show in Fig. 4. Eighth notes use single beams, sixteenth
notes use double beams and thirty-second notes use triple
beams.

There are many other symbols found in musical notation,
but an understanding of how notes and rests are displayed is
enough to follow the general procedure for displaying music.
In Fig. 2 some of the discussed musical symbols are labeled
in a sample piece of music. This piece has two parts - one of
which has one staff and the other has two staves. Three and a
half measures are at least partially visible in this screen
capture.

B. Visual Impairments and Music
According to the American Foundation for the Blind an

estimated 10 million people in the United States are blind or
visually impaired. [2] They estimated that 80% of the 10
million have some useful vision. Those with some useful
vision have different type of impairments that impact their
ability to read regular sheet music. These impairments can
cause low vision, small field of vision, and lack of focus.

Low vision takes many forms, and does not always mean
that the person's vision is faded equally. For example, some
people lose their central vision, peripheral vision, or night
vision. Other examples of issues causing low vision are
tunnel vision, distortion, and multiple field loss. Multiple
field loss means that there are multiple spots missing from a
person's field of vision.

There are many possible causes of low vision. Different
diseases may lead to different impairments. For instance,
macular degeneration causes blurred vision and possibly

Figure 1. Sample Sheet Music

679

causes a blind spot, while glaucoma usually produces
symptoms of night blindness and loss of peripheral vision.
Others with low vision have issues seeing different color
combinations. For example, yellow on black might be
preferable to some people, but other people would be unable
to distinguish between these colors enough to read the music.
These visual impairments require changes to sheet music.

Based on visual acuity alone, low vision requires that
sheet music be magnified. The color issues require
customizability of the colors of the sheet music as some
would prefer a light background with dark text, and others
would prefer a dark background with light text.

Issues with field of vision present challenges for scrolling
the music. Musicians read ahead of the point they are playing
so they need as many future measures available as possible.
By scrolling the music instead of paging allows continuously
displaying future measures timely. Because a person with
blind spots cannot see the entire screen at once, it is
important that the music be scrolled in a way that people can
continuously read the music. Continuous smooth-scrolling
achieves this effect, since the music that is being played is
always in the same relative position. Shifting the music one
or more measures at a time, causing the music to jump would
not be acceptable for people with a low field of vision. They
could possibly encounter difficulties tracking their position
in the score. However, shifting instead of scrolling could be
better for some people who find scrolling/moving music
difficult to read. Thus affordances for both features are
required.

Figure 3. Notes and Rests.

Figure 4. Beamed Notes.

III. RELATED WORK
Many researches have explored usability challenges

posed by current mobile devices for the visually impaired.
[2] [3] [4] [5] They have also explored adaptive technology
and affordances to improve the experience for the visually
impaired. Markus, et al has researched and developed
various apps to assist the visually impaired use the current
devices. [5] Thus the target user group is able to use the
tablet device despite of their impairments.

No research was found that specifically addressed
assisting the visually impaired to read music using a mobile
tablet computer. However there is a standalone dedicated
tablet-like device that displays enlarged music called Lime
Lighter and requires a piece of software called Lime.
Together they retail for over $4,000. The price alone limits
the access to this solution. The tablet solution is more
affordable and Kane found that people with special needs
such as the visually impaired would rather have non-
dedicated devices. [4] The non-dedicated device means not
having to carry around another device and it gives them a
larger variety to choose from.

Finally, using a laptop or a desktop computer to display
musical scores in place of paper scores would require new
music stands at least and possibly expensive touch screen
computers since mice and keyboards would be impractical.
Though feasible, this is an expensive solution.

This software will dynamically generate the musical
score based on the user’s preferences. Work has been done in
Adaptive Document Layout (ADL) to address the challenges
in dynamically laying out documents on tablet-like devices.
Most of what has been done has focused on laying out text.
However, other items in documents such as images can be
dynamically placed based on screen size as well. [6] [7] The
research used a nesting approach to group the related items
in parent child relationships to maintain the required item
groupings essential to the documents.

Our application implements the techniques of ADL to
develop the sizing and layout methods for the dynamic
generation of the scores. As explained in the preceding
section, the physical relationships of the components of the
score must be maintained when generating the sheet music to
maintain the integrity of the music. Like the adaptive
document layout algorithm, the score is kept in a tree like
structure to maintain the relationships between the
components.

IV. IMPLEMENTATION
The application runs in four stages: parsing the XML into

the music data structure, building the component hierarchy
from the music data structure, generating the image from the
component hierarchy, and finally scrolling the bitmap across
the screen at the set tempo.

A. Music Data Structure
The MusicXML file’s top element is the Score. The

Score consists of one or more Parts, and each Part consists of
one or more Measures. The Measure contains one or more
Notes (which include rests) which can be beamed or tided

Figure 2. Parts of a musical score.

680

together. The measures contain a width which usually varies
measure to measure. The notes contain an X location
specifying the notes horizontal location relative to the left
edge of the measure. The vertical location of the note is
specified as a pitch and octave for mapping onto the staff.
The sample score shown in Fig. 1 contains a quarter rest and
six eighth notes joined by two beams. The data for the first
measure of the sample score is shown in Table 1. Fig. 5
shows a sample of a portion of the MusicXML file for this
score.

B. Musical Score Framework
The structure of the framework is similar to the structure

of the MusicXML file. The Score is composed of Parts
which in turn are composed of Measures which contain
Staves containing Notes, which have various attributes.
However we deviate from MusicXML in that beams are
members of the Measure object since they span notes, while
ties and slurs are members of the Part object since they can
span measures.

The Note object contains the parts of the note including
the Head, Stem, Dot, and Accidental. The Dot and
Accidental are enhancements to the note. The accidental is
placed before the note and the dot immediately follows the
note. The X location specified in the MusicXML file is
specified with considerate of the space the accidental and dot
require avoiding collisions between notes and the note
enhancements.

Due to the relationships between the parts of the musical
score, measures of the various parts align and the placement
of the notes on each staff must align correctly in the vertical
plane to properly encode the score to insure that the
performance of the music is correct. The Android SDK
provides a flexible layout method called RelativeLayout that
allows the object’s child views to properly align. This
application exploits this feature to align the views from each
of the children. Fig. 6 shows the RelativeLayout hierarchy of
this application.

The Score is "printed" into a layout hierarchy by calling
each its immediate children’s print methods with that child’s
width and height allocation. The child divides its allocated
space for its immediate children and calls each child’s print
method with their height and width allocation. This
continues on down to the lowest level node children. Each
node child generates an image of its self and then returns the
image to its parent which assembles the children’s images

into RelativeLayouts, adds any additional graphics and
returns the resulting RelativeLayout to the calling parent.

 This tree method simplifies the sizing of the score. Each
object only needs to know their allocation and how to
allocate for their children.

C. Measure Width
MusicXML files give the width of each measure as

shown in Fig. 5. This usually differs from measure to
measure since the MusicXML exactly reproduces the
original printed musical score. In the sample score in Fig.1
measures one and three are wide while two and four are
narrow. Having variable width measures is fine when the
music is stationary and scrolling is done with the eyes, but
this poses a problem when scrolling is done automatically.

TABLE I. NOTE INFORMATION FOR THE FIRST MEASURE OF "THE
SOUNDS OF SILENCE" AS ENCODED IN MUSICXML.

Measure width=”413” number=”1”
Note Pitch Dur. Type Beam Lyric
default-x step octave text syllabic
108 rest 4 quarter
171 D 4 2 eighth Begin Hel begin
201 D 4 2 eighth End lo end
251 F 4 2 eighth Begin dark begin
291 F 4 2 eighth Continue ness end
313 A 4 2 eighth Continue my single
371 A 4 2 eighth End old single

Figure 5 .Sample MusicXML

Figure 6. View and Layout Hierarchy

681

Because each measure should be on the screen for the same
amount of time, a fixed measure width is required, otherwise
the speed of scrolling would need to constantly change less
the required measure arrives late or exits early. Also, the
variable scrolling speed would be extremely burdensome on
the musician and impair their ability to play as they chased
the music with their eyes.

Due to the above, being able to change the width of the
measures is a requirement of the application. The application
defaults to displaying three equal width measures spanning
the screen. The user may increase or decrease the number of
measures. A whole number of measures need to be on the
screen at any time to ensure that the notes currently being
played are on the screen at the correct moment. When the
user changes the number of measures displayed, the score is
recreated with the new measure widths.

D. Multiple-Staff Layout and Overlap
If this application had no concerns about making the

notes as large as possible, it would just divide the vertical
space evenly between the different parts and staffs. Since
size is important, screen area needed to be optimized. In
music, there must be a significant amount of whitespace
above and below the staff lines to accommodate off staff
notes. Often, the whitespace is unused thus wasted. To
optimize the legibility of the music score, the whitespace
areas were allowed to overlap. As shown in Fig. 7, the usage
of overlap allows for significantly larger note font. This is
desirable in an application geared toward the visually
impaired. However, it can lead to note collisions if a note
from a lower staff lands in the same place as one from the
staff above it. Instead of restricting the note size based on
this possibility, the application allows the user to increase the
height to the point of a collision if desired. Some users may
decide that larger notes are worth one or two collisions.

E. Maximizing Tablet Screen Space
Additional efforts besides overlapping parts were made

to maximize the screen space of the tablet. Primary trials of
this application were done on a Motorola Xoom with a 10.1
inch diagonal display. It has a resolution of 1280x800, so
maximizing vertical and horizontal space was important.
First, the signature measure was fixed to the left of the music
display area. Signature measures contain the time and key
signature, needed so that the user can check which notes
should be modified and how many beats are in a measure.

The signature measure was made to be a fraction of the
width of a regular measure, so that it took up as little
horizontal room as necessary. Music readers look ahead from
the measure they are currently playing, so more measures on
the screen are desirable. A smaller signature measure
accomplishes this.

Often a user plays only one part of the song at a time,
rendering the remaining staves unnecessary. Thus, the user
can hide the scores of the parts they are not interested in as
shown in Fig. 8. This significantly increases the size of the
notes.

Horizontal space was also saved by being careful to
include a minimum number of buttons on the screen. Width,
height, tempo, restart, and a link to the options menu were
determined to be the bare minimum of buttons needed on the
score page by the informal focus group. This resulted in 85%
of the screen height available for displaying the music score.
The focus group felt that this was the minimum font for the
buttons to be legible.

F. Color Changes
An essential feature of the system is the ability to change

the foreground and background colors. This is part of the
Score object and used throughout the application. Currently
the color set consists for a foreground color for the notes,
staves, etc. and a background color. The colors are currently
limited to white, black, yellow and blue as these were the
colors requested by the focus group of visually impaired
musicians. Other color options can be added as requested.

G. Smooth Scrolling
Android’s built-in scrolling implementation did not

afford sufficient granularity of scrolling or control over its
timing. Thus, scrolling the music was accomplished by first
creating a bitmap file of the score as discussed previously.
This bit map is controlled by the MusicAnimationView
object. This object interacts with a running thread that
constantly updates a screen sprite. The sprite calculates the
position of the score that should be visible on the screen
given the elapse time. The current position is the tempo (in
pixels per millisecond) times the difference between the
current time and the starting time. The bitmap is then sifted
to the left accordingly thus updating the visible portion of the
score. This method provides a frame rate of approximately
30 frames per second, scrolling the music smoothly in the
eyes of the user

Figure 7. Overlapping White Space

Figure 8. Two Parts Versus One Part

682

H. Evaluation
This player was demonstrated to a small number of

visually impaired users and has received promising reviews.
A wider study is underway.

V. CONCLUSIONS AND FUTURE WORK
This research defines a framework for use in drawing

musical scores based on the MusicXML data format. This
application was developed with the ongoing review, testing
and feedback from a visually impaired group of musicians
with an immediate need for a low cost device that would
allow them to continue to read, perform and enjoy music.
With the multitude of musical scores available on the web,
this device gives them continual access to new music. As
their vision changes, the affordances provided should allow
them to perform for many years.

Future work will include quantitative and qualitative
evaluation with a range of users. The pilot program used a
limited group of representative users from the Columbus
School for the Blind.

ACKNOWLEDGEMENTS
This work was partially supported by the National

Science Foundation's Industry-University Cooperative
Research (Award #0753710) at the Ohio State University
and partial by the Tony Wells Foundation.

REFERENCES
[1] D. B. Elliott, B. Patel and D. Whitaker, "Development of a reading

speed test for potential-vision measurements," Investigative
Ophthalmology & Visual Science, vol. 42, no. 8, pp. 1945-1949,
2001.

[2] T. Guerreiro, J. Oliveira, J. Benedito, H. Nicolau, J. Jorge and D.
Gonçalves, "Blind People and Mobile Keypads: Accounting for
Individual Differences," in Human-Computer Interaction –
INTERACT 2011, Lisbon, Portugal, 2011.

[3] S. Chiti and B. Leporini, "Accessibility of Android-Based Mobile
Devices: A Prototype to Investigate Interaction with Blind Users," in
Proceedings of the 13th international conference on Computers
Helping People with Special Needs - Volume Part II, Linz, Austria,
2012.

[4] S. K. Kane, C. Jayant, J. O. Wobbrock and R. E. Ladner, "Freedom to
roam: a study of mobile device adoption and accessibility for people
with visual and motor disabilities," in Proceedings of the 11th
international ACM SIGACCESS conference on Computers and
accessibility, Pittsburgh, Pennsylvania, USA, 2009.

[5] N. Markus, S. Malik, Z. Juhasz and A. Arató, "Accessibility for the
blind on an open-source mobile platform: mobile slate talker (MOST)
for android," in Proceedings of the 13th international conference on
Computers Helping People with Special Needs, Linz, Austria, 2012.

[6] C. Jacobs, W. Li and D. H. Salesin, "Adaptive document layout via
manifold content," Second International Workship on Web Document
Analysis (wda2003), 2003.

[7] C. Jacobs, W. Li, E. Schrier, D. Bargeron and D. Salesin, "Adaptive
document layout," Communications of the ACM, vol. 47, no. 8, pp.
60-66, 2004.

[8] T. Guerreiro, "Assessing mobile-wise individual differences in the
blind," in Proceedings of the 12th international conference on Human
computer interaction with mobile devices and services (MobileHCI
'10), Lisbon, Portugal, 2010.

[9] M. Connolly, C. Lutteroth and B. Plimmer, "Document resizing for
visually impaired students," in Proceedings of the 22nd Conference of

the Human-Computer Interaction Special Interest Group of Australia
on Computer-Human Interaction (OZCHI '10), Brisbane, Australia,
2010.

[10] D. B. Elliott, B. Patel and D. Whitaker, "Development of a reading
speed test for potential-vision measurements," Investigative
Ophthalmology & Visual Science, vol. 42, no. 8, pp. 1945-1949,
2001.

683

