
Developing
Object-Oriented

Software
An Experience-Based Approach

IBM Object-Oriented Technology Center

To join a Prentice Hall PTR interne mailing list, point to

http://www.prenhall.com/register

Prentice Hall PTR
Upper Saddle River, New Jersey 07458

http://www.prenhall.com

1.0 Introduction

There are numerous critical success factors associated with the use of object technology for
software development. These include, but are not limited to:

• Management support for the use of object technology in a particular project

• Assessing team needs for training in object technology and supporting tools and
making the needed investments in training and tools

• Ensuring that the development team has access to the knowledge of experienced practi-
tioners of object-oriented software development either as team members or as mentors

• Understanding of the object-oriented software development life cycle by all members
of the project's management, technical, and support teams

— Understanding the differences between object-oriented development and whatever
approach to software development is currently being used in the organization

— Understanding the impacts that those differences have on the steps used in
building software

• Understanding the artifacts that need to be produced at each phase of the development
life cycle in order to support successful use of object technology

— Understanding the various choices of methods and techniques that exist for
producing these artifacts and how to select the approach best suited to a particular
project

This book focuses on the critical areas of "understanding the object-oriented software
development life cycle" and "understanding the artifacts that need to be produced." It pre-
sents the approach to object-oriented software development that the IBM Object-Oriented
Technology Center (OOTC) 1 uses and advocates in its day-to-day activities supporting
object technology use in IBM.

The OOTC has been in operation since 1992 with a mission to provide information and
support on the use of object technology within many of IBM's software development labo-
ratories. The three primary means of providing this support are:

1. Mentoring IBM software development projects on how best to apply object technology
to their projects

2. Providing short-term assistance such as technical presentations and seminars, pointers
to technical information, and design and code reviews

The IBM OOTC and object technology centers are described in [Korson96].

1

Apple Events
CodeCheck
Freelance Graphics
Hypercard
Macintosh
Microsoft Project
Novell
ODMG
OMT
OpenDoc
Paradigm Plus
ProLint
Rational Rose
StateChart
SuperProject
VisualBasic
VisualSmalltalk
Windows
Word Pro

2 INTRODUCTION 	 1.1 THE EVOLUTION OF THIS APPROACH 3

3. Developing documents that provide information on various aspects of object tech-
nology and its usage.

The OOTC is staffed by people with expertise and experience in the use of object tech-
nology and has supported the use of object technology in 70 projects at 20 IBM locations
worldwide. It has produced 15 internal documents on various aspects of object technology
and its usage and more than 22,000 copies of those documents are in circulation. The
OOTC has also provided short-term assistance to over 2,000 people.

This book is a direct product of that body of work and of the collective experience of
the OOTC's members. It is reflective of our current understanding of the approaches to
object-oriented software development that have been most successful for us and our clients.

The approach presented in this book was developed over a period of five years and has
evolved to its present state on two paths:

1. Evolution: This book presents an approach to object-oriented software development at
which OOTC members have arrived at philosophical agreement despite some differing
preferences on specific object-oriented methods and techniques. The approach has
been documented and enhanced through numerous cycles of use in OOTC mentoring
engagements and solicitation of feedback from readers.

2. Genealogy: This approach is based on the aspects of many other methods and
approaches to object-oriented software development that we have found to be of the
most practical value in our work with object-oriented development projects.

These paths are discussed in the following three sections.

1.1 THE EVOLUTION OF THIS APPROACH

The mentors who comprise the OOTC, typically about 14 in number, are recruited from
throughout the IBM software community. The staff is diverse in terms of professional
background and areas of object technology expertise and has included members with back-
grounds in research, marketing and services, tools development, product development, and
education and training with expertise in a variety of domains including operating systems,
engineering software, class library development, networking software, and databases.

The staffs areas of object technology expertise have covered areas such as analysis,
design, C++, Smalltalk, Java, metrics, testing, reuse, tools, databases, and object request
brokers.

The customer set that the OOTC exists to support, IBM's Software Development Labo-
ratories, is also widely diverse in terms of problem domains, approaches to software devel-
opment, development tools and platforms, target platforms, favorite object methodologies
and notations, and object technology skills.

Further, in the early days of the OOTC, object technology was evolving rapidly and
there were few standard approaches, processes, methods, or tools.

When the OOTC began providing mentoring services, not much was thought was given
to the potential problems of diverse mentors and clients working with an evolving tech-
nology. The advice that the OOTC's mentors gave their clients during engagements was
based on "what they knew" and was not formed into a consistent, repeatable documented
approach.

This was because while each OOTC mentor had developed a high degree of expertise
and experience relative to their clients, it was typical that this expertise and experience was
different. Typically, two mentors would be assigned to an engagement and it was common
that they had not worked with each other previously. This meant that either there was no
common ground from which to work, or that any common ground that might exist was not
readily apparent.

This approach worked for the OOTC and its clients during the OOTC's first year, but it
was clear that this approach would not be adequate for long. There were several reasons
for this:

1. The OOTC's clients began to demand documentation of the advice and guidance that
they were receiving in the mentoring sessions. There was a need for documents that
the clients could refer to in the absence of the ()OTC's mentors.

2. The client base was becoming more sophisticated and experienced. Object technology
was growing in usage and importance inside IBM and the knowledge and expectations
of the OOTC clientele were growing with it. The clients were beginning to expect
well-thought out answers to increasingly complex questions. Additionally, many of the
projects had made preliminary choices of methods and notations that the OOTC
needed to work with. So, the OOTC's advice and guidance on best practices for
object-oriented software development needed to fit well with these differing notations
and methods in order to be effective.

3. Consistency was a problem. Sometimes a project follow-up visit might have to be
performed by different mentors because of scheduling conflicts. A mentor new to a
project would often be puzzled by what they found their predecessors had advised.

4. There was no basis for quality control of the OOTC mentoring offering. Because each
mentor used their own particular approach, and the mentoring process was not docu-
mented, it was difficult to judge what approaches were meeting with the most success.

The OOTC team agreed that to continue to be successful it was important to reach
some consensus on the approach to be used in mentoring engagements and on the impor-
tant advice and guidance that the OOTC was giving its clients. The benefits expected from
this were:

1. A consistent and repeatable approach. This would provide a baseline, agreed approach
from which change could be discussed and negotiated.

4 INTRODUCTION

1.2 THE GENEALOGY OF THIS APPROACH 5

2. A documented approach with documented advice and guidance. This would allow
mentoring clients to have a reference guide to use when OOTC mentors were not at
hand.

3. A handbook for OOTC mentors. It would provide a reference document for new
OOTC mentors to master, support, and help evolve.

4. A vehicle for exchanging approaches, experiences, successes, and failures amongst
OOTC members. This would be critical for creating a cohesive team of mentors and
for ensuring that the overall process could continue to evolve in a positive direction.

Reaching consensus was not easy. This was largely due to the fact that each OOTC
mentor had strongly held opinions about the relative merits of their favorite methods,
approaches, and techniques.

The starting point for attempting to develop consensus was for each OOTC mentor to
present the team with an overview of their approach to object-oriented development
including examples of the artifacts that they normally produced throughout the develop-
ment cycle. At the end of this exercise it was clear that consensus was a long way off.

It was soon observed, however, that, while the flow through the development process
and the specific techniques used to create artifacts were different, the artifacts (or work
products) themselves were quite similar. For example, everyone was using a Rumbaugh-
like Object Model and producing something similar to Jacobson's Object Interaction Dia-
grams. This insight caused the team to begin to focus on what they produced rather than
how they produced it. The "what" turned out to be fairly standard.

The team also considered two particular OOTC mentoring engagements that were very
successful in their use of object technology. These completely different projects had some
strong similarities in approaches: They produced similar work products at the same phases
of the development life cycle; they were dedicated to maintaining these work products; and
they consolidated the work products into a project workbook.

This led the us to concentrate on work products in the context of a project workbook.
It was decided that an approach that standardized on work products but allowed for indi-
vidual choices on particular techniques used to produce work products was the best fit for
the OOTC. It would help us to gain the benefits of a standardized approach while not
sacrificing the strengths that each mentor possessed in applying individual techniques.

Thus this book began to take the form of work products described in the context of a
workbook, accompanied by a tool kit of techniques producing those work products.

It soon became apparent, though, that what began as a necessity had turned into a
virtue. Providing mentoring within the context of a well-defined project workbook struc-
ture turned out to be a good decision independent of OOTC history. Focusing on work
products instead of on process permits standardization and structure without sacrificing the
flexibility demanded by projects that typically differ very widely and many of which have
already chosen particular methods, notations, and techniques.

Since this approach was first documented in early 1995, it has been enhanced regularly
based on feedback derived from its usage:

• In OOTC mentoring engagements

• By other object-oriented projects inside IBM

• As the basis for material presented in IBM education courses on object-oriented soft-
ware development

• By IBM marketing and services personnel in engagements with IBM customers

• By more than 2,000 IBM employees as a general reference guide on object-oriented
development

These enhancements include:

• Improvement of work product descriptions and advice and guidance

• The addition of new work products which were found to be useful

• The addition of techniques that had proven useful in the OOTC mentoring practice

• Crisper definition of the object-oriented development life cycle that works best with
this approach

• The addition of a complete case study that demonstrates how the work products
described in this approach flow from phase to phase in the development life cycle.

So, the evolution of this approach did not end with the first attempt at defining, docu-
menting, and using it successfully. Rather, it has been continuously improved since then
through a process of use, feedback, and enhancement.

1.2 THE GENEALOGY OF THIS APPROACH

This approach is not identical to any published method such as those described in books by
James Rumbaugh, Grady Booch, or Ivar Jacobson, although it borrows concepts and
notations from these and others. It has been our experience and observation that mature
practitioners of object-oriented software development do not follow any standard method
exactly as it is published. Most seasoned veterans of object-oriented development wind up
hybridizing their approach—they use what they find works from a base method and extend
it by borrowing from other approaches and experiences that they find useful. This was the
case with the OOTC, as is shown in Figure 1-1. This figure shows some of the influences
of the approach described in this book.

- Object Interaction Diagrams
- Use Cases

- Project and Risk Management

- Design Object Model

- Contract Concept
- Responsibilities

IBM OOTC
Approach

- Transcribe and Converge
Coding Guidelines

- Issues
- Analysis 01Ds
- Scenarios
- Depth-First

Rumbaugh

- Problem Statement
- Object Model Concept
- Dynamic Model Concept
• Object Model Notation Subset
- Glossary

Jacobson

VVirfs-Brock

- Traceability

1.2 THE GENEALOGY OF THIS APPROACH 7 6 INTRODUCTION

1.2.1 Notation

(

OOTC
Experience

Figure 1 -1. Sources of the IBM OOTC Approach.

The methods referenced above are considered to be "established methods." (Sometimes
called First Generation Methods.) Hybrids, such as Fusion [Coleman94], [Malan96] or
SOMA [Graham95] (sometimes referred to as "Second Generation Methods" in the litera-
ture) have combined ideas from more than one of the established methods. There are a
whole range of emerging methods evolving at this time in the object-oriented community
(for example, KISS [Kristen94], BON [Walden95], OORAM [Reenskaug96], ROOM
[Selic94], et cetera). As they become better known and more experience is gained, they
will undoubtedly influence the evolution of our approach.

We have incorporated various aspects, such as techniques and notations, from long
established and second generation methods. As Figure 1-1 shows, our approach has not
been developed from scratch, but incorporates several aspects from other methods, such as
notations and various work products for requirements, analysis, and design.

The Object Modeling Technique (OMT) [Rumbaugh9la] is one of the more popular
methods in the object technology field. It is well adapted within the community; it has
extensive tool support; and there are many training courses available. Several books and
articles ([Derrer95], [D'Souza95], [D'Souza94], [Rumbaugh9lb], et cetera) discuss mod-
eling with OMT. For these reasons we decided to adapt the OMT notation style as a base
for our notation.

In our experience OMT strengths are:

• Flexibility and extensibility of the method

• Easy to learn and somewhat intuitive

• Strong treatment of relationships.

Having said that, the key messages of this book are entirely independent of notation,
and the ideas that we present in this book can be used with other notations, for example
Grady Booch, James Rumbaugh, and Ivar Jacobson's "Unified Modeling Language" nota-
tion [Booch96]. 2 This is also confirmed by our own experience where approximately 40
percent of the projects we have been involved in have used other notations such as Booch,
and Shlaer and Mellor).

1.2.2 Work Products

Many of our requirement work products are taken straight from standard software develop-
ment practices (such as Business Case and Acceptance Plan). The same is true of our
project management work products (Resource Plan, Schedule, et cetera). These have been
included in this book for completeness, and not because they are novel.

The Glossary work product is maintained through all development phases beginning
with requirements gathering. It is based on OMT's Data Dictionary ([Rumbaugh9la],
pages 156-157).

The Object Behavior Analysis (OBA) approach ([Gibson90], [Rubin92],
[Wirfs-Brock92]) has as its primary emphasis the modeling, representation, and communi-
cation of the requirements of a system through the use of a consistent vocabulary and by
maintaining full traceability of the resultant artifacts to the stated business goals and objec-
tives [Rubin94]. OBA includes an interesting feature called a traceability model. This
model shows the interdependencies of the various work products. The traceability concept
of our approach is based on this model.

2 The Unified Modeling Language is a merging of the models and notation from the Booch, OMT, and
Objectory methods by Grady Booch, James Rumbaugh, and Ivar Jacobson.

8 INTRODUCTION 	 1.3 ROLES IN AN OBJECT-ORIENTED PROJECT 9

In common with many other emerging object-oriented development approaches, we
make use of the great contribution to the field made by Ivar Jacobson, namely Use Cases.
A Use Case is defined as "... a special sequence of transactions in a dialogue between a
user and the system. Each use case is thus a specific way of using the system. A Use
Case may have one basic course and several alternative courses." ([Jacobson92], page 510).
Our use of Use Cases differs from the above definition. Our Use Cases are not sequences
of transactions but statements of externally visible system behavior. We refine Use Cases
into Scenarios each of which elaborates a Use Case with a set of assumptions and a set of
outcomes. Each of our Scenarios may have an Object Interaction Diagram (01D) that
shows graphically in terms of interactions between objects how a particular Object Model
can support its Scenario. Ivar Jacobson incorporates the function of all three of these work
products: Use Case, Scenario, and OID into his concept of Use Cases. There is scope, of
course, for both sets of ideas to be used in parallel, but we believe that our approach is
frequently helpful, as it encourages developers to focus on one concern at a time. The idea
of a Scenario as we have defined it, in terms of assumptions and outcomes, turns out to be
exactly what is required when system behavior has to be defined rigorously. The idea of
defining behavior in terms of assumptions (preconditions) and outcomes (postconditions)
comes from software engineering. This view has also been used by Syntropy [Cook94].

We have found state modeling to be a useful means of gaining insight into the lifecycle
of objects (as in [Rumbaugh91 a] and [Shlaer92]), although applied on a very selective
basis.

The static aspects of our approach are specified using an entity centric object model
(such as OMT or Booch), with modeling constructs such as classes, attributes, and associ-

ations. The Analysis Object Model and Design Object Model work products are based on
OMT's object model concept [Rumbaugh9la], [Rumbaugh95a]. The Design Object Model

is augmented with directionality and many of Grady Booch's adornments [Booch94].

In the Unified Modeling Language, a notation framework is introduced to present the
design information "for an object-oriented system under construction" [Booch96]. The
notation covers the modeling aspects for static class relationships, use cases, message
tracing, state modeling, and system organization. Our approach is an enhancement of OMT
(and by the way these aspects have not been resolved in the Unified Modeling Language)
by (1) simplifying the notation for the practical usage, (2) adding development processes
and emphasizing how to utilize the notation and modeling in each development phase, and
(3) separating the notation for the business modeling (object-oriented analysis) that is inde-
pendent of technology from the one for solution modeling (object-oriented design) that is
dependent of underlying technology.

OMT's Dynamic Model Concept [Rumbaugh9la], [Rumbaugh95b], and Jacobson's
Interaction Diagrams [Jacobson92] have leveraged our dynamic modeling work products:
Object Interaction Diagrams and State Models at both the analysis and design levels of

abstraction.
From the Responsibility-Driven Design (RDD) method by Rebecca Wirfs-Brock

([Wirfs-Brock89]) we have incorporated the concept of responsibilities during analysis and

RDD's Contract concept in our Subsystem Model. In RDD the examination of collab-
orations and responsibilities is the central part of the method. RDD regards an application
very much in a client-server fashion where objects collaborate and provide services for
each other. These services are described in a contract between the service provider and a
client requesting the service.

Our Subject Areas work product is inspired by Sally Shlaer and Steve Mellor's Domains
[Shlaer92] and Peter Coad's Subjects [Coad90]. Both Domains and Subject Areas are
mechanisms for permitting developers to focus on one logically independent topic at a
time. Subject Areas differ from Domains (and Subsystems), however, because they are
identified at analysis time. Subject Areas partition the problem domain that relates directly
to the business problem and that is the subject matter of analysis.

Much of our project management work products derive from the project management
techniques, processes, and approaches that have been long employed by software develop-
ment groups inside IBM. Some have been modified for use with an object-oriented
approach. Some are used in much the same way as they have always been. This is one of
the strengths of the approach as far as our ability to have it accepted by the managers and
technical leads of project development groups. They don't have to throw away everything
they have done in the past and, in particular, in the important area of project management;
much of what they have done in the past can still be effectively employed in the object-
oriented world.

And finally, many of the key components of our approach such as coding guidelines,
our use of issues, and our approach to analysis object interaction diagrams, as well as tech-
niques such as Depth-First (see Section 17.1) and Transcribe and Converge (see Section
18.3) have evolved from our work with software development projects in our mentoring
practice.

1.3 ROLES IN AN OBJECT-ORIENTED PROJECT

The authors hope that this book has something of interest to almost everyone involved with
object-oriented software development whatever their specific role. Throughout this book
(particularly in Part 3 and Part 4) there are references to who does certain things in the
process. When using this book it is important to understand what we mean by a certain
role. The major roles of interest for purposes of this book follow. You may also see
elsewhere in this book some off-shoot of a role described below or some slightly different
terminology used. We hope that with an understanding of the following, that those slight
variations will not be confusing or misleading, and we will continue to strive toward con-
sistency in future releases.

When trying to relate these roles to those you may see on your team, it is important to
note that in some cases one person may fill more than one role. For example, an architect
might also be the team leader.

1.5 ADAPTING THIS APPROACH FOR A SPECIFIC PROJECT 11 10 INTRODUCTION

Customer
The real-life external or internal customer for whom the product is intended, or
some representative of the external customer (such as a marketing represen-
tative or a "typical" end user), or any other receiver of the project deliverables.

Human Factors Engineer
Responsible for the usability of the product. Works with customers to ensure
that user interface requirements are met.

Tester
Planner

Acquires and coordinates project requirements and also develops and tracks the
Project Schedule.

Project Manager
Owns overall responsibility for the development of a project. Ensures that
proper personnel and resources are available and tracks tasks, schedules, and
deliverables.

Validates the function, quality, and performance of the product. Develops and
executes Test Cases for each development phase.

Librarian
Responsible for creating and maintaining the integrity of the project library,
that is comprised of the project work products. Is also responsible for
enforcing work product standards.

Team Leader
Provides technical direction for the project. Leads team through the develop-
ment process. Of course in large projects, you may have an overall team
leader and leaders of smaller teams.

Architect
Responsible for overall design/architecture of the project. Manages the inter-
faces to other development activities related to this project.

Analyst
Takes user requirements and generates project specifications. Interprets user
intention and defines the problems that need to be solved. Responsible for
developing domain analysis model with users and other team members.

Designer
Responsible for the design of a subsystem or category of classes. Directs
implementation and manages interfaces to other subsystems.

Domain Expert
Understands a particular business area. Keeps project focused on solving prob-
lems with relationship to the domain.

Developer
Implements the overall design; owns and designs specific classes and methods,
codes and unit-tests them, and builds the product. Developer is a broad term
and specialization is possible, such as a Class Developer.

Information Developer
Creates the documentation that will accompany the product when it is released.
Includes installation material as well as reference, tutorial, and product help
information in both paper and machine readable form.

1.4 METHOD AND LANGUAGE INDEPENDENCE

An object-oriented application development method should be implementation language-
independent. That is to say that it should not make a significant difference in your devel-
opment approach whether you are going to be building the application in Smalltalk, C++,
or Java. The approach described in this book is language-independent and has been used
in C++, Smalltalk, and Java projects.

The work products described in this book are language-independent. For example, an
Analysis Object Model (see Section 11.3) has no language-specific requirements.

This is not to say there are no differences between individual work products depending
on the language of implementation. Naturally, there are differences, particularly in low-
level design and implementation work products. However, the same overall process is
followed and the same work products are produced.

1.5 ADAPTING THIS APPROACH FOR A SPECIFIC PROJECT

This approach has been used in many software development projects both inside and
outside of IBM. In some cases it has been used more or less as described in this book and
in other cases has been used as a baseline and adapted to the particular needs of projects.

Many organizations have an existing methodological approach to systems development
and wish to preserve as much of that approach as possible while defining a standard meth-
odology to be used on object-oriented projects in their organizations. Rather than introduce
a completely new approach, there is a desire to take an evolutionary approach and preserve
as much as possible of their current development process.

Our experience has shown that many elements of standard development approaches are
applicable to the object-oriented development world. Elements such as user documentation
requirements, deployment, user training, and system testing tend to survive relatively
unchanged in the move to the object-oriented world.

12 INTRODUCTION 	 13

The areas that are impacted the most are planning, requirements, analysis, and design.

Planning is impacted due to the iterative and incremental nature of object-oriented
development. Many standard approaches to development are based on a waterfall
approach. Planning incremental and iterative development is much different from tradi-
tional styles.

The key differences in the area of requirements, analysis, and design are that when
using object technology they should be expressed in terms of collaborating objects. Thus,
existing techniques that express the world in terms of processes or entities must be
changed. These are the areas that will be most impacted by a transition to objects.

It is possible to integrate the approach in this book with an existing development
process. To do this, each work product in this book should be evaluated in light of an
existing process. Where you find equivalency, feel free to substitute existing work pro-
ducts that you are more comfortable with. You may also wish to extend this approach in
areas that you prefer to cover in more detail. You may also choose to cut back in areas of
coverage that you find overly detailed. However, be careful as it isn't as simple as you
might think. Two of the more common problems we have seen are:

• Eliminating an object-oriented work product in favor of a nonobject equivalent - We
have seen projects eliminate Object Interaction Diagrams in favor of some form of
process modeling. Unfortunately, process models do not express the world in terms of
objects and therefore do not meet the requirements of object analysis or design.

• Assuming an object is an entity - Many organizations have some form of entity mod-
eling in their existing processes and try to adapt an entity-based work product into an
object-based work product. This should not be done. An entity is not an object and
the manner in which entity-based work products are developed is not the same as
object-based work products.

A standard approach should be defined in light of real systems development needs.
Once defined, any process should be modified in the light of experiences. Therefore, it is
essential that a "continuous improvement process" be defined. Getting feedback on how
the approach is working or not working on projects must be part of the process.

In addition, object technology methodology is still an evolving field so it is necessary
to keep an eye on developments within the industry in order to take advantages of impor-
tant advancements.

Part 1. Key Messages

The key messages we wish to convey in this book are that we believe that the develop-
ment of object-oriented software should be:

I. Work Product3 Oriented and Workbook-Centered

2. Iterative and Incremental

3. Scenario-Driven

These key messages are derived from insights gained by the authors during object-
oriented project mentoring engagements and are founded on an evolved philosophy rooted
in two fundamental principles:

• Separation of Concerns

• Management of Risks

Together, these messages and principles form a framework for object-oriented software
development that is largely independent of the specific notations and languages in that you
might choose to develop, and independent of the specific techniques that you might use for
development. We consider that this separation of process, notation, and techniques is very
important, because it allows you to tailor each independently to the needs of your problem
and development context. We don't think that one shape of development method should or
could fit all development projects.

3 A work product is a concrete result of a planned project-related activity such as analysis, design, or project
management. Work products include items delivered to customers and items used purely internally within a
project. Examples of work products are Project Schedules, Object Models, Source Code, and even executable
software products.

14 PART 1. KEY MESSAGES 	 15

In the following chapters we describe what we mean by each of the key messages, why
we think that these ideas are so important, and how the remainder of this book is related to
them. But first, lees look at the fundamental principles and how they affect our approach.

Separation of Concerns

Modern software development is a complex, expensive, and risky endeavor. Adding an
object technology transition to it does not immediately ease the endeavor, but it does add
confusion. The confusion comes from many sources, including competing and overlap-
ping: technologies, middleware products, experts and advice, CASE tools, analysis and
design methods, notation and even "war stories." All of these ingredients are blended
together into an assortment of enticing soups and given exotic, popular, or misleading
names. Not until you recursively analyze the ingredients of the different soups can you see
the familiar, the common, and the unique elements and how they interact when called for
in the different "recipes."

From our own experience, as well as from studying object-oriented analysis and design
methods from renown experts, we have come to the understanding that certain products of
object-oriented analysis and design are essential and that their necessity and value have
little to do with the notation, tool, method, technique, process, or technology used to
develop them. This led us to a guiding principle of Separation of Concerns. Just as soft-
ware systems need to be analyzed' before they are designeds, so too do we need to analyze
the software development problem before we design development approaches (strategies).

After our analysis of this problem, and through our work with object-oriented software
development projects, we designed an approach that maintained separation of certain con-
cerns in order to maximize applicability of the approach, allowing it to support different
methods, processes, and tool environments. We chose to separate:

• Tools and Notation from Work Products

• Work Products from Development Process and Techniques

• Analysis from Design from User Interface Design from Implementation

• Project and Risk Management from Work Product Development

Although we have separated these topics, we have also described how they relate to each
other. So, you will find work product descriptions providing possible notations, advice on
tool usage, references to techniques, and hints of traceability (method). Multiple tech-

4 Analysis is the act of exploring the problem domain to gain a better understanding of the problem.

5 Design is the process of planning construction of a solution to a problem.

niques and methods are related to the work products that they yield. Project and Risk
Management are planning activities that result in their own work products.

More importantly, the work product orientation itself allows us to focus on one concern
at a time. For example, our Use Case work product focuses on basic functionality,
whereas our Scenario work product expands on functionality by enumerating the different
outcomes implied by different starting conditions.

By separating the concerns here, we hope you get to understand them more easily, as
individual topics. By relating them in multiple ways, we hope you learn to combine them
in your own situations to solve your unique problems most appropriately.

Management of Risks

In his Mythical Man-month, Fred Brooks quipped,

How does a project get to be a year late?
...One day at a time.

This should not only remind us of the importance of maintaining and following a plan but
also remind us of how lightly we consider risks. It is as if "risk" had the connotation of
imminent and complete failure only. In fact, there are many small risks that arise, accumu-
late, and feed on each other on a daily basis that are equally pernicious. Nearly everything
we profess in our approach is based on managing risk:

Separation of concerns
Addresses the risks of mental overloading, confusion, losing touch with funda-
mentals, and unnecessarily tying the fate of one concept, facility, or work
product to another less suitable one.

Separating analysis from design
Addresses the risk of designing a solution for the wrong problem by allowing
us to understand the users problem and its domain before we set out to create a
solution.

Separation of user interface design from system design
Addresses the risks of creating a developer oriented (vs. user oriented) system
and of letting the user interface get locked into the design by allowing us to
involve experts (users and human factors) in an asynchronous cycle of user
interface design and prototyping while the development team addresses design
model and system environment issues.

Work product orientation
Addresses the risk of losing ground when tools, notations, techniques, method,
or process need to be adjusted by allowing us to vary them while maintaining
the essence and value of completed work.

16 PART 1. KEY MESSAGES

Workbook-centered
Addresses the risk of clumping too much and too varied work products into
hard to manage phase review documents by allowing us to work in parallel
teams, incrementally, and iteratively adjusting our tools and methods while
continuing to track the completeness and consistency of our tangible develop-
ment artifacts.

Prototy ping
Addresses the risk of waiting too long before knowing essential information by
allowing us to minimize schedule and effort investments while resolving risks
that require knowledge only achievable through direct experience.

Incremental development
Addresses the risk of "putting all our eggs in one basket" by allowing us to
"learn as we go and apply what we learned," thereby minimizing the impact of
misconceptions and suboptimal decisions.

Iterative development
Addresses the same risk as incremental development and of excessive schedule
dependency by allowing us the freedom to try different alternatives and not get
hung up on getting it right the first time.

Scenario-driven development
Addresses the risk of designing a system that does not satisfy the requirements
by allowing us to focus on the traceability of functional requirements while
casting our designs into objects. '

If you look at the techniques sections you should be able to recognize how each of
them addresses some risk too.

Perhaps (if we're successful), you will be able to quip:

How did this project manage to complete on schedule?
...By addressing each and every risk, one at a time.

2.0 Work Product Oriented and
Workbook-Centered Development

We refer to our approach as "work product oriented" and "workbook-centered," since a
prime focus of the way in which we do object-oriented development is to focus on the
development of work products and carefully manage them in a logical entity called the
"Project Workbook" that spans the development life cycle. We have observed that our
more successful mentoring engagements have been with those projects that have taken a
serious, rigorous approach to the development and maintenance of such a project
workbook.

This is not a conceptual or theoretical approach to object-oriented development. The
approach has evolved out of the mentoring engagements led by the authors since 1992 and
is reflective of our experiences during those engagements.

During the evolution of our approach, there was general agreement on appropriate work
product content and workbook structure, but we found differing opinions when it came to
techniques for producing the work products. This is one reason why we have separated the
presentation of the work products from a presentation of the techniques that might be used
to build them. You could think of the techniques we list as a toolkit to be applied (and
extended) as appropriate. They are offered for the reader to review and consider.

2.1 WHAT DOES WORK PRODUCT ORIENTED MEAN?

The object-oriented paradigm shift allows software developers to view the problem domain
and their projected solutions to problems as a set of collaborating autonomous objects, each
with their own attributes, relations, and behaviors. This view creates a natural framework,
based on real-world and conceptual objects, in which analysis, design, and implementation
take place. Though the characteristics of objects are normally hidden, they form the basis
for classification (via commonalities and differences) within the framework. This allows
for the conceptual and constructive efficiencies of inheritance and reuse, the flexibility of
substitution, and the robustness of limiting the scope of changes. Unlike the procedural
paradigm, which views software problems and solutions as a hierarchy of procedure invo-
cations, an object-oriented approach yields a network of connected active building blocks.

This type of paradigm shift is not limited to the domain of software structure (i.e.,
programming). It can also be applied to the domain of software development (i.e., devel-
opment process). In the same way that we shifted from the procedural view of software
having phases, actions, tasks, and processes to thinking of software in terms of objects with
encapsulated and, possibly inherited, attributes, relations, and behaviors, so too can we
make the shift in thinking about how we develop software. Instead of thinking of the

17

18 WORK PRODUCT ORIENTED AND WORKBOOK-CENTERED DEVELOPMENT

development process having phases, activities, tasks, and processes, we can think of soft-
ware development as a network of collaborating objects (called work products or delivera-
bles) which have unique and common attributes, relationships with other work products,
and methods for developing, verifying, and presenting themselves.

Just as the object-oriented paradigm shift allows flexibility and robustness, so too does
the work product oriented paradigm shift. Rather than specifying a prescriptive, step-by-
step, procedure for creating working software from incomplete requirements, we can,
instead, think of the facets and views of the problem we need to understand and the types
of specifications we need to design that software. In essence, we need to identify the real
world objects from the software development domain and develop them in an object-
oriented way. We call these work products.

Which of these work products you need to develop and in which order they should be
developed depends on the characteristics of your problem domain and your project.
Factors that influence which work products you produce and the order in which you
develop them depends on several factors:

• The size of the project

Projects with more requirements, more people, or longer schedules tend to need
more project management work products, a greater emphasis on subsystems, reuse,
portability, testing, and packaging.

• The complexity of the problem

Complex projects tend to have more risks that need to be managed via creative
project management, which includes prototyping and use of iterative and incremental
processes, and a more detailed treatment of system architecture.

• The degree of technical uncertainty involved

Concerns such as performance in a networked or client-server environment, per-
formance of large or heavily queried databases, intuitiveness and usability of systems
oriented towards casual users, et cetera, require more emphasis on risk management,
prototyping, and creative project management (iterative and incremental), as well as
more emphasis on domain and requirements analysis.

• The nature of the givens and requirements

The existence of legacy systems, data, and conceptual models as well as open
versus closed sets of functional requirements and reuse intentions affect the precedence
(relative importance and traceability) among work products.

The general and specific characteristics of work products are discussed in Part 3 and
sample work products can be found in the workbook in Part 5.

2.3 WHAT IS A PROJECT WORKBOOK? 19

2.2 WHAT DOES WORKBOOK-CENTERED MEAN?

Focusing on the production of work products is not enough. Since they comprise the
primary means of project communication, they must be available and organized for easy
access by the entire project.

To manage the independent development of numerous work products of varying types
by many teams or individuals, successful projects create and manage a central depository,
the Project Workbook, for all work products developed in support of the project. The "care
and feeding" of this project workbook becomes the unifying characteristic of the project.

At its lowest level the workbook is organized by work product types. Depending on
the project characteristics, higher levels of organization might be based on the subsystems
that comprise the product, the releases that incrementally satisfy the requirements, develop-
ment phases, or some other prime characteristic. In practice, what this requires is early
agreement on what the structure of the project workbook will be, the specific work pro-
ducts it will contain, and the format of these work products.

This approach results from the observation that projects that have been successful have
produced and used good project workbooks. We have also seen projects fail, due to poor
requirements gathering, an almost total lack of analysis, ad hoc design, or no documenta-
tion. These failures could have been avoided had the team followed a workbook-driven
approach.

2.3 WHAT IS A PROJECT WORKBOOK?

A project workbook is a logical book containing all project work products. The workbook
is logical in the sense that its physical medium is not relevant, and it may refer to some of
its constituent work products instead of containing them directly. Work products are the
result of planned project activities such as project management, analysis, design, et cetera.
Work products include items delivered to customers and items used purely internally within
the project. Project Schedules, Analysis Object Models, Source Code files, and even the
executable software product are all work products.

An important facet of a project workbook is that all the work products that contribute
to the workbook have a common structure, at least conceptually. The common work
product structure that we suggest is described in Section 8.1. See Part 3 for descriptions
of each of the work products that we recommend for inclusion in a project workbook, and
Part 4 for a collection of techniques that may be used to build these work products.

Note: Do not confuse the template that we have used in this book to describe each kind
of work product with the structure that we suggest you use when constructing real work
products for a project.

Ideas for the structure of your Project Workbook are presented below.

OR

System

A--. Subsystem 1

A--.Subsystem N

20 WORK PRODUCT ORIENTED AND WORKBOOK-CENTERED DEVELOPMENT
	

2.4 WORKBOOK STRUCTURE 21

2.4 WORKBOOK STRUCTURE

The following lists the major chapters of a project workbook. Each chapter can be viewed
as a different perspective on the project and acts as a "logical" container of the work pro-
ducts associated with that perspective. 6

1. Requirements represent the application requirements from the customer's view.

2. Project Management is information required for the successful management of the
software development effort.

3. Analysis work products are a formal representation of the problem domain from the
customer's point of view.

4. The User Interface Model documents the design of the application's user interface.

5. Design describes the structure of the software to be built.

6. Implementation is the working application and all work products required to build it.

7. The Test chapter contains work products associated with the validation of the soft-
ware.

2.4.1 Composite Structure Workbook

Workbooks are a logical structure to organize and hold work products. The typical high-
level structure of a workbook is organized by development phases or perspectives as shown
earlier. This looks very simple and is an intuitive structure for a single development cycle
of a monolithic system.

Physical Workbook Structure for Complex Systems

Large systems are often divided into subsystems to afford parallel development, application
of specialized skills, and planned reuse. Also, large subsystems are often subdivided
further into smaller subsystems for the same reasons. Since we recommend using the same
the same workbook outline structure for each system and subsystem, we envision the com-
plete system being described by a set of workbooks which reference each other. Logically,
the system contains subsystems and the system workbook contains subsystem workbooks.
Physically, though, each subsystem could be documented in a whole separate workbook or
in whole major sections of a single physical workbook as shown in 2-1.

8. Typically the Appendix is the repository for historical (old) work products.

We have chosen to organize the workbook by these perspectives, rather than
chronologically, in order to support iterative and incremental development as well as other
life cycle variations, which will be discussed later in this book. The purpose of the
workbook is to emphasize that all work be documented as work products and be organized
for ready access by the whole project team.

While we discuss the workbook as if it were a single, unified artifact, in reality, it may
consist of a number of separate things: for example, current analysis and design products
may be kept in a single document; historical analysis and design work may be kept in a
file folder in a drawer somewhere; a project plan may be maintained as a separate docu-
ment; and the code may reside on the hard drive of a team server.

Figure 2-1. Physical Workbook Schemes for Subsystems.

System Phases or work products shared by subsystems can simply be referred to by the
subsystems, for example: 7

6 By "logical," we mean that each chapter might actually contain the work products, might just refer to the work 	 7 We use the HyperText Markup Language (HTML) for general familiarity. You should be able to map this

products residing elsewhere, or might refer to other workbooks. concept to GML, SGML, et cetera.

22 WORK PRODUCT ORIENTED AND WORKBOOK-CENTERED DEVELOPMENT

<I11>Subsystem D
<h2>Project Management
<p>Subsystem D will comply with the same Project Management
decisions as System X (see "System X, Project Management...").

For systems or subsystems with significant releases and/or internal integration check-
points, we advise organizing the Workbook around those releases. It is probably best to
keep the subsystem organization foremost, but keep all the phase/work-product material
together in document parts. For a single physical workbook, a subsystem organization
would be:

<TITLE>System X: Project Workbook>
<! Introductory preface, ToC, ...>
<hr>‹! 	
<hl> System Release 1
<h2> Requirements

<h2> Testing
<hr>‹! 	
<hi> Subsystem A Release 1
<h2> Requirements

<h2> Testing
<hr>.<1 	
<hl> Subsystem A Release 2
<h2> Requirements

<h2> Testing
<hr>‹! 	
<! Appendices, Glossary, et cetera.>

If each subsystem has its own workbook, then simply use document parts (for example,
HTML's <hr><hl> tags) to separate the releases:

2.4 WORKBOOK STRUCTURE 23

Internal releases (integration checkpoints) can be kept as deltas over the previous
release. External releases should be organized as complete workbooks (show all the work
products that make up that release). This is not too difficult when using a word/document
processor that supports imbedding files. For these, the common work products can be kept
in common files and imbedded unchanged into all releases that use them. When a work
product changes, future workbooks can refer to the correct version of the imbed file. A
configuration management and version control system should be used to manage the ver-
sions of the source files (just as you would for source code files).

Composite Structure of Workbook

When a system is decomposed into subsystems, there is a "composite pattern" [Gamma95]
among the system and subsystems, and also between their corresponding workbooks. In
this pattern, a "component" can be a "leaf component" (complete) or a "composite"
(defined by one or more subcomponents). See Figure 2-2.

children

leaf
	

composite

component H 	

O

<TITLE>System X: Project Workbook>
<! Introductory preface, ToC, ...>
<hr>‹!
<hi> System Release 1
<h2> Requirements

<h2> Testing
<hr>‹! 	
<hl> Subsystem A Release
<h2> Requirements

<h2> Testing
<hr><! 	
<hl> Subsystem A Release 2
<h2> Requirements

<h2> Testing
<h r><! 	
<! Appendices, Glossary, et cetera>

<TITLE>Subsystem A: Project Workbook>
<! Introductory preface, ToC, ...>
<hr><1 	
<hl> System Release 1
<h2> Requirements

<h2> Testing
<hr>‹! 	
<hl> Subsystem A Release 1
<h2> Requirements

<h2> Testing
<hr><1 	
<hl> Subsystem A Release 2
<h2> Requirements

<h2> Testing
<hr>‹! 	
<I Appendices, Glossary, et cetera>

Figure 2-2. Composite Pattern.

Translating to system terminology, a system or subsystem is either complete or is com-
posed of other subsystems. Likewise, a system or subsystem workbook is either complete
(self-contained) or refers (defers) to lower level subsystem workbooks. The subsystems'
run-time dependencies might be represented as a directed graph; however, the subsystems'
definition is a simple containment hierarchy (see Figure 2-3.)

Subsystem B Subsystem D Subsystem A

0

Subsystem C

24 WORK PRODUCT ORIENTED AND WORKBOOK-CENTERED DEVELOPMENT

System X

1SubsysternAA 1SubsystemCA

SubsystemCB

Figure 2-3. System/Subsystem Workbook Structure.

The relationship between a composite workbook and its component workbooks is
defined by the Subsystem Model, see Section 13.5. The enclosing workbook can simply
define and coordinate the relationships among its subsystem workbooks. In this case, some
of enclosing workbook sections will be thin (or empty) since the content has been divided
among (and deferred to) its subsystems. This will be more likely when the subsystem
boundaries are sufficiently clear and stable or when the subsystems are not dependent on
each other for definition (a reuse potential indication). It is less likely when the subsys-
tems are more dependent on each other.

In the independent subsystem case, it is best to defer as much work (analysis, design, et
cetera) as possible as early as possible. That is to say, identify the subsystems and their
responsibilities and divide the work among parallel development teams as soon as you can.

In the dependent subsystem case, spend more time in the composite workbook, coming
to a common analysis, high-level design, et cetera, so that there are fewer decisions (and
potential for inconsistency) when the subsystem teams are formed and turned loose.

Workbook Strategy

The work products described in this book are those that we have found useful for medium
and large development projects. Small projects might be expected to use only a subset of
the work products. The goal of a project workbook is to act as a vehicle for coordinating,
directing, and communicating development effort. While there are many ways in which
project size may be measured, the characteristic that is of interest to us in this book is the
amount of effort that must be put into coordination, direction, and communication between
members of the development group.

2.5 TERMINOLOGY 25

One simple measure of gauging project size is the number of parallel development
teams (where a team typically consists of four to six people).

Pick a strategy that matches the characteristics of your project:

• Small project (one or two teams)

– Use single monolithic workbook

– Separate logical workbooks for each major release

• Medium (three or four teams) and large (five or more teams) projects

– Separate logical workbooks for each subsystem and release

– If subsystems are independent/reusable

— Defer as much work to subsystems workbooks as soon as possible

– If subsystems are interdependent

— Limit the work in subsystem workbooks by addressing it in common
(composite-level) workbooks.

Spending the effort to keep information in the workbook current is essential to a
project's success. Things can't just exist in someone's head—they must be written down
somewhere so they can be reviewed and understood by others.

2.5 TERMINOLOGY

Workbook 	 A logical document containing all the work products of a project.

Logical document
	

A collection of machine-readable and other material that is consid-
ered to be a single, conceptual whole, even though its physical rep-
resentation may be distributed across media, tools, and location.

Work product
	

A concrete result of a planned project-related activity such as anal-
ysis or project management. Work products include items deliv-
ered to customers and items used purely internally within a project.
Examples of work products include Project Schedules, Object
Models, Source Code, and even the executable software product.

For additional terms see the "Glossary" on page 617.

3.0 Iterative and Incremental
Development

The approach that we describe in this book is iterative and incremental in the sense that we
believe that an iterative and incremental development process is beneficial for most (not
all) projects. What that means will be described in this chapter.

A variety of development process models have been proposed. These include waterfall,
spiral, iterative, incremental models, and others. This chapter will discuss some of these,
including the advantages and disadvantages of each. The chapter will then relate these to
the needs of real projects, in particular project risks, and present a process model that we
call the "iterative and incremental" model.

Note that many overlapping and conflicting definitions exist in the vocabulary of
process models. This chapter does not attempt to be definitive but instead it should be
read partly as a clarification of terminology for the purpose of later discussions in this
book, and partly as an attempt to explain our understanding and interpretation of the terms.
The particular terms used here are not necessarily standard in the literature. They are used
here because they are considered the most appropriate.

3.1 DEVELOPMENT PROCESS MODELS

3.1.1 The Waterfall Process Model

The waterfall model of development was the first attempt to discuss the software develop-
ment process in semiformal terms. The waterfall model consists of a sequence of "phases"
whereby in each a particular (and unique) kind of development work is done.

27

Raquireenants
Gathering

Product
Planning

High-Lirral
Design

Low-Laval

Dskin

Cod*

Teat

Package
& Ship

Maintananc•

28 ITERATIVE AND INCREMENTAL DEVELOPMENT
	 3.1 DEVELOPMENT PROCESS MODELS 29

Advantages:

THE

Figure 3-1. Waterfall Process Model.

The specific phases identified by Boehm [Boehm88], in Figure 3-1, are not relevant here;
what is important is the sequential nature of the activities: All requirements are gathered
before the next phase begins, et cetera. The essence of the model is that project phases are
identified, ordered, and then carried out in this order without ever revisiting previous
phases. That at least is the theory.

In reality, the model is usually contaminated by schedule pressures and downstream
decisions:

• Successor phases often start before their predecessors end due to the pressure to
shorten development schedules and sometimes due simply to early staffing of people
with the special skills to carry out the successor activity. One might think of these as
"leaks" in the waterfall.

• Earlier phases are often revisited, creating "gravity defying eddies" in the waterfall
metaphor, in order to reconcile details with discoveries and decisions made in later

phases.

The early appearance of "leaks and eddies" signaled the naivete of the model.

• Simplicity. The main advantage of the waterfall model is that it is the simplest pos-
sible model. Everyone can understand it, provided of course that everyone agrees on
the definition of each project phase and its relationship to all the other phases.

• Ease of management. A corollary of the simplicity of the model is the ease of man-
aging a project run along these lines, provided of course that the model is appropriate
to the project. When managing a waterfall project, tracking progress against a plan is
straightforward, as there is only one planned pass over each work product that is,
therefore, either complete or incomplete.

Disadvantages

• Incomplete or unknown requirements. The model assumes that it is possible to gather
all project requirements before analyzing the problem and designing a solution. In
practice, requirements are very rarely all known in advance in this way. Even if com-
plete requirements are written as an initial step, requirements frequently change as the
project proceeds as both developers and potential users or customers of the software
understand the problem and the solution better. If requirements do change during a
waterfall project, the process model has no way of taking this into account. The result
is frequently a crisis.

• Incomplete design experience. Assuming that complete, correct, and unchanging
requirements can be gathered in one sweep, it may still not be possible to design a
solution to the problem in one go. Design occurs at many levels from architecture
down to low-level design and coding. It frequently happens in practice that lower-
level design activities shed light on the implications of higher-level design statements.
The issues raised in this way are usually foreseeable in advance, if only sufficient
thought and experience had gone into the design. The fact remains, however, that
complete design attention to detail and complete design experience are rarely available
in practice, for whatever reason. In such a case it is difficult or impossible to design a
complete solution and expect it to be successful without any feedback from developers,
testers, users, et cetera. A waterfall project has no way of addressing a need for rede-
sign if one arises. The result, once again, is predictable.

• Scheduling. Scheduling a waterfall project requires a great deal of confidence in the
relative resource required for each project phase. A serious mistake in project plan-
ning is very hard to recover from, because the waterfall process makes it difficult to
deliver partial solutions: It is all or nothing. This is partly a result of the fact that the
waterfall process does not partition work in time except by phase, and partly because
the planning of a waterfall project is itself one of the initial project phases that (in
waterfall style) is carried out once and not expected to change.

30 ITERATIVE AND INCREMENTAL DEVELOPMENT

Applicability

All published process models are appropriate to some kinds of project. The waterfall
model is appropriate to projects that are very similar to projects that have already been
completed by the same development team, or projects that involve relatively minor exten-
sions or modifications to existing software components. In such cases the requirements,
design, and resources can probably all be anticipated and a sequential planning and step-
ping through the project phases is probably the simplest and best solution.

3.1.2 The Incremental Component Process Model

By "incremental component process" we mean the building of components one by one.
This process is simply the composition of a "Divide and Conquer" approach and the
waterfall process. The process requires the system to be decomposed ("Divide") into com-
ponents that are each developed using the Waterfall Process ("Conquer"). Conceptually,
the waterfall process is repeated sequentially by the development team, but in practice par-
allel development teams would realize some concurrency. The components might be as
fine grained as objects, but they are more likely to be coarser grained.

Advantages

• Simplicity. This process is only slightly more complicated than the waterfall process.
The fewer the components, the simpler it is.

• Ease of management. The incremental process has the same ease of management as
waterfall. The only difference is that there are a series of waterfalls.

• Scheduling. Since each increment is smaller than the whole project, management sees
finer grained scheduling, checkpoints, and reporting of progress. It is much more
informative to say "75 percent of the components are complete" than to say "Were
two-thirds through high-level design."

• Benefit of Experience. Later increments benefit from the knowledge, skills, and
resources developed during earlier increments. Confidence and quality levels normally
increase for later increments.

3.1 DEVELOPMENT PROCESS MODELS 31

Disadvantages

• Incomplete or unknown requirements. The incremental process has the same disadvan-
tage as the waterfall process in that it only addresses each phase (of each component)
once. If requirements change, or are not understood in the first place, the process
cannot deal with it.

• Incomplete design experience. The incremental process is slightly better than the
waterfall process here in that experience gained from developing one component can
sometimes be transferred to later ones. But again, this process does not account for
insight gained in later phases of a component's development affecting decisions made
in earlier phases.

Applicability

The incremental component process model is appropriate for projects that have readily
identifiable components that are relatively independent of each other or build upon each
other. It is especially useful where there are many similar components, since later compo-
nents are more likely to benefit from the knowledge and experience gained during earlier
development. It is also appropriate when fine grained schedule tracking is indicated to
manage development cycle time risks.

3.1.3 The Iterative Process Model

The iterative model describes a process where an initial set of work products evolves into
the production system by reworking the work products iteratively. In a sense it is similar
to the incremental process in that it employs the waterfall process repetitively, but it differs
in that it reworks the same (monolithic) component each time. It is often characterized by
having monthly or weekly internal "drivers," "code drops," and alpha, beta, and early-ship
releases.

Advantages

• Simplicity. Conceptually, the iterative process is quite simple: Just run through the
waterfall process repeatedly on the same scope until it is correct. If, based on previous
experience, you know how many passes it will take to "get it right," then it is not hard
to set up and explain.

• Incomplete or unknown requirements. With this process you have several chances to
deal with late discovery of requirements. When you discover a requirement that

32 ITERATIVE AND INCREMENTAL DEVELOPMENT
	

3.3 THE ITERATIVE AND INCREMENTAL PROCESS MODEL 33

affects phases previous to the one you're working on, just schedule it to be handled on
the next pass.

• Incomplete design experience. Similarly, as design, implementation, testing, and pack-
aging experience is gained during early iterations, they can be factored into earlier
phases (e.g., nonfunctional requirements, scenarios, state models, subsystem models, et
cetera) of later iterations. This provides a "second chance to do it right."

Disadvantages

• Ease of management. Determining the number and duration of iterations can be diffi-
cult. Since requirements and architecture are allowed to be open-ended, tracking
progress against a plan is difficult.

• Scheduling and resource planning. In addition to the confidence required in under-
standing the resource requirements for each phase of waterfall development, the itera-
tive process also requires confidence in understanding the relative resource
requirements of each iteration. Statements such as "We've just completed the second
of six planned iterations" only have meaning as a measure of progress toward project
completion if the schedule duration and resource requirements for all iterations are
understood since one iteration is likely to be different from the next.

Applicability

Despite the disadvantages, the iterative model is widely used and is appropriate for projects
working in new domains or environments where requirements and technical difficulties
cannot be foreseen. It works best with established development groups where the project
manager has some experience with the resource and scheduling needs and characteristics of
the group.

3.2 PROJECT RISKS

When discussing different development process models, two things become clear. Firstly,
no one process is the right one for all projects. Radically different projects require dif-
ferent development processes. Whether or not this is desirable is not the point; it is inevi-
table. Secondly, the decision of which process to use is risk-driven. If there are no risks
associated with your development project, then there is no need to adopt anything other
than a waterfall development process. Anything else would be unnecessarily complicated.
For good or for bad, it is almost never the case that a project has no risks.

The presence of risks implies a need to test and to answer technical questions suffi-
ciently early in the life cycle of a project so that there will be time to act on the informa-

tion obtained. The nature of your project risks will determine the process model that is
most appropriate to you. By understanding the relationship between risks and process it is
possible, and profitable, to tailor your development process to your needs, which might
involve using a process that is different from any of the published variations. This should
not be a cause for undue concern. Greater concern should be reserved for the unthinking
application of development processes.

The relationship between risk and process is precisely the one mentioned above: The
scheduling of any project activity that carries risk must take that risk into account. This is
not, of course, to say that all bets must be hedged; many, for example, the collapse of the
building in which development is being carried out, might be too expensive for the proba-
bility of the risked event occurring. A decision must be made of which risks to take into
account.

There are many kinds of project risk. Section 10.7 provides examples and a discussion
of risk management in general. Risks associated with development are frequently managed
appropriately by arranging the project timetable so that risky development activities are
scheduled with adequate time for review, testing, rework, re-review, et cetera. When this
principle is applied to whole categories of development risks, it leads to some form of
iterative and/or incremental schedule, but one which is tailored to the needs of a particular
project and not just uniformly iterative or uniformly incremental. This topic will be
explored further in the following section, and again in Section 5.0.

3.3 THE ITERATIVE AND INCREMENTAL PROCESS MODEL

Having said that no one process is appropriate for all projects, we cannot now claim to
present the ultimate process, and it is not our intention to do so. It has, however, been our
experience that almost all projects fall into the category of those requiring at least some
incremental aspect and at least some iterative aspect. Furthermore, it has also been our
experience that projects typically benefit from a development process that is strongly incre-
mental.

At this point some clarification of terminology is required. By "incremental" we refer,
here and subsequently, to incremental by requirements. That is, an incremental process
builds executable drivers or products each of which satisfy successively more end-user
requirements. The portion of a project that aims at developing a particular driver or
product is termed an "increment." By "iterative" we refer, here and subsequently, to a
process in which iterative rework is performed within increments.

Thus, when we say that most projects would benefit from a development process that is
strongly incremental, we are observing that most projects:

• have requirements that are uncertain and incomplete,
• employ technologies with which the development team are not entirely familiar,
• are reasonably large and complex.

Table 3 -1. Requirements Versus Components Matrix.

Components
	 Requirements

111
	

R2
	

R3
	

R4
	

R5
	

R6
	

R7
	

R8
	

R9
	

R10

Al 	A2

B2 	 B5
	

B7 	 B9

C1 	 C3
	

C6 	 C8 	 C10

D3 	D4
E2 	 E5 	E6 	 E9

F4 	 F7 	 F10

G 1
	

G6 	 08
H5 	 H9

14 	 17 	 19
J6
	

J8 	 J10

A

B
C
D

F

H

34 ITERATIVE AND INCREMENTAL DEVELOPMENT

The first two points imply obvious risks that are most directly addressed by some form of
iterative and/or incremental schedule, as mentioned in Section 3.2. The last point,
however, rules out a development process that is predominantly iterative, for the reasons
discussed in Section 3.1.3, principally design instability. The answer would seem to be
some form of hybrid process.

Development may be thought of in terms of a matrix of requirements vs. components as
shown in Table 3-1.

Development may proceed either horizontally or vertically in terms of this matrix. Vertical
development, constructing the application a row at a time, is essentially an incremental by

component process. Of course, to test (vertical) end-user functionality, all the rows that
contribute function will by then have to be in place. Horizontal development, constructing
the application a column at a time, is essentially an incremental by requirement process
that implements only that piece of the design at each stage to support the requirements in
question. Both vertical and horizontal development processes are incremental in some
sense, but in the former it is components that are delivered incrementally while in the latter
it is end-user requirements that are being satisfied incrementally.

The advantage of an incremental by requirements process is that it permits the system
to be built slowly and with focus (as in the incremental by component process), and hence
with attention to quality, while still permitting tests of end-to-end functionality to be per-
formed early in the project (like the iterative process).

Envisaged, then, is a cyclic process in each cycle of which particular end-to-end
requirements are designed and implemented (see Figure 3-2)

3.3 THE ITERATIVE AND INCREMENTAL PROCESS MODEL 35

[Plan' Analysis' DesigniCode ITesti Assess]

[PIA' *NA]

[PIAI DIC ITIA]

[PIAI 	A]

Figure 3 -2. Overlapping Iterative Development Process.

To address project risks each development cycle must not only satisfy the new require-
ments on that cycle but it must also budget resources to rework existing functionality in the
light of reviews, tests, user responses, et cetera, stemming from the previous cycle. The
element of rework in each cycle will vary from cycle to cycle, but it should dominate
development. To remind us of the fact that each development cycle is driven by the need
to satisfy the particular requirements that define that cycle, and not by rework, each devel-
opment cycle is called an "increment." Each increment includes a certain proportion of
iterative rework. When planning the increments it will not be possible to anticipate which
particular parts of the design will require the rework, but a certain proportion of each incre-
ment should nevertheless be set aside to anticipate the inevitable fact that rework of some
kind will be necessary. Iterative rework might be necessary to correct errors, increase
performance, increase modularity, or increase extensibility. Some of these issues will be
anticipated; others will arise only during reviews and tests.

Increments can overlap in time, but functional dependencies between increments and
the need to plan the rework content of an increment imposes constraints on the degree of
overlapping that is possible in practice.

We call this development process an "iterative and incremental" process. Note that
while the iterative and incremental process defines the large-scale structure of a project, it
does not prescribe the way in which the development of each increment is to be carried
out. That is, it does not prescribe the internal structure of an increment. The discussion of
the iterative and incremental development process is continued in Section 5.0.

36 ITERATIVE AND INCREMENTAL DEVELOPMENT
	

3.4 TERMINOLOGY 37

Advantages

• Focus on high risk project activities
• Early feedback on key design points
• Tangible deliverables at every stage of development
• Establishment of an end-to-end software development framework
• Overlap of development activities
• Incremental product release
• Rapid operational capability
• Efficient use of resources
• Reduced risk of product disaster
• Flexible in the face of changing requirements and environments
• Permits rework of architecture and design
• Developers can learn as they go
• Reduction of risk by reducing uncertainty
• Improvement of quality by continuous testing during development

• More visible reuse opportunities

Disadvantages

• Additional project management and process complexity
• Difficulties in identifying the requirements for each iteration
• Difficulties in prioritizing risks
• Subsequent increments may affect the work done in the earlier ones

• Coordination of teams working in different stages
• Additional change-control management required
• Possible ignoring of long-term architectural and usage considerations

• Lack of an initial complete specification to aid early estimation

Applicability

The iterative and incremental process is not universally applicable. It is appropriate to
medium and large projects with end-to-end requirements that can be partitioned conven-
iently and that face uncertainties. These uncertainties might take the form of:

• Unknown, uncertain, or incomplete requirements
• Design risks
• Unfamiliar application domains
• Unfamiliar technologies (such as object technology)

Because the iterative and incremental process combines both iterative and incremental
aspects, it can be used as a generic template for a project. Projects that lend themselves

more to a waterfall or iterative approach simply have few increments or a greater propor-
tion of iterative rework in each increment respectively. Thus waterfall and iterative proc-
esses can, if one wishes, be considered as "degenerate" forms of the iterative and
incremental process model. That might be a useful point of view because the iterative and
incremental process forces the planner to think about risks and about scheduling. Adoption
of a purely waterfall or iterative approach preempts or constrains such considerations.

The iterative and incremental process model is further discussed in Section 17.2.

3.4 TERMINOLOGY

Waterfall development
A process model for software development in which development
is partitioned into unique phases, each characterized by a particular
kind of activity such as planning or analysis. The phases are
strictly ordered and carried out in that order with each phase being
performed exactly once.

Iterative development A process model for software development in which the system
evolves by iterating over its work products during a sequence of
iterations. Each iteration results in executable system code.

Incremental by requirements development
A process model for software development in which the project is
divided into a sequence of increments. The work products of each
increment satisfy successively more end-user requirements. Each
increment results in executable system code.

Incremental by components development
A process model for software development in which the project is
divided into a sequence of increments. During each increment a
particular set of components of the final product is constructed.
Each increment results in executable code for one or more subsys-
tems.

Iterative and incremental development
A process model for software development in which the project is
divided into a sequence of increments. During each increment a
combination of incremental by requirements development and iter-
ative rework is performed. Each increment is principally driven by
the end-user requirements that define that increment, but a certain
proportion of the increment is set aside for iterative rework of
existing work products to take reviews, tests, experience, and other
feedback into account.

38 ITERATIVE AND INCREMENTAL DEVELOPMENT

For additional terms, see the "Glossary" on page 617.

4.0 Scenario-Driven Development

The approach that we describe in this book is scenario-driven in the sense that there is very
strong traceability from requirements right through to Source Code and Test Cases, and
that a key work product in this chain of traceability is the Scenario.

4.1 THE TRACEABILITY GAP

The overly simplistic object technology hype is that you take a set of requirements; build
an object model that identifies classes relevant to the problem and the relationships
between the classes; add design classes relevant to the solution; code the classes; and that's
about it. Unfortunately, this hype is believed by many people.

There are a number of flaws in this argument. It ignores the fact that requirements are
rarely complete or correct, and the fact that design involves much more than the adding of
classes. The former is discussed in Section 3.0; the latter is addressed in Sections 7.5 and
13.2. A more subtle problem is that the hype does not indicate how the classes of the
object model are to be identified, and how the object model is to be validated against the
requirements. In other words, there is a traceability gap between requirements and the
object model. This applies equally to the analysis object model and to the design object
model.

Requirements

Analysis

Where do these objects
come from?

Static modeling

Figure 4-1. The Traceability Gap.

Using purely static modeling, the construction of an object model, it is impossible to
bridge the gap between requirements and either analysis or design (Figure 4-1). What is

39

4.4 OBJECT INTERACTION DIAGRAMS (OIDS) 41 40 SCENARIO-DRIVEN DEVELOPMENT

missing is any reference to the dynamic modeling: That is, the construction of models that
describe how the system works to satisfy its requirements. Dynamic modeling is not rele-
vant solely to real-time systems; it is a vital part of the mainstream development process.
Dynamic modeling fills the traceability gap, whether or not the system is real-time

(Figure 4-2).

CUse cases

Requirements

Analysis
	 Elaboration

Ocenarios)

Assignment of
responsibilities

CObject 	 Object interaction diagrams
Validation 	

4.3 SCENARIOS

Scenarios are the work products intended to elaborate Use Cases by enumerating all the
variations of outcome due to the possible sets of assumptions. If it helps, think of the set
of assumptions as the possible starting states the system can be in when a Use Case is
enacted and the outcomes as the resultant ending states. The Scenario need not concern
itself with how it is to be implemented in the target system or which other objects it needs
to collaborate with to accomplish the task, unless it is part of the required outcome. For
details, see Sections 11.4 and 13.7.

By following this separation of concerns and by using a workbook organization (with
naming conventions), we have taken the first step toward requirements traceability. There
is a thread now from each actor to its set of Use Cases and from each Use Case to its set
of Scenarios. The Scenarios can be checked for completeness and consistency and also
used in early project estimation metrics.

You might think of this as outlining the Principles of Operation manual for the system.

A
	

A

Dynamic modeling 4.4 OBJECT INTERACTION DIAGRAMS (OIDS)
Static modeling

Figure 4-2. Static and Dynamic Modeling.

4.2 USE CASES

In order to understand requirements traceability, we should first look at the work product
designed to capture the functional requirements. It is called the Use Case Model and you

can read all about it in Section 9.2. For now, though, it is sufficient to describe it as the

set of:

Actors 	People and other external objects that use the system or interface with it.

Use Cases What the actors do with the system.

In this book we treat Use Cases as the definition of all externally visible, end-to-end
behavior of the system. To keep things manageable and focused, we don't concern our-
selves with all the variations of outcome due to the possible permutations of assumptions.
For example, "Fax machine Receives Fax" does not concern itself with "out of paper,"
"incomplete transmission," "power disruption," et cetera.

You might think of this as outlining the Quick Reference Card for the system.

The Object Interaction Diagram is the next work product of interest in scenario-driven
development, see Sections 11.5 and 13.8. Its purpose is to divide the responsibility of
attaining the outcome specified by a Scenario amongst the objects indicated by the:

Use Case - the actors (especially when acted on or prompted)

Scenario - assumptions and outcomes are really states of participating objects

Domain (from an evolving Object Model) - real or conceptual objects that help in this
environment

During analysis, identification and division of responsibilities among the objects are the
prime goals. During design, the responsibilities take a more detailed form indicating
method names, parameter types, data flow, et cetera, for all the participating objects.

At this point you should be able to see how the requirements can be traced from Use
Cases down to services (methods) that need to be implemented in the set of collaborating
objects. You might think of this as tracing the internal events resulting from the enactment
of the Use Case within a particular Scenario.

42 SCENARIO-DRIVEN DEVELOPMENT
	

4.6 SCENARIO -DRIVEN DEVELOPMENT VARIATIONS 43

4.5 A CHAIN OF TRACEABILITY

We have seen how Use Cases are a convenient way of defining the system boundary and
expressing the top-level functional requirements of the system. We have also seen how
Scenarios can be used to expand the Use Cases into detailed functional requirements. It
has then been shown how OIDs can be used to demonstrate how objects obtained from an
object model can interact in order to perform a scenario. Put together, this is a recipe for
closing the traceability gap. A continuous chain of traceability now runs as follows.

• Use Cases
• Scenarios
• Object Interaction Diagrams (OIDs)
• State Models
• Class Descriptions
• Object Model

Thus far, the list holds for both analysis and design sets of work products separately,
although there is obviously analysis/design traceability too.

• Source Code
• Test Cases

Each of these work products, and their interrelationships, is explained in Part 3. A com-
plete table of traceability between work products is presented in 8.6. In a scenario-driven
approach, all development activity is derived from the need to satisfy functional require-
ments expressed as scenarios. Furthermore, the work products on this main line are linked
by a strong concept of validation.

• Fundamental functional requirements are recorded as Use Cases.

• Each Use Case is expanded into multiple Scenarios by listing possible combinations of
assumptions and outcomes.

• Scenarios are elaborated into Object Interaction Diagrams (OIDs) by depicting object
collaborations and the assignment of responsibilities to classes.

• The state-dependent behaviors of certain objects is explored through State Models that
show the possible states and state transitions of an object.

• The Object Model characterizes the classes identified by the OIDs in terms of their
key attributes, their operations, their states, and their relationships.

• The Class Descriptions collect all the information associated with a class from the
Object Model, OIDs, and State Models.

• The Source Code for each class is developed from the specifications found in the Class
Descriptions.

• The Scenarios are used as specifications for Test Cases that validate the classes, sub-
systems, and systems implemented via their Source Code, which closes the develop-
ment loop.

Many variations on this theme are possible and desirable depending on circumstances.
What is important is that each of these work products are produced, and that they have
certain relationships with each other. It is primarily the order in which the work products
are produced, updated, and validated with respect to each other that can and should vary
depending on the development context. This is the link between the scenario-driven and
work product oriented concepts.

The connection between the iterative and incremental and scenario-driven ideas is that
the requirements of each increment should, we believe, be defined in terms of scenarios.
This enables Test Cases derived from requirements to close the development loop of each
increment. This idea is explored further in Section 6.0.

An important aspect of defining increment requirements in terms of scenarios, and
using the traceability between work products described above, is that we do not advocate
designing complete classes and then building them. Instead, only those methods that a
class requires in order to carry out a scenario of the current increment are designed and
built in that increment. Thus while classes are used to structure analysis, design, and
implementation work products, it is scenarios that scope this work and are used to decide
which classes and which methods are to be included.

The links between Use Cases, Scenarios, OIDs, and Object Models in particular can be
exploited in many ways. For example, during development many Issues will arise. These
Issues frequently take the form of a question: how should we implement a particular Sce-
nario bearing in mind certain factors? The obvious way to express the various design
options for the problematic Scenario is by means of OIDs, each OID demonstrating a dif-
ferent way of assigning responsibilities to objects of the Object Model in order to carry out
the Scenario. Resolution of the Issue consists of selecting one of these design options.
Scenarios and OIDs can therefore be used as a basis not only for documenting completed
designs but also as a vehicle for expressing design problems and options.

For more details on this technique, see Section 18.7.

4.6 SCENARIO-DRIVEN DEVELOPMENT VARIATIONS

Although we recommend the Scenario-driven approach for most projects since it validates
the purpose and need for each object and its features, there are situations when alternate
approaches are more appropriate. We present them here so that you will understand the
nature of the exceptions that justify these variations.

We should also note that these variations should be consciously considered for each
subject area, subsystem, and even each increment of development, so that the best approach

Use cases

2

Scenarios

3

State models

Object model Object interaction diagrams
3

State models

44 SCENARIO-DRIVEN DEVELOPMENT

is used in every situation. All of these approaches are valid and interoperable—you can

"mix and match."
Before we dive into the variations, let's present the core sequence of work products to

be developed for the Scenario-driven approach (see Figure 4-3.

Use cases

Scenarios

V

Object interaction diagrams

Figure 4-3. The Scenario-Driven Sequence of Work Product Development.

In this sequence, functional requirements, in the form of Use Cases, are elaborated into
Scenarios, which enumerate the assumption and outcome pairs associated with each Use
Case. Then each Scenario is elaborated into an Object Interaction Diagram which distrib-
utes the system function to the objects by assigning class responsibilities and identifying
object collaborations. The classes and their OED-implied attributes, associations, and oper-
ations are next organized by class and transferred to an Object Model. When a significant
amount of class behavior varies due to an object's state, the operation sequences identified
in the OIDs referring to that class are collected and reorganized into a State Model (e.g. a
State Transition Diagram). This will ease the culling out of method descriptions that are
part of the Class Description work product.

The Scenario-driven approach is most appropriate for the following situation:

Given
	Rich set of functional requirements (use cases)

Not Given
Goals
	Legacy data domain structure

Functionality, conformance to agreed functional requirements, strong
traceability through development process

4.6 SCENARIO-DRIVEN DEVELOPMENT VARIATIONS 45

4.6.1 Data-driven approach

The data-driven approach is a natural one for designers who have been involved in data
modeling or database oriented programming. It should not be used as the standard
approach, but is appropriate when working with a rich pre-existing data domain and an
open-ended set of functional requirements. That is, data-driven is often appropriate when
striving for evolutionary stability, longevity, and extensibility, since the data and their
organization are more important than the functional requirements for each increment of
development.

The sequence of work product development (modeling) starts with the Object Model
(data model) that has prime significance. Other work products (models) are subordinate to
it and their development follows the same sequence as the scenario-driven approach (that's
why we call this a variation of scenario-driven). Traceability of functional requirements
therefore is secondary to development of a strong data model.

Figure 4-4. The Data-Driven Sequence of Work Product Development.

In this sequence, the Object Model is developed first. It is usually derived from a
pre-existing entity-relationship (ER) diagram, database schema, or legacy data structures.
Although classes, attributes and most associations (relationships) can be harvested this way,
it is not so easy to identify the responsibilities and operations for each class. So, after the
data portion of the Object Model is developed, the normal scenario-driven process is used
to identify Use Cases, Scenarios, Object Interactions, and State Models. The Object Model
acts like a design constraint. It is updated from the OID with the assignment of operations
and possibly new attributes and associations that became evident during the dynamic mod-
eling.

The data-driven approach (see Figure 4-4) is most appropriate for the following situ-
ation:

Object model 3

Given 	Rich pre-existing data domain (e.g., Object Model)

State models

Object model

Scenarios

Object interaction diagrams

V

46 SCENARIO-DRIVEN DEVELOPMENT

Not Given Closed set of functional requirements
Goals 	Extensibility, longevity, stability

4.6.2 State-driven approach

The state model-driven approach is a natural one for designers who have been involved in
"real-time" system design and those involved in business process re-engineering. It should
not be used as the standard approach, but is appropriate when working with a rich pre-
existing behavioral domain and an open-ended set of functional requirements. That is, a
state model-driven process is often appropriate when striving for emulation of real-world
behavior in distributed control applications, since object state transitions, actions, and col-
laborations are more important than simply satisfying the functional requirements for each
increment of development.

Don't think of state modeling as something reserved for real-time manufacturing process
control systems and traffic control systems. Orders, Order items, Invoice, Customer

Account, Catalog Item, et cetera, all have significant real-world state models which define
the very meaning of what we call business.

The sequence of work product development (modeling) starts with the state models for
stateful objects. These have prime significance. Other work products are subordinate to it,
and their development follows the same sequence as the data and scenario-driven
approaches (we still call this a variation of scenario-driven). Traceability of functional
requirements and the structure of the data model are secondary to development of a state
models that closely model the real-world.

Use cases

Figure 4-5. The State Model-Driven Sequence of Work Product Development.

In this sequence, the State Models are developed first. They are usually derived from
pre-existing State Models from legacy systems. Although state attributes, transition oper-

4.7 TRACEABILITY FOR SCENARIO -DRIVEN DEVELOPMENT 47

ations (actions), and some associations (relationships) can be harvested this way, only a
limited portion of a system's classes and their characteristics can be Identified like this. So,
after the few State Models are developed and transferred to the Object Model, the Data-
driven variation of the Scenario-driven process is used to identify Use Cases, Scenarios,
and Object Interactions. The State Model acts like a design constraint when developing the
Object Interaction Diagrams. Finally, the Object Model is updated with all the additional
classes (and their attributes, relations and operations) that became evident during the
dynamic modeling.

The state model driven approach (as shown in Figure 4-5) is most appropriate for the
following situation:

Given 	Rich behavioral model (e.g., State Models)
Not Given Closed set of functional requirements
Goals 	Distributed control, emulation of real-world behavior

4.7 TRACEABILITY FOR SCENARIO-DRIVEN DEVELOPMENT

An extremely important concept to developing object-oriented software is the concept of
traceability. This is recognition of the fact that there exist interdependencies between
various work products and should the content of one work product change, there may be a
ripple effect impacting other work products in the project workbook.

For any work product we need to understand what other work products it can be
"impacted by," and what other work products it "impacts."

The benefit of traceability is that it can dramatically lessen the impact and risk associ-
ated with changes to the project. Of course to gain the benefits of traceability does not
come for free. It is vital that documentation be kept current, and this involves effort and
rigor on the part of the team. Documentation cannot be an afterthought.

Archtecture Design
Object Model

Business
Case

Nonfunctional
Requirements

Release
Plan

Schedule
40 	

Resource

Plan
Target

Environment

Subsystems

Analysis
Guidelines

Analysis
Scenarios

OID
(Analysis)

Analysis
Object Model

Use Case
Model

V

Problem
Statement

Test Plan

Intended
Development

Process

Analysis
Class Description

Analysis
State Diagram

V
 OID

(Design)

I Design Class
Description

Source Code

Coding
Guidelines

48 SCENARIO-DRIVEN DEVELOPMENT

Figure 4-6. Partial Work Product Traceability Using Scenario-Driven Approach.

Figure 4-6 shows some of the traceability dependencies among some of the work pro-
ducts described in this book. Note that this is only a partial traceability model intended to
illustrate the traceability and scenario-driven development. In this figure, we can see that

4.8 TERMINOLOGY 49

the Analysis OIDs are impacted by scenarios and in turn impact Analysis Object Model
and Design OIDs.

Traceability Example
Imagine you have developed an application to support a Life Insurance company's sales
agents. The application is in production and involves 200 classes and about 40,000 lines
of code. Now a change occurs to the way a policy is processed. With traceability the
changes required to the application are easier to manage. Traceability allows us to:

• Identify affected Use Cases (and if required generate a new Use Case)
• Identify impacted scenarios and their Object Interaction Diagrams (analysis)
• Revise the Analysis Object Model (adding any new classes, attributes, behaviors, and

relationships)
• Review and alter the associated Design Object Interaction Diagrams (OIDs) as required
• Identify classes and methods impacted by relationship between the Design OIDs and

code files
• Update code

Object-oriented analysis, design, and implementation support traceability, because of the
manner that Use Cases and Scenarios can be traced through the entire project life cycle.
Rather than having to go through thousands of lines of code and determine which of it is
impacted by changes, traceability presents a structured, manageable, methodical approach
to maintenance and change control. This is one of the reasons that so many object-oriented
applications report improved productivity on object-oriented application maintenance.

4.8 TERMINOLOGY

Use Case
	

A statement of top-level functional system requirements. A Use
Case is usually defined textually, but for convenience it may also
be represented in a Use Case Model. A Use Case may represent a
way that the system is to be used by external Actors, or a way that
the system is to use its Actors. See Section 9.2.

Actor
	

An agent external to the system, with which the system interacts.
See Section 9.2.

Use Case Model
	

A representation, often graphical, showing the boundary of a
system, the Actors external to the system, and the Use Cases
internal to the system. See Section 9.2.

Scenario
	

An externally-visible system behavior. A Scenario is a Use Case
plus a set of assumptions plus a set of outcomes. Assumptions
and outcomes can be specified formally or informally as appro-
priate to the project and the development status. A Scenario can

51 50 SCENARIO-DRIVEN DEVELOPMENT

be thought of as a detailed functional system requirement. See
Sections 11.4 and 13.7.

Object Interaction Diagram (OLD)
An OLD is a graphical depiction of the way that objects interact to
carry out a Scenario. An OLD is frequently depicted as vertical
time lines representing the participating objects, and horizontal
arrows representing object interactions. See Section 11.5 and 13.8.

Scenario-driven development
A developmental focus on a continuous chain of traceability from
Use Cases through Scenarios, 01Ds, to Object Models and the
other analysis and design work products.

For additional terms, see the "Glossary" on page 617.

We describe the work products that we have found to be effective in many object-
oriented software development projects in Part 3, Work Products. This might be thought
of as the "what" of a project. Part 4, Work Product Construction Techniques, describes a
toolkit of techniques to help build these work products. This might be thought of as the
"how" of a project. A vital and (relatively) independent dimension to project development
is the development process, which might be characterized as the "when" of a project.
Process is about "when" in the sense that it is concerned with the sequencing of the
various project activities.

Although in a work product oriented approach there is no concept of a fixed develop-
ment sequence, work products are still developed in a nonrandom order. Work products
don't just happen, they are the result of planned activities. The order in which they are
developed is determined by their increment and phase associations as well as by their sup-
portive relationships with each other within a phase.

It is appropriate to discuss the sequencing of activities at a number of different levels of
granularity. In Section 3.3, The Iterative and Incremental Process Model, we considered
the usefulness of an iterative and incremental process in which a project is divided into a
sequence of increments, each of which adds functionality to the system, and also incorpo-
rates an element of iterative rework. This is the level at which process is usually dis-
cussed. Each increment, however, constitutes a miniprocess of its own, and the sequencing
(and definition) of the phases that make up each increment must also be addressed by a
development process. Lastly, each phase focuses attention on a particular set of work pro-
ducts. How is effort on these work products to be sequenced?

Part 2. Development
Process

52 PART 2. DEVELOPMENT PROCESS

There are, therefore, three levels of granularity at which it is appropriate to discuss
process. These might be characterized by the following questions.

• What is a project (in terms of increments)?
• What is an increment (in terms of phases)?
• What is a phase (in terms of work products)?

This part of the book sets out to answer each of these questions in turn.

It was mentioned in Section 3.0, Iterative and Incremental Development, that no one
process is applicable to all projects. Although there is no such thing as a "typical" project,
it is useful to describe a model project that can serve as a reference point when attempting
to discuss the constraints that one can encounter when trying to develop in the real world.
Most projects will not employ this process precisely, but will bear some resemblance to
what is described. They will all be "variations on a theme."

Variation itself is actually a theme of this book. The principal reason for separating the
presentation of work products in Part 3, from the presentation of development techniques
in Part 4, is to emphasize the prime importance of focusing on work products when
deciding upon a development strategy. One should fit development techniques around the
work products, and mix and match the techniques to fit the project and application context.
The same applies to process. The process that is concentrated upon has been found to be
appropriate to many projects. Every project is different, however, and deserves thought in
its own right at the level of process. You should treat what is written here in the spirit of
a reference model from which variations will inevitably have to be made to tune the model
to the needs of your project. Even within the process presented here, there are many pos-
sible minor variations.

The lowest level of development activity that is described in this part of the book is the
phase. In each phase, focus is placed on a particular set of work products. For example,
during the analysis phase we are most concerned with constructing the analysis group of
work products such the Analysis Object Model. The particular work products that we
recommend are produced in each phase are described in Part 3, Work Products. Think of
phase not as a single portion of time within the development process but rather as a recur-
ring period of focus on a particular facet of development. For instance, in an iterative and
incremental process, the developer "visits" the design phase several times.

Project increments and the project as a whole can be thought of as containers or pack-
ages of phases. In that sense it seems logical to start the discussion of process with phases
and then to proceed to package the phases into increments and then projects. We have not
opted to do that. Instead, we have chosen a top-down approach to describing process. The
reason for this is that the top-level process of a project defines the relationship between
increments, and hence provides context for the discussion of increments. An increment,
similarly, has a certain structure, and it is within the context of this structure that it is
appropriate to discuss the phases that constitute each increment.

5.0 Overall Project Structure

The highest level of process granularity is the entire project. This chapter considers how
this top level of process concerns can be addressed. The two following chapters address
themselves to the lower-level concerns of how increments are put together and how an
increment is composed of phases that the "real" development work is done.

5.1 OVERALL PROCESS

As mentioned in Section 3.3, The Iterative and Incremental Process Model, most projects
that we have seen are of the following form:

• Ill-defined, incomplete, or uncertain requirements
• Use technologies (such as object technology) or components with which the develop-

ment team is not completely familiar
• Large and complex

As discussed in Section 3.0, Iterative and Incremental Development, such requirements do
not lend themselves to waterfall, pure iterative, or incremental component development
processes. The problem with a waterfall process is that the project risks are far too high
for all development strands only to be brought together near the end of the project. There
is no time budgeted for the inevitable rework. The trouble with a purely iterative approach
is that while time is allowed for considerable rework, in fact this is the structure of the
process. The rework required for a project of significant size is likely to result in an unac-
ceptable amount of design churn. That is, a process based solely on iteration will tend to
be unstable if the project is reasonably large. An incremental component process will not
suffer from the problem of instability because of size, but it permits component integration,
and hence testing of the overall design, too late for test results and other kinds of feedback
to be incorporated. One answer is to combine the end-to-end early testing advantages of
an iterative approach with the stability of an incremental component process. The resulting
iterative and incremental process is the one that is described in Section 3.3, The Iterative
and Incremental Process Model.

It is this rationale that leads us to recommend the iterative and incremental process as a
"default" process. It will not fit all projects but it does very well for most. We suggest
that it is used unless it can be demonstrated that it is inappropriate for a particular project.
Section 5.4, Variations on Project Shape considers factors that might influence a project
and that might indicate that a top-level process variation is required.

An iterative and incremental project consists of a sequence of increments whereby in
each increment time is allowed for reworking existing software in the light of test results,
feedback from end users, design reviews, et cetera. The effect of an iterative and incre-

53

54 OVERALL PROJECT STRUCTURE 5.4 VARIATIONS ON PROJECT SHAPE 55

mental process is to bring forward in time all the testing phases of the project. It is based
on the assumptions that we probably don't know all the system requirements in advance,
that the requirements will change, and that we will both understand the problem domain
better and discover better ways of solving problems as we go along.

5.2 PROJECT SHAPE

In practice, the number of iterations and increments to be performed on a particular set of
work products will vary depending on the risk associated with that work product. For
example, a project may do requirements gathering, analysis, and architectural design in a
single increment, but the remaining design, implementation, and testing work in several
increments and iterations. This would be appropriate for a large project where architectural
design churn is considered a much greater risk than misunderstanding requirements. Many
other combinations are possible. Each combination is appropriate to a particular develop-
ment context; in addition, each combination determines a particular shape that the project
will have.

Activities that are scheduled for the initial increment and for which no subsequent itera-
tive or incremental effort is budgeted may be considered to belong to an initial, waterfall
part of the project. A purely waterfall project is a special case since all activities are of
this low-risk nature. (Having said that, waterfall projects usually end up with iterative and
incremental development cycles for product maintenance and enhancement, even if they
were not initially conceived in this way.)

As mentioned above, many variations are possible, but a project shape that is appro-
priate to many projects follows (see Table 5-1).

Table 	5-1. Typical Project Shape.

Increment Purpose Activities

1 Get project started Develop all planned work products for the Requirements and
Project Management phases. Review Analysis work products with
the customer. 	Concurrently, analysts, designers, and implementers
develop guidelines for their phases. Designers can also start the
System Architecture, Target Environment, and Subsystem Model
work products.

2 Familiarize team
with process and

environment

Using the Depth-First technique 8 with a few Use Cases, develop all
planned work products for the Analysis, User Interface, Design, and
Implementation phases.

3..n- I Complete project
development

Taking a few Use Cases at a time, develop all planned work pro-
ducts for each phase through Implementation. As new work pro-
ducts are developed, old ones may need to be extended or amended.

n Package, test, and
deliver the product

Implement the Physical Packaging Plan and conduct the Installation,
System, and Acceptance test plans.

5.3 WORK PRODUCTS RELATED TO PLANNING PROJECT
SHAPE

The work products that are most relevant to planning the overall development process and
the project shape are discussed in:

• Section 10.1, Intended Development Process
• Section 10.3, Resource Plan
• Section 10.4, Schedule
• Section 10.5, Release Plan
• Section 10.7, Risk Management Plan
• Section 10.11, Project Dependencies

Those sections include further information, including examples and suggestions for how to
construct the work products.

5.4 VARIATIONS ON PROJECT SHAPE

Table 5-1 suggests a shape for a "normal" project. Real-life risks and situations usually
force variations to be made. The following list identifies some common conditions that
impact real projects and usually cause a project to deviate from the typical project shape
described above. 9 After each condition, we have listed some project shape variations to
consider when addressing these conditions.

Weak Requirements

• Iterate on Problem Statement and Use Case Model with Customer before doing any
Project Management work products.

• Jump ahead into Analysis Scenarios or Screen Flows or even a User Interface Proto-
type to ferret out unforeseen requirements and complexities.

• If this is a competitive situation, try developing a Use Case Model based on the com-
petition's capabilities. Then reduce the model to what your customer needs and what
you are capable of delivering.

8 See Section 17.1, "A Depth-First Approach to Software Development" on page 363 for a description of the
technique.

9 To learn more about this topic, we suggest reading Chapter 5 in [Goldberg95].

56 OVERALL PROJECT STRUCTURE

Complex/Unfamiliar Domain

• Engage domain experts.

• During project management phase schedule more iterations and increments for the
analysis phase.

• Use the scenario-driven process to define the domain from the functional require-
ments.

• Seek customer "buy in" with the analysis phase work products.

Complex/Unfamiliar Target Environment

• Engage technical area experts and consultants.

• Schedule education in key areas for developers immediately before design or imple-
mentation phases.

• During project management phase, identify technical risks, assign to key developer,
and track resolution.

• Schedule, track, and implement as many technical prototypes as are needed to resolve
the risks before it is too late.

• Schedule more iterations and increments in design or implementation phase (which-
ever has risks).

Complex/Unfamiliar Development Environment

• Prioritize the Development Environment work product and schedule its review and
iterations to start long before the rest of the development team depends on it.

• Schedule education in key areas for analysts and developers immediately before
attempting object-oriented analysis, object-oriented design, or object-oriented pro-
gramming.

• Schedule more Depth-First' approach increments so that team gets more experience
using the techniques and tools of the development environment with smaller incre-
ments of function (less risk).

• If there are many early concerns, perform a Depth-First increment for a trivial
problem (perhaps unrelated to the planned product).

Parallel Development

• During project management phase, focus more attention on Resource Plan and
Schedule. Iterate on these when Subsystem Model is available so that contracts with
earliest or riskiest dependencies are prioritized.

• During analysis phase, focus early attention on Subject Areas work product to iden-
tify potential parallel analysis and development of subsystems.

5.4 VARIATIONS ON PROJECT SHAPE 57

• Start System Architecture work product early to start capturing intent to structure
system for parallel development (nonfunctional requirement). -

• Start Subsystem Model work product early to focus on intersubsystem (intergroup)
contracts.

• During the design phase, emphasize the Subsystem Model and API work products.

• Other than these coordinating activities, treat the development of each subsystem as if
it were a complete system. That is, develop a separate project workbook for each
subsystem and use the complete process on each subsystem allowing tailoring as
needed.

• Use an iterative and incremental approach that requires periodic integration testing to
validate subsystem APIs and contracts.

• Be especially vigilant if subsystems are to be subcontracted out.

Short Schedules

• Don't plan too many increments. Limit it to two or three.

• Favor prototyping over formal increments to address risks.

• When developing the Project Workbook Outline, focus on those work products that
are most effective in attaining your goals.

• When developing Analysis, Design, and Coding Guidelines, consider the cost and
benefit of each given your schedule.

Long Schedules

• Long schedules don't mean lax schedules. Long schedules require more details and
attention to risks than shorter ones.

• Pay special attention to scheduling risk-resolving prototypes.

• Take advantage of the opportunity to fit in more meaningful increments and iter-
ations.

• Allow time for injecting additional increments especially midway and near the end of
the development.

• Early and periodically in the project management phase, look for parallel develop-
ment opportunities. If you were offered another team or ten more developers, how
would you use them?

• If you lost a team, how would you adjust? Plan for contingencies before they are
needed.

58 OVERALL PROJECT STRUCTURE

Reverse Engineering and Re-engineering Projects

• Here's a case when the Waterfall approach, a single increment of development, may
work the best.

• If risks are low, plan to use the simple, efficient Waterfall approach.

• Be selective when considering work products for Project Workbook Outline and when
considering guidelines for each phase.

• Produce all the work products that you planned to do.

6.0 Project Increments

A project increment is a miniproject, so it should be no surprise that planning one is like
planning a miniproject. You should consider all the possible work products that can be
developed in light of the constraints implied by the increment. Here are some things to
consider:

Purpose Each increment is planned to accomplish a specific set of goals. They should
be documented so that the participants can share a common vision. The
reasons for this are the same as those that require the whole project to have a
Problem Statement. But here, inside an increment, the purpose should be
simpler since its goal is to focus a small part of the project for a shorter time.

Scope 	Each increment should be limited by the selection of a specific set of: •

• Use Cases and Scenarios
• Subject Areas or Subsystems
• Development phases that will be carried out
• Work products that will be produced
• Completion dates (Schedule)

Guidelines A project should decide whether the work products and guidelines that govern
them should evolve throughout the product's development, or whether they
should address the final criteria from the start.

Process 	Besides the criteria implied by guidelines, each increment may employ a vari-
ation on the process used for its duration. For example:

• Will there be iterations within the increment?

• In which order will the work products be developed? (Which are the
prime and which are the subordinate models?)

• How often will work products be reviewed or verified? (as soon as they
are completed, at end of phase within the increment, or at the end of the
increment, et cetera.)

• Besides work product verification, how will any product deliverables be
tested? Will there be an independent test team to integrate and test new
and extended components (exercise the scenarios specified in the scope)?

59

Purpose

Scope

Get the project started, fully understand the requirements and the problem domain, lay the
foundation for design and implementation to begin.

Develop all intended Requirements, Project Management, and Analysis work products. Con-
currently develop (or select) User Interface, Design, and Coding Guidelines. Develop first
pass of System Architecture, Target Environment, and Subsystem models. Allocate 25
percent of schedule for this increment.

Purpose Complete the development of the product.

Scope Selecting a significant number of related Use Cases, develop all the planned work products
for the Analysis, User Interface, Design, and Implementation phases. Allocate 50 percent of
the schedule for several increments of this type.

Guidelines All Analysis, Design, and Implementation work products should comply with predetermined
guidelines right from the start.

Process All work products will be verified as they are completed. Their owners should allow for a
couple of iterations within the scheduled completion dates. The phase review should simply
verify that all critical Issues have been closed and others assigned to owners with appro-
priate due dates. The User Interface Prototype will be verified with the customer at the end
of User Interface design phase.

Guidelines
Table 6-4. Release Increment.

All Requirements, Project Management, and Analysis work products should comply with
predetermined guidelines right from the start.

Process All work products will be verified as they are completed. Their owners should allow for a
couple of iterations within the scheduled completion dates. The phase review should simply
verify that all critical Issues have been closed and others assigned to owners with appro-
priate due dates. The Acceptance Plan and Use Case Model will be verified with the cus-
tomer at the end of the phase.

Purpose Package, test, and deliver the product.

Scope Implement the Physical Packaging Plan and conduct the Installation, System, and Accept-
ance Test Plans. Allocate 20 percent of the schedule for several iterations of these activ-
ities.

All Implementation and Test work products should comply with predetermined guidelines
right from the start.

Guidelines

Process All work products will be verified as they are completed. Their owners should allow for a
couple of iterations within the scheduled completion dates. The phase review should simply
verify that all critical Issues have been closed and others assigned to owners with appro-
priate due dates.

Guidelines Try to comply with the guidelines developed for each phase, but don't get stuck trying. If
the guidelines need adjdstment, this is when that should be determined.

6.2 WORK PRODUCTS RELATED TO PLANNING INCREMENTS

60 PROJECT INCREMENTS

6.1 TYPICAL PROJECT INCREMENTS

We address the preceding considerations for the typical project increments identified in
Table 5-1 in the following four tables.

Table 6 -1. Project Initiation Increment.

6.2 WORK PRODUCTS RELATED TO PLANNING INCREMENTS 61

Table 6-3. Normal Development Increment.

Table 6 -2. Developer Familiarization Increment.

Familiarize the development team with the new processes, techniques, and tools that they
will need to use in this project. Shake down the process and development environment.

Using the Depth-First technique with a small number of simple Use Cases, develop all the
planned work products for the Analysis, User Interface, Design, and Implementation phases.
Excluding education and training, only allocate a couple of weeks for this..

Purpose

Scope

All work products will be verified as they are completed. Their owners should allow for a
couple of iterations within the scheduled completion dates. There will be no phase reviews,
but the increment review will focus on identification of Issues associated with the develop-
ment process, environment, and tools.

The work products that are most relevant to planning increments are:

• Section 10.1, "Intended Development Process" on page 127
• Section 10.3, "Resource Plan" on page 135
• Section 10.4, "Schedule" on page 139
• Section 10.5, "Release Plan" on page 144
• Section 10.6, "Quality Assurance Plan" on page 147
• Section 10.7, "Risk Management Plan" on page 152
• Section 10.9, "Test Plan" on page 164

Those sections include further information, including examples and suggestions for how to
construct the work products.

Process

62 PROJECT INCREMENTS

6.3 VARIATIONS ON INCREMENTS

6.3.1 A Set-Up Increment

Set-up increments are similar to Depth-First increments except that the purpose of the
former focuses more on shaking down and learning the development process, techniques,
environment, and tools. The scope is limited to only those phases, work products, tools,
and techniques that are new to the development team. The Use Cases and Scenarios don't
have to come from real requirements. The Schedule is usually very tight unless this is
being run concurrently with the Project Initiation phase. The guidelines are usually slack-
ened and the process is aimed at finding development environment and process problems.

6.3.2 A Depth -First Increment

A Depth-First increment differs from a Set-up increment in that its purpose is to do a small
amount of real development (it counts) while learning the development process, techniques,
environment, and tools. The scope can go from analysis scenarios through implementation
or it can start from design scenarios. It should use real Use Cases and Scenarios. The
Schedule is usually short but not as short as a Set-up increment. The phase guidelines are
respected but can be questioned. The process should be as close to normal development as
the initiates can bear.

6.3.3 Release 1.0 Increment

It may sound strange to have a Release 1.0 Increment, but considering that it usually
follows a Beta release of the product, it is a special type of increment.

Its purpose is to finish the development that didn't make it into the Beta release and to
clean up the many problems often discovered with the Beta release. The scope is usually
limited to implementation and test work products, but can occasionally go back as far as
design scenarios. There are often Target Environment assumptions and outcomes that were
not considered before the product entered the real world. The Schedule is usually very
short since a published ship date is usually at risk. The phase guidelines are respected but
are occasionally deferred when "missing the date" is a possibility. The process should be
as close to normal development as the weary developers can bear.

6.3 VARIATIONS ON INCREMENTS 63

6.3.4 Release 1.1 Increment

Sometimes software products "ship by definition"; that is, before they are ready. Release
1.1 is what the product developers usually intended to ship and what the customer
expected. The Schedule for Release 1.1 is usually chosen so that the customers will auto-
matically receive it before they put Reiease 1.0 into production (hopefully, before the cus-
tomer dared to install it).

Release 1.1's purpose is usually to fix "known bugs" that could not be addressed in
Release 1.0 without impacting the ship date. Therefore, the scope is limited to implemen-
tation and test work products. No new requirements or "features" are allowed into this
increment. The Schedule is always very short. The phase guidelines are respected but are
occasionally deferred when "missing the date" twice is a possibility. The process should
be as close to normal development as the ready-to-quit developers will tolerate.

6.3.5 Release 2.0 Increment

For Release 2.0, development should be back to normal. The only difference is that there
is a base legacy to protect and improve upon. All work products from previous releases
are now assets to work from (though some may seem like liabilities). Release 2.0 usually
incorporates significant new function or changes in design to better address Nonfunctional
Requirements (e.g., performance or usability).

Release 2.0's purpose is to significantly extend or change the design of Release 1.x. If
the risks are small and the process, Development Environment, Target Environment, and
Architecture are well understood, this can be developed in a single, waterfall, increment.
Otherwise use the increments defined for the typical project shape described earlier.

In any case, these increments should clearly enumerate all goals it is expected to attain.
Therefore, the scope will include all phases, but will concentrate on Requirements and
Analysis work products if the main purpose is to extend function of the product, and will
concentrate on Prototyping and Design work products if the main purpose is to change the
design of the product. The Schedule is usually shorter than the original release. The phase
guidelines are respected and often improved as the veterans gained religion since their first
project. The process is an experience-based improvement of what was normal develop-
ment during the first release.

7.0 Development Phases

A development phase is a state of product development that focuses on making progress on
a particular aspect or facet. In this book we have chosen to focus on the following devel-
opment phases:

• Requirements Gathering

• Project Management

• Problem Analysis

• User Interface Design

• System Design

• Implementation

• Testing

We realize that there are other phases that may precede or follow these such as market
analysis, project initiation, marketing, deployment, maintenance, withdrawal, and harvesting
reusable components, but we have chosen to limit our scope to those phases of interest to
software developers.

Although the list of phases may remind some of the waterfall approach to development,
we strongly recommend that you view them as periodic phases. They may be entered
repeatedly to add new functionality to the system (incremental development) or to rework
previous work products to correct or improve them (iterative development). In general, the
phases discussed below are presented in the order that you will encounter them in a normal
project, but there will always be reasons to delay or accelerate development of certain work
products normally associated with a particular phase.

The following diagram provides a pictorial overview of the development phases and
their relationships with each other and with key development repositories. It is intended to
show that:

• Requirements Gathering and System Test are pre and post-iterative phases, respec-
tively.

• Analysis, Design and Implementation phases occur in an Iterative and Incremental
process.

• Analysis needs to be performed before Design.
• User Interface and System Design can be done concurrently.
• Design precedes Implementation.
• Project Management is an on-going activity.

65

Initial Planning

. 	.
•

Problem Analysis

66 DEVELOPMENT PHASES

Figure 7-1. Development Life Cycle Overview.

The following sections provide a description of the development phases discussed in
this book.

7.1 REQUIREMENTS GATHERING

Requirements are crucial because they provide a scope and a boundary for later activities,
especially planning, analysis, and design.

Poorly understood requirements can severely impact the development efforts of the
project team. There are two major kinds of requirements that are important to the object-
oriented development process:

• User Requirements describe what the needs of the intended users are. User require-
ments drive analysis. Our approach to object-oriented development strongly recom-
mends that these requirements be expressed by Use Cases.

• Nonfunctional Requirements that address concerns such as:

— Performance: requirements that clarify the space, time and other system resource
constraints the customers require of the application. The performance require-
ments drive activity during the design phase.

7.2 PROJECT MANAGEMENT 67

— Platform: requirements that detail the desired "delivery vehicles" for the system,
such as hardware and target language, et cetera. Platform 'requirements drive both
the interface specification and implementation activities.

Nonfunctional Requirements drive design. If Nonfunctional Requirements are not
known during the early phases of a project, they can be deferred provided they are
known at design time. Design time commences when design decisions need to be
taken as a precursor to development. At this time, the Nonfunctional Requirements
must be nailed down in order to permit the development team to get started.

7.2 PROJECT MANAGEMENT

Project Management is ongoing throughout the life of a project. As a practice, its concerns
are not much different from a traditional effort. Some of the differences are:

• Managing iterative development that is new to some managers.

• Understanding the object-oriented work products across analysis, design and imple-
mentation.

• Coming up with initial sizing of a software development effort.

• Bringing people up the object-oriented learning curve.

These will all improve as our experience deepens with object-oriented technology.

7.2.1 Initial Project Planning

This aspect of the project management phase usually occurs before the requirements gath-
ering phase. Its purpose is to identify the need and objectives for the project. The devel-
opment organization must decide whether or not to proceed with the project and a decision
must be made as to whether or not to use object-oriented technology.

Initial sizings will usually be done at this time and used for purposes of beginning the
pursuit of funding.

The process of staffing will get under way as well. In a project using object tech-
nology, particularly for the first time, a critical activity will be to do a skills assessment (or
technology maturity assessment) of the likely time. This assessment should determine the
skills needed to do the project (including object skills, domain skills, development environ-
ment skills et cetera). You should then begin to make plans to fill any gaps through
staffing, education, and consideration of the use of mentors or consultants. If outside
expert help will be used in the form of consultants, this is the best time to bring them in.

The nature of initiating a project can vary widely depending on the culture and proc-
esses of the organization doing the development. During initial planning, most of the work

68 DEVELOPMENT PHASES

products developed are business as usual and are not specific to object-oriented technology.
The biggest challenge most organizations face at this time is overcoming the challenge of
estimating effort. Because object-oriented projects are built iteratively and incrementally,
sizing the total effort required often proves a serious challenge. The best advice to follow
on a first-time project is to size it using your business as usual approach (i.e., as if you
were using your traditional, non-object-oriented development approach). Use this as a
strawman and revise it as you proceed.

7.3 PROBLEM ANALYSIS 69

progress. Timely and accurate work products consolidated in the project workbook are
vital. An up-to-date project workbook allows for movement of personnel in, out, and
around the project. A project workbook is tailorable to any size and type of project, but it
all starts out by defining a Project Workbook Outline.

Good project workbooks make for successful projects.

7.3 PROBLEM ANALYSIS

7.2.2 Organize Project Plan

To some, the question "Which comes first, the requirement or the plan?" is much like the
chicken and the egg problem. Since gathering requirements is an activity that requires
project resources, it should be planned. However, the project plan is driven by the require-
ments, because its main purpose is to:

• Group the requirements into releases that will be delivered as a unit;

• Define the development processes and activities; and,
• Allocate project resources to the activities.

A lot more goes into a project plan, the gory details of which are described in the
associated workbook (Section 10.0, Project Management Work Products). The challenge is
to complete it quickly without getting in the way of the real work to be done! Unfortu-
nately, this pressure to get things moving to avoid "plan paralysis" (similar to analysis
paralysis) can cause "plan churn" to occur. Plan chum can cause everything to come to a
screeching halt while the details change again and again, or worse, create the need to throw
away work that has been done and start over.

Solving these two problems is where the iterative and incremental development process
comes in. Just as "time prevents everything from happening at once," an iterative and
incremental development process eliminates the need to plan everything at once.

The use of planned iterations, where discoveries made during later activities cause
changes to the work products of previous ones (with a subsequent "ripple" effect), can
relieve most of the pressure of having to create a perfect plan (or analysis/design model, et
cetera) up front.

7.2.3 Maintain Project Workbook

Quality documentation is a critical success factor for large-scale object-oriented develop-
ment. Although it may be arguable that a small one-person software development effort
can be done in a person's head, any nontrivial project requires accurate and timely doc-
umentation at every stage. Documentation is the key to technical project communication.
Without it there is no project.

The project workbook communicates to the project its plans, its decisions, and its

Analysis is about domain understanding and is essential to good object-oriented develop-
ment. Object-oriented analysis tells us what objects are part of a domain as well as their
attributes and behaviors. Object-oriented analysis consists of techniques and work products
that identify objects that are relevant to the problem being solved. The process includes
classifying the objects and finding relationships among them.

During object-oriented analysis we apply techniques to understand, develop, and com-
municate user requirements for an application. The analysis phase focuses on clarifying
and representing requirements in a concise manner at a more detailed level than during
requirements gathering. Many object-oriented analysis techniques are graphical in nature
and involve work products that contain diagrams.

To summarize then, object-oriented analysis is concerned with understanding the
problem domain. This involves:

• Identifying objects and their attributes

• Learning about how objects behave and their responsibilities

• Understanding how objects interact with each other

Analysis must be done with persons who know the domain: for example, if building an
application for Insurance Underwriters, then an Insurance Underwriter should be involved
in the analysis process.

Analysis should be done in a constraint-free fashion. Avoid letting implementation
constraints impact analysis.

1. Constraints can and do impact domain understanding.

Knowing that a database will be implemented in a relational database like DB2
should not affect analysis, but often developers will build relational data models during
analysis as a short-cut to implementation. They then come to think about the world in
terms of tables that they will be building eventually. This is a mistake. Do not let the
final design or implementation influence the way you think about, discuss, or model
the domain.

2. Design detail clutters and obscures analysis.

70 DEVELOPMENT PHASES

3. Adding design detail to analysis would make it difficult for users to understand and
validate.

4. Adding design or implementation detail into an analysis model makes it less generic
and thus less reusable.

5. Implementation constraints can change (for example, platform or database).

These changes should not invalidate your analysis.

Analysis must be independent of the delivery environment. If the planned deployment
changes from MVS to OS/2 in a client-server environment, the analysis work products
should not change. The objects that are meaningful to users in their domain will not
change if the implementation environment changes. This is important if there is any hope
of reusing the analysis work products. The benefits are great if this approach is adopted.
Deployment decisions such as hardware platform or development software can change over
time. By keeping the analysis independent of these considerations, the analysis work pro-
ducts can be reused, regardless of the production system. There is a risk that deployment
decisions can affect the application analysis. It is tempting during analysis to say, "it is a
given that we are going to represent our data in DB2, so let's just represent things in
tables." Also, there is a danger that this may impact on the analysis by leading to the
attitude that "we can't do that in DB2, so let's ignore it." These considerations mitigate
against achieving a true understanding of the application domain, which is the purpose of
analysis. Analysis should be constraint-free.

7.4 USER INTERFACE DESIGN

User Interface design is concerned with planning the construction of software that has an
intuitive and standardized human-machine interface. Today, this usually means the layout,
appearance, and flow of control involving a graphical video display with "windows."

While it is possible to consider the User Interface design as being part of system
design, it is treated in isolation to allow for a separation of concerns that is frequently
exercised in real-world software development. User interface work is usually done before
and independent of the system design phase, often by a team of user interface specialists
within the project.

Often, User Interface design is done in parallel with the analysis phase. In such cases,
coordination between the user interface and analysis teams is important.

When the "friendliness" (easiness, intuitiveness, and lack of surprises) of a user inter-
face is critical to the success of the products, a User Interface Prototype is built to get user
feedback on that friendliness and to better understand the user's conceptual model of how it
should work.

7.6 IMPLEMENTATION 71

7.5 SYSTEM DESIGN

While during analysis we focused on problem-domain objects, during design we focus on
solution domain objects. Some of the classes that existed in the analysis model will disap-
pear (as they won't be implemented) and new ones will appear specific to the System
Architecture and Target Environment (e.g., a DB2 interface class).

Many teams have difficulty discerning between analysis and design and want to skip
the analysis phase and go straight to design. In an object-oriented project, it is essential
that analysis not be bypassed.

Design is concerned with how an application will be built and involves factoring in
Nonfunctional Requirements such as:

• Platforms
• Languages
• Performance
• Interoperability
• Persistence
• Maintainability
• Use of standard components and subsystems
• Reuse
• Cost
• Time

Much of design is involved with addressing these constraints. It often involves
weighing trade-offs, as many of the design considerations are mutually exclusive (for
example, high functionality with small memory).

By separating analysis and design we are able to make the analysis more generic and
reusable, so that when design decisions change, the analysis model will still hold. For
example, in the banking industry, the way that a Bank Loan is decided upon should be the
same regardless of the software tools used to implement a lending application.

If we construct hybrid analysis/design work products, it is difficult to identify what
represents business requirements and which are introduced at design time for implementa-
tion reasons.

7.6 IMPLEMENTATION

Implementation involves the transformation of design work products (detailed plans for sol-
ution) into compilable software (Source Code) and other product deliverables. In object-
oriented development, the bulk of implementation effort is concerned with creating class
implementations in an object-oriented programming language that supports the specifica-
tions recorded in the Design Class Descriptions. Although the Design Class Descriptions
focus on external characteristics, they often include information concerning the internal

72 DEVELOPMENT PHASES

states, operations (method descriptions), and representation. When they don't, the imple-
menter need only access other design work products, especially the Design Object Model
and the Design Object Interaction Diagrams.

In a scenario-driven approach, the implementer will benefit from following the
traceability of functional requirements as Use Cases lead into Design Scenarios and Design
OIDs. The results are organized into classes that are described by the Design Object
Model and the Design Class Descriptions.

In an iterative and incremental process these work products evolve, so the implement-
er's task is to match that evolution in the class's Source Code. The incremental implemen-
tations can be tested by applying the Design Scenarios (with their assumptions) and
verifying the outcomes. This completes a typical development increment.

As a scenario takes a thin slice of the problem and represents an end-to-end solution, at
the end of an iteration a subset of the application has been developed. After a number of
iterations, the functionality builds up gradually to encompass more and more of the require-

ments.
A benefit of this approach is that the developers can work from the Object Interaction

Diagrams (OIDs) that directly convey requirements in a form that is usable during imple-
mentation. This still gives a developer a fair amount of latitude—the OID represents a
form of contract between the collaborating classes. The messages being passed back and
forth tell the implementer of a class what its responsibilities are, but not how to fulfill
them—the class remains a black box.

Another interesting aspect of this approach is that it results in "just-in-time program-
ming." Classes and their methods are implemented to fulfill the requirements of a set of

scenarios, but no more.

7.7 TESTING

Testing within object-oriented projects is a bit different from testing traditional software.
Unlike traditional development, testing is not a phase that occurs only after the completion

of development.
In object-oriented projects discrete testing phases, similar to traditional software devel-

opment, still occur. Depending on what sort of testing you are used to doing, you may
still perform System Test, Integration Test, User Acceptance Test, Stress Test, and Per-
formance Test. The difference is that you may perform some of these more frequently on
subsets of the system. For example, at the end of each development increment, the execut-
able code produced by the increment must be unit and function tested by running Test
Cases that test the function specified by the scenarios designated to be developed in that

increment. After implementing the entire application, traditional function and system tests

can be run using executable "white" and "black" box Test Cases developed from Scenarios.

7.8 SUMMARY OF DEVELOPMENT PHASES 73

Thus testing is much more of an ongoing activity. This is one of the strengths of
object-oriented application development and greatly lessens the risk of building the wrong
application (by virtue of the ongoing feedback coming back from the testing).

In addition to the normal (but more frequent) testing of executable code, there are other
activities that must occur within each phase of the development process that might be con-
sidered to be testing activities. We refer to these activities as validation and verification of
work products. Validation consists of establishing that the right work product has been
built. Verification consists of checking that the work product has been built correctly.
Validation and Verification are so important to the object-oriented development process
that they are a fundamental part of each work product's development in our approach.

For purposes of this book, we will consider testing to mean the traditional testing of
product executable code, and we will treat validation and verification as an integral part of
developing a work product. This is discussed in Section 8.3, Validation and Verification
of Work Products. You will also find advice on verification of work products in each
work product description.

7.8 SUMMARY OF DEVELOPMENT PHASES

The following table shows a summary of the life-cycle phases.

Table 7-1 (Page 1 of 2). Development Phase Summary.

Activity 	 Work Products

Group requirements into Use Cases and
	

Problem Statement, Use Case Model, Non-
prioritize by importance, window of

	
functional Requirements, Prioritized

opportunity, and technical complexity. 	Requirements, Business Case, Acceptance
Plan

Allocate requirements to releases and/or

increments and plan activities that
	

Workbook Outline, Resource Plan,
Intended Development Process, Project

manage resource availability and other
	

Schedule, Release Plan, Quality Assurance
project constraints. 	 Plan, Risk Management Plan, Reuse Plan,

Test Plan, Metrics, Project Dependencies,
Issues

Analysis 	 of active objects that group related tasks

Problem 	 Develop solutions to scenarios in terms

Model, Scenarios, Object Interaction Dia-

Analysis Guidelines, Subject Areas, Object

and communicate with other objects in 	grams, State Models, Class Descriptions
order to complete them.

Design 	 the application.

User Interface 	Document how users will interact with
Layouts, UI Prototype
UI Guidelines, Screen Flows, Screen

Design Guidelines, System Architecture,

APIs, Target Environment, Subsystem

Model, Object Model, Scenarios, Object

Interaction Diagrams, State Models, Class
Descriptions, Rejected Alternatives

Phase

Requirements
Gathering

Project
Management

System Design 	Plan a solution to the problem examined

during analysis in terms of interacting

objects, within the constraints specified

by the Nonfunctional Requirements.

74 DEVELOPMENT PHASES 75

Table 7 -1 (Page 2 of 2). Development Phase Summary.

Phase 	 Activity 	 Work Products

Implementation Coding Guidelines, Physical Packaging
Plan, Development Environment, Source
Code, User Support Materials

Systematically code the classes specified
as a result of design in a programming
language according to documented
public/private interfaces so that they can
be built and installed on the target plat-
forms.

Testing Test Cases Insure that the application meets the
requirements set forth in the Problem
Statement and Requirements.

Part 3. Work Products

Project workbooks contain work products. This section of the book describes work
products that we recommend be built during the course of an object-oriented software
development project. They are grouped according to the sections described in Section 2.4,
"Workbook Structure" on page 20.

IMPACTED BY

2

M

C
T

I IMPACTED BY

P
ri

o
ri

ti
ze

d
 R

eq
u

ire
m

e
n

ts

N
on

fu
nc

ti
o

na
l

R
eq

u
ire

m
en

ts

Problem Sutement

• • Use Case Model

Nonfunctional Requirements

• • 4:: Prioritized Requirements

-7-

Table 8-2 (Page 1 of 2). Work Product Traceability.

2

1

Business Case

Acceptance

•1i

PIn

Intended Development Process

Project Workbook Outline

Resource Plan

Schedule

•

•

•
:.*.:

co

IMPACTS

IN
F

O
R

M
A

T
IO

N
 A

B
O

U
T

 W
O

R
K

 P
R

O
D

U
C

T
S

;N:

I
a
a

2.

1 LI
•

I B

LI

I

I C

•••••,,

B

•

•

111' 	

• :IC:

•

Release PIn

•
• •

•
•

Quality Assurance Plan

Risk Management Plan
it:44

Reuse Plan
114

••

Test Plan

•

•
Metrics

Project Dependencies

Issues • ** : • *: • :4 • *:
•
•

Analysis Guidelines

Subject Areas

•

Analysis Object Model

Analysis Scenarios

lysis GIDs

111 ;11

•
4.

•

•

•

•
11

4,4

Analysis State Models

Table 8-2 (Page 2 of 2). Work Product Traceability.
IMPACTED BY IMPACTS

Analysis Class Descriptions

User Interface Guidelines

Screen Flows •
Screen Layouts

Ul Pramype
11 '11 • •

Design Guidelines 4.
• • •

1 .11 . 1 '11 ' 11
System Architecture

III• • • • • • • • •
APIs

•
•

Target Environment •
Subsystems •
Design Object Model • • •
Design Scenarios

Design OlDs

Design Stale Models
•" lc

Design Class Description
• • 	 • 1 qt.t.

Rejected Design Alternatives 4. 11 : 1

Coding Guidelines
• I• • • 1•4

Physical Packaging Plan •
Development Envircmmem •

Source Code

User Suppon Materials

Thu Casa p •
Glossary

Historical Work Prodeuts

Note:

• Subsystems impact to subsystem workbooks install procedures.
• Historical work products should relate to their ancestors and descendanu
• Subject Areas work mcduct impacts the workbook of each Subject Are.

Legend:

Work products listed at left impact work products limed at lop when a • appears at the interseion : for example:

• Problem Siatement impacts Use Cue Model : Nonfunctional Requirements. Prioritized Requiremei : Business Case. Subject Areas: User Support Materials and Glossary.

• Alternatively. Analysis Object Model is impacted by Issues. Analysis Guidelines. and Analysis OlDs.

8
.6

 W
O

R
K

 P
R

O
D

U
C

T
 T

R
A

C
E

A
B

I LIT
Y

OD
CD

9.0 Requirements Work Products

The requirements chapter of the workbook represents the specification of the project. As
such it is an important part of the contract to which both customer and development team
bind themselves. The term "customer" is used here in its accepted sense, even though it is
understood that many development projects may not have a direct customer. In this case
the term should be understood to mean someone who is acting on behalf of customers of
the product in order to determine and validate requirements. This might in practice be a
potential user of the system, a domain expert, or a development team member nominated to
represent the technical interests of customers.

Customer involvement in some form or other is an important part of object-oriented
development, and a central part of requirements gathering in particular. The contract
between the development team and the customer may be formal or it may be informal but
the concept of an agreed contract is nevertheless important. Whether formal or informal, it
is obviously important that all parties agree in advance on the task to be performed. It is
vital that the requirements are expressed clearly, simply, and unambiguously. Both cus-
tomer and development team must understand the requirements, and it must be obvious
that their understandings are identical. Poorly understood or constantly changing require-
ments are a frequent cause of project failures. Achieving a common understanding of
requirements gives a project a much better chance of success.

The requirements section of the project workbook consists of the following work
products:

• Problem Statement

• Use Case Model

• Nonfunctional Requirements'

• Prioritized Requirements

• Business Case

• Acceptance Plan

These work products all "inherit" the common work product attributes described in Section
8.1, in addition to which they have specialized attributes of their own. The work products
and their specialized content are defined and commented upon in the following sections.

The first step towards a complete, formalized set of requirements is a Problem State-
ment, which is a succinct statement of the problem that the system is intended to solve.

A complementary work product is the Business Case, which presents the commercial
(or some other) justification for the project from the point of view of the development
organization.

91

92 REQUIREMENTS WORK PRODUCTS

The Problem Statement and Business Case together act as important points of focus for
the subsequent requirements-gathering activity.

There are many aspects to the requirements themselves. Broadly, requirements are
divided into functional requirements, which specify what the system is to do, and Nonfunc-
tional Requirements, which specify constraints on the system. Examples of nonfunctional
constraints are reliability and performance.

The work products of the requirements project phase are not directly related to the use
of an object-oriented software development approach at all. By their nature, they concen-
trate on the system interfaces, which after all, is how the system is going to be judged.
How the system will work internally is not of direct concern to the customer. Having said
that requirements are not directly related to the use of object technology, some forms Qf
requirements specification turn out to be more convenient starting points for object-oriented
development than others. One form that is very useful in practice for capturing functional
requirements is the Use Case Model. Other forms of requirements work products may
additionally, however, be necessary in order to conform to organizational development
standards. For example, what is traditionally known as a functional requirements document
is a list of the features that the system will support. This kind of document usually dupli-
cates material presented in a Use Case Model. If possible, the two should be brought
together, for example by using the Use Case Model work product as the format for the
functional requirements document.

The Prioritized Requirements work product defines the overall priorities of the system
requirements by looking at both the functional requirements, represented by the Use Case
Model, and Nonfunctional Requirements.

The final requirements work product is the Acceptance Plan, which is the way in which
the customer agrees to decide whether the system does indeed satisfy the requirements.
The Acceptance Plan closes the contractual loop and binds the technical requirements to
the contract of which it is a part.

Of course, the set of requirements work products described above is not necessarily
sufficient to satisfy a development team that the project is feasible within the constraints.
Only by actual development or prototyping effort, and other means such as adopting and
exploiting an iterative and incremental schedule, may the risks of commitment to a set of
requirements be reduced; almost certainly they cannot be eliminated entirely. The point
being made is that the existence of particular requirements work products in this chapter
does not mean that only these should be produced prior to a developing team committing
to develop a solution that addresses the requirements. How much development or proto-
typing effort should be expended before commitment is as much a political and economic
question as a technical one.

Similarly, a customer may require that considerable analysis is performed before
agreeing to a requirements document. There may also be projects that are so complex that
much analysis is needed to gain a good understanding of the requirements work products.
The requirements chapter of this book contains only those work products that are unique to
requirements gathering. The process of requirements gathering may in addition necessitate

9.1 PROBLEM STATEMENT 93

the production of work products that are normally associated with other project phases, and
hence documented in other chapters of this book.

9.1 PROBLEM STATEMENT

Description

A Problem Statement should describe the business requirements of the application to be
developed. These are not functional requirements but a short description of the business
problem that the application should solve. The Problem Statement does not say what the
application should be or do, but instead concentrates on why it is needed at all.

It should be written by people familiar with the domain and the focus should be on the
business needs of the intended users. Design and implementation topics should not be
present; however, it is valid to address needs such as integration with an existing environ-
ment.

Purpose

This is done to communicate to everyone involved what the project objectives are. By
writing a Problem Statement, you ensure common understanding and agreement. While it
may surface issues or areas of disagreement, the sooner this is done the better.

Participants

The customer writes the Problem Statement. It may be written by an executive, or a
project manager, or someone paying for the development effort.

Timing

Preferably before any work on a project begins.

Technique

Have the customer write a brief text answering:

1. What are we trying to accomplish?

2. Why are we making this effort?

Do not be concerned with how the problem will be solved.

Strengths

• A Problem Statement provides a way of determining whether everyone connected with
the project agrees on its objectives.

• It can put the project into context for the development team.

• Problem Statements help to identify candidate objects (nouns) and behaviors (verbs).

94 REQUIREMENTS WORK PRODUCTS 9.1 PROBLEM STATEMENT 95

• They are good for determining application boundaries.

• They usually generate questions about scope, function, et cetera.

Weaknesses

• Problem Statements are rarely complete and are often incorrect.

• Achieving consensus on the Problem Statement can be challenging.

• It can be difficult to write for a project that is aimed at creating something new, rather
than automating or improving some existing process or service. If new roles are being
created, it is often difficult to find someone able to articulate what the new world will
look like.

Notation
Free format text.

Traceability
This work product has the following traceability:

Impacted by:
	 Impacts:

• Issues (p. 176)
	 • Use Case Model (p. 96)

• Nonfunctional Requirements (p. 106)
• Prioritized Requirements (p. 111)
• Business Case (p. 115)
• Subject Areas (p. 187)
• User Support Materials (p. 341)
• Glossary (p. 355)

Advice and Guidance

1. The Problem Statement should be reviewed at the first team meeting when the project
is initiated.

It is important that the team have a shared understanding of what the business purpose
of the project is. Look for and record issues.

2. Completeness and correctness

Note that a Problem Statement is rarely complete or correct. It may be written by
someone who may not have a working knowledge of the day-to-day operations of a
particular area. Therefore, you should always review the Problem Statement with
people working in the domain.

3. Avoid things like "be best of breed" unless competitive analysis is an aspect of the
project (i.e., it can be clearly articulated what it means to be "best").

4. Consensus

When the project is started, there may be a lack of consensus or even disagree-
ments on the accuracy of the Problem Statement. This may happen because the
sponsor is not familiar with the day-to-day operations of the business problem being
addressed. If this is the case then a consensus must be achieved. The team may wish
to rewrite the Problem Statement and then review it with the project sponsor(s).

It may also be that there is not a consensus within a business area and this must be
addressed and addressed. While this can be time consuming, the alternative (noncon-
sensus) is not desirable.

5. Additional information this work product should contain:

• Objectives
• Highest priority problem (may be useful when weighing trade-offs)
• Intended users

6. The typical Problem Statement is between one-half and two pages in length.

Verification

• Check that the problem and not the solution is described.

• Check that the Problem Statement includes an explanation of why a solution is needed
(preferably from a business perspective).

Example(s)

The following is a Problem Statement from an object-oriented project to develop an Educa-
tion Administration application:

Our company spends over $5 million a year on education for our employees,
but we don't know where the money is going or if it is being spent effec-
tively. We are not sure if we are getting value for our money (for example,
is the education being purchased helping us to meet our company's strategic
objectives?).

There is a concern in management that some employees are getting too
much or too little education. Some staff are required to maintain their pro-
fessional standing by completing certain courses. Others are expected to
attend courses as part of their career development.

We are looking for some means of tracking and measuring the effective-
ness of our education spending. It has been suggested that a means of doing
this might involve creating a catalogue and tracking staffs education and
doing evaluations and follow-ups.

An external consultant has suggested that this education tracking system
should be tied in to our Human Resources system.

96 REQUIREMENTS WORK PRODUCTS 9.2 USE CASE MODEL 97

References

See [Rumbaugh91 a] for discussion and an example of a Problem Statement.

Importance
Essential. It is critical for the entire team to understand the reasons for the project. If you
can't articulate this, then the project could be in serious trouble.

9.2 USE CASE MODEL

Description

A Use Case Model is a convenient form in which to express top-level functional require-
ments. A Use Case Model consists of a set of actors (representing external agents), Use
Cases (representing usages of the system by the actors or vice versa), and links . between
the actors and the Use Cases.

A Use Case Model is the central part of a requirements document for the object-
oriented development approach recommended in this book. It states what the proposed
system is to do. This is in contrast to the Nonfunctional Requirements that impose con-
straints on the system: performance, reliability, availability, et cetera.

A Use Case describes a particular, observable, system behavior. An observable
behavior is one that is visible externally via a system interface. The set of observable
behaviors define the functional system requirements. Use cases are guaranteed to be
observable by the fact that they must be connected to one or more actors. Examples of
Use Cases are Query bank account and Aircraft enters controlled airspace. Examples of
actors are Customer and Radar. Actors may be human users or other systems such as
database management systems.

A Use Case Model and the Analysis Scenarios (see Section 11.4) which are derived
from it together constitute a complete set of functional requirements. Particularly if the
same person or team is responsible for both the Use Case Model and the Analysis Sce-
narios, as is• often the case, the Use Case Model, itself, need not be particularly detailed.
Detail can be added during analysis. The degree of detail required is, of course, related to
the formality of the requirements document as a legal contract. Use case models are ini-
tially highly informal, but through iterative analysis phases they become more formal and
more complete. Actors and Use Cases are usually documented using a combination of
diagrams and text.

Some development organizations require functional requirements to be captured using a
particular format, usually a flat list of system features. Such a functional requirements
document is no replacement for a Use Case Model, although it can be used as a good
source of information from which to construct one if the document already exists. If not,
then the Use Case Model should be written first and the functional requirements document
derived from that.

Purpose
A Use Case Model captures the customer's expectations of the functionality of the system.
This must be expressed clearly so that both sides can commit themselves to the project
requirements, so that misunderstandings can be avoided.

It is vitally important that the requirements document, in general, and the Use Case
Model, in particular, are written so that it can be easily understood by customers, domain
experts, and end users. If customers cannot understand the functional requirements, they
will not feel committed to them. If users or domain experts cannot understand the func-
tional requirements, they will not be able to check that the requirements are correct. The
intuitive and simple form of a Use Case Model helps to achieve this common under-
standing.

A Use Case Model, as opposed to any other format, is used to represent top-level func-
tional requirements, because it emphasizes interfaces and end-to-end functionality. When
you identify an actor in a Use Case Model, you are making a statement about where the
boundary of the system is, and about what interfaces the system will need. When you
identify a Use Case in a Use Case Model, you are describing how the system will be used
by one or more of the actors, or how actors will be used by the system.

There is no chance of falling into the common trap of making internal design state-
ments because only observable behaviors can be Use Cases. This is so because they must
be linked directly to actors. This helps the Use Case Model to ensure that it concentrates
on the system boundary, and not on internal structure, mechanisms, or algorithms. If
internal details such as these are allowed to creep into requirements documents, the docu-
ment will become unwieldy, it will not be understandable by potential users, and it may
constrain design unnecessarily.

Participants

Who defines the Use Case Model depends on the context of the project. Whoever defines
the requirements, it is the responsibility of the project manager to ensure that they arc
formalized appropriately, that they are adequate, and that the customer understands them.

If possible, the Use Case Model should be written by a small team which represents
both the customer and the development team (analysts) and includes the project manager
and the team leader. At least one domain expert should be included, as well as one end
user, if possible. As mentioned in the introduction to this chapter, it is important that
customer interests are represented. If the development team has no direct customer, a
potential end user should take this role.

Timing

The Use Case Model forms part of the contract between the customer and the development
team; it is written before any commitment is made on either side.

The Application

Use case 1

Actorl

Use case 2

Use case 3

Actor2

Figure 9-1. The Form of a Use Case Diagram.

Figure 9-1 shows how a Use Case Model may be shown in a diagram. The box represents
the system to be constructed. Inside the box are the named Use Cases that are to be
supported by the system. The Use Cases are shown with their links to the external, named
actors. One could imagine using different graphics to represent different kinds of actors,
for example external systems as opposed to humans, although this is by no means neces-
sary. A very small system might be shown on one diagram such as this. A larger system
might use several. While little by way of concrete requirements are shown on this kind of
diagram, it is very good at indicating the nature of the system interfaces in an intuitive
manner.

Links between actors and Use Cases are directional, with the direction indicating which
of the two (the system or the actor) initiates communication. An actor may be linked to
many Use Cases, and a Use Case may be linked to many actors.

Other forms of notation can be added to a Use Case diagram to express, for example,
inheritance between actors, and uses or extends relationships between Use Cases. See
[Jacobson92] for a full description of the possibilities. These extensions should only be
used if they aid understandability of the Use Case Model in practice.

In addition to the Use Case diagram, textual descriptions of each Use Case and actor
should be provided. For each Use Case, a template of the following form may be com-
pleted.

98 REQUIREMENTS WORK PRODUCTS 	 9.2 USE CASE MODEL 99

Technique
A starting point for the Use Case Model is the Problem Statement. This is a succinct
statement of the problem that the system is to solve. Turning the Problem Statement into a
Use Case Model involves discovering exactly where the boundaries of the system are, who
the users of the system are, and what each type of user expects from the system. This is
usually done by interviewing or observing users and domain experts. Involving these
people in regular reviews of the Use Case Model is very important.

Naturally, not all user expectations can be met, and the authors of the Use Case Model
must bear in mind that requirements have costs. The Problem Statement and the Business
Case together help to decide which expectations are reasonable.

Strengths
A simple, clear Use Case Model capturing functional requirements encourages commitment
and enthusiasm by customers and end users, as well as the project team. This is a prereq-
uisite for success. Vague or ambiguous functional requirements virtually guarantee prob-
lems later in the project life cycle.

Weaknesses
The Use Case Model is not typically a standard format for a functional requirements docu-
ment. If feasible, consider adjusting your development process to bring it into line with
planned object-oriented development deliverables by using a Use Case Model as the format
for the functional requirements document. If that is not possible and you need to do both a
Use Case Model and a business as usual functional requirements document, try to do it in
such a way as to avoid confusion and redundancy of information. While a Use Case
Model is not a conventional format, it covers conventional needs and should be a more
than adequate replacement.

Notation
A Use Case Model of functional requirements is best documented using a combination of
diagram and text.

100 REQUIREMENTS WORK PRODUCTS 9.2 USE CASE MODEL 101

Impacted by:
• Problem Statement (p. 93)
• Issues (p. 176)

For each actor, a template of the following form may be completed.

Impacts:
• Prioritized Requirements (p. 111)
• Acceptance Plan (p. 119)
• Test Plan (p. 164)
• Subject Areas (p. 187)
• Analysis Scenarios (p. 203)
• Screen Flows (p. 237)
• Screen Layouts (p. 242)
• UI Prototype (p. 247)
• User Support Materials (p. 341)

Use case name
Definition
Notes

Actor
Definition
Notes

The names of the actors and Use Cases connect their textual descriptions to their represen-
tations in the Use Case diagram. The Definition slots provide space for the actors or Use
Cases to be described in whatever detail is considered appropriate. The templates also
contain slots to enable notes to be recorded. Design or interfacing ideas, suggestions,
and/or constraints will arise during requirements gathering. The Notes slots enable these
comments to be noted while still separating requirements from design detail. Interfacing
notes may consist of or refer to sketches of Screen Layouts, GUI Prototypes, or relevant
standards such as CUA or RS-232C.

The pictorial representation shown in Figure 9-1 is often a very convenient way of
showing the links between actors and Use Cases. An alternative format for representing
the same information, which may be more suitable for large systems, is a two-column table
of actors and Use Cases. Yet another way of representing the actor to Use Case links
would be to augment the textual actor and Use Case templates with a Links slot. It is vital
that the links between actors and Use Cases are defined. The method of representation can
be chosen to suit the tools available for the size of project.

Traceability
This work product has the following traceability:

Advice and Guidance

• Involve customers, domain experts, and end users in the formulation and review of the
Use Case Model.

• Drive all development activity from the Use Cases—analysis in particular. All devel-
opment activity should be traceable back to the Use Cases. This ensures that only the
required system is built. A practical way of doing this is the scenario-driven approach
to development described in Section 18.7.

• Drive the system acceptance tests from the Use Cases, thus closing the project loop.

• If a particular format of functional requirements document has to be written, build the
Use Case Model first and derive the functional requirements document from that. This
is the preferable way round as the Use Case Model is a good vehicle to use for com-
municating with customers and users, and hence it is appropriate to agree on the Use
Case Model first. If a functional requirements document already exists, then the infor-
mation contained in it should be used as input to a Use Case Model which should still
be reviewed in its own right with customers, domain experts, and users.

• Consider the Use Case Model and the Analysis Scenarios as a complementary pair of
work products. The Use Case Model identifies system boundaries, external agents,
and top-level system requirements; the Analysis Scenarios elaborate on the require-
ments and tease out the behavioral variations of the system. Together they constitute
the functional requirements of the system. They may also be considered to be the
abstract functional specification of the system. The specification is abstract in the
sense that it omits interfacing details. These details are added during design; the
Design Scenarios may be considered for the concrete functional specification of the
system.

• If the system being defined is large, then there may well be a large number of Use
Cases. In this situation the Use Cases must be organized in some manner. The organ-
izing principle chosen should be consistent with the way that the requirements will
subsequently be analyzed, in order to simplify that analysis.

For example, if the system is a real-time one, and the analysis is largely driven by
state models, then it will be appropriate to organize the Use Cases according to the

102 REQUIREMENTS WORK PRODUCTS 	 9.2 USE CASE MODEL 103

possible states of the system. If the system is more static, then the analysis is likely to
be driven more by the object model, and it will be more appropriate to organize the
Use Cases according to the parts of the system that they affect. This process is eased
if a domain analysis has already been performed (see Section 18.1) and problem
domain classes have already been identified. Use cases can then be grouped according
to the classes to which they relate.

• A Use Case Model should not be avoided because of the amount of detail that is
apparently required. A minimal Use Case Model would consist of a list of actors, a
list of Use Cases, and a representation (pictorial or otherwise) of the links between
them. A minimal Use Case Model such as this would be well worth doing and main-
taining.

• Do not duplicate information between the Use Case Model and the Analysis Scenarios.
Only document the Use Case Model sufficiently to enable the Analysis Scenarios to be
written.

• Don't forget to include external systems as actors.

• If the Use Case Model is part of a workbook describing a subsystem, then the other
subsystems will appear in the Use Case Model as actors.

• Feel free to record design or interfacing notes in the Notes slot of a Use Case or actor
template, but be sure that these are not confused with requirements.

• Each Use Case and actor should be documented textually using no more than one page
unless it is exceptionally complex. As a rule of thumb, it will take about one day to
define each Use Case, but this will depend on familiarity with the domain and the
degree to which the system boundaries and the system requirements are "obvious."

• To estimate the total number of Use Cases, spend an hour drawing a Use Case
diagram. Count the Use Cases identified and add 25 to 50 percent depending on how
familiar you think you are with the domain.

• If the estimated number of Use Cases exceeds 50, either your Use Cases are too small
(closer to Scenarios, see Section 11.4) or you should consider splitting the project into
subprojects.

• Large numbers of Use Cases need to be grouped in some way for convenience and
clarity. This can either be done by subject area or by Actor. Grouping by Actor
consists of asking each Actor, in turn, which Use Cases that Actor is involved in, and
then documenting these Use Cases as a single group. These groups will naturally
overlap as some Use Cases are related to more than one Actor. When this happens,
simply document each Use Case once fully, somewhere, and reference this documenta-
tion from each duplicate. If the lists are simply of names, with each Use Case being
described more fully in a separate, flat list, then the problem of duplication is not
important.

• Grouping by subject area consists of first identifying distinct areas of concern. These
might follow an already completed partitioning of the system into subsystems, or they
may stem from a natural decomposition in terms of business domains, for example,
Administration, Accounts, Security, et cetera. Each subject area is then visited in turn,
and the Use Cases in the subject area listed. Duplicate entries in multiple lists are
unlikely in a grouping by subject area.

• Use the Use Case Model as an important vehicle of communication with customers,
users, and domain experts. The intuitive nature of the model will facilitate this. Use
the model to check both completeness and correctness with customers. This is most
easily done by explaining each group of Use Cases, whether grouped by subject area
or by Actor, and trying to find gaps, misplaced system boundaries, additional Actors,
errors, and the like.

• The Use Case Model can also be used as the basis for interviewing customers to deter-
mine requirements. Such an interview would consist of asking which people are to
use the system, which reports are to be generated, and with which external systems the
system is to interact. This information results in a draft list of Actors. The Use Cases
related to each Actor can then be teased out by asking the different roles of each
Actor, and how each Actor is to use (or be used by) the system in each role. It may
be that it is the roles that form the Actors, instead of the Actors that were originally
identified. Actors should be logically distinct agents rather than physical people or
systems. As the Use Cases are listed, or subsequently, they can be marked to indicate
their subject area. All the identified Use Cases in a particular subject area can then be
extracted and examined for completeness. Almost certainly this cross checking will
find omissions. Many variations on this kind of interview are possible.

Verification

• Check that actors and Use Cases are connected appropriately. This can be done by
considering all possible roles of each actor, and all tasks of each actor in each role,
and ensuring that every task is enabled by adequate connections to the appropriate Use
Cases. If the system uses the actors, instead of the other way round, the analysis
should also be reversed: Ask about the roles and tasks of the system, and whether
they are adequately covered by connections to actors.

• Check that the Use Case Model includes a representation of the system boundary.

• Check that the descriptions of each Use Case focus on visible system functionality and
not on the internal behavior of the system.

Example(s)

Figure 9-2 shows a Use Case diagram for a fax recognition and forwarding application.
The application has interfaces to three actors: users, administrators, and fax devices.

• -

Fax
device

User /

•
111

Receive
fax

Inform
recipient
of
arrival of
fax

View
fax

Query
incoming
faxes

Report log
and
statistics

Maintain
recipient
register

Maintain
sender
register

A inistrator •

Maintain
personal
details

Figure 9-2. An Example of a Use Case Diagram.

The description of the Receive fax Use Case might look like the following:

104 REQUIREMENTS WORK PRODUCTS
9.2 USE CASE MODEL 105

Use case name 	Receive fax.

Definition 	 The action of receiving an incoming fax, determining its intended
recipient user if possible, and notifying that person. When a fax is
received, the fax sheet images are stored. Optical character recognition
is performed to determine the recipient, sender, and subject of the fax.
If a recipient is discovered, she is notified of the fax arrival. In any
case, the fax is added to the incoming fax list.

Notes 	 • Use a list of known cover page patterns to aid cover page interpre-
tation.

• Maintain a database of known senders and recipients, and the
mapping from senders to the cover page patterns that they use.

• Think about notification by voice mail in release 2.

The description of the User actor might look like the following.

Actor name
Definition

Notes

User.
A human user of the fax recognition application. Users must be
known to the application; their details are defined by an administrator
and maintained by the user herself.
Users using the fax application are notified of the arrival of a fax
message by a dialog window that appears on their workstation. The
dialog box has a button so that the user can ask to view the fax.

References
See [Jacobson92) for a full presentation of Use Cases and their role in driving the develop-
ment process. Jacobson uses Use Cases in a different way to that proposed in this book.
Jacobson positions Use Cases as the centerpiece around which all development activities
are structured. In this book we advocate placing Scenarios in that role instead of Use
Cases. Our reasons are the following.

• Scenarios describe end-to-end behaviors that connect requirements, development work,
and test cases in an intuitive and straightforward manner. We use Use Cases to deter-
mine system boundaries and to serve as the roots from which Scenarios are subse-
quently derived. The Use Cases that flow from a Jacobson Use Case Model are not
necessarily end to end; many of the Jacobson Use Cases are components of the top-
level, initial Use Cases.

• Introducing Scenarios allows a useful separation of concerns: a Use Case Model is
used to determine the system boundaries and the top-level system behaviors. Sce-
narios are then used to tease out the assumptions, outcomes, and variations of each of
these. The Jacobson form of Use Cases cannot be conveniently used in this way.

• A focus on Scenarios yields a declarative description of a system in terms of visible
behaviors and what these behaviors mean. This leaves the designer maximum freedom

106 REQUIREMENTS WORK PRODUCTS 9.3 NONFUNCTIONAL REQUIREMENTS 107

to structure the system as she wishes. A Jacobson Use Case analysis tends to
encourage a much more operational style of system description that might lead to pre-
mature design.

Importance

Functional requirements are essential in some form. We recommend that functional
requirements be represented as a Use Case Model and Scenarios.

9.3 NONFUNCTIONAL REQUIREMENTS

Description

Nonfunctional Requirements are the collection of system requirements that are not directly
related to what the system should do. Examples of Nonfunctional Requirements include
statements of reliability, availability, performance, and details of components (hardware and
software) that are to be used or reused. Nonfunctional Requirements usually take the form
of constraints on how the system should operate.

Nonfunctional Requirements involving constraints on hardware and software compo-
nents are often represented pictorially.

Purpose
The Nonfunctional Requirements are a vital component of the requirements document.
While the functional requirements drive the analysis process, the Nonfunctional Require-
ments drive the design. For example, performance constraints will be one factor deter-
mining the application Architecture, but they do not affect the analysis of the problem.
Another example is the Nonfunctional Requirement that distributed clients and servers
should run under OS/2 using TCP/IP sockets for communications. Once again, this affects
system design, but not problem analysis.

There is one sense where Nonfunctional Requirements can impact problem analysis:
Nonfunctional Requirements may shed light on the external agents with which the system
must interact. These agents may well then become actors in the Use Case Model that
documents the system's functional requirements, see Section 9.2.

Like all other aspects of system requirements, it is essential that Nonfunctional Require-
ments are expressed clearly and understood by all parties.

Participants

The planners, project manager, and team leader set the Nonfunctional Requirements with
customer representatives.

Timing

Nonfunctional Requirements are identified and agreed on as part of the requirements gath-
ering phase.

oTOveneecr hwthnaeyi Use Case Model that represents the top level of functional requirements, see
Cituoegenerate or to check the coverage of Nonfunctional Requirements, is to pass

Section 9.2. For each Use Case and for each Actor to Use Case link, ask what are the
appropriate constraints. For each such interface, the Nonfunctional Requirements related to
some predefined set of headings should be listed. The set of headings should include:

• Reliability
• Availability
• Security
• Performance
• Standards
• Look and Feel.

Also, any components, hardware or software, that the system must, or should, use should
be listed or depicted graphically.

Strengths

Clear statements of Nonfunctional Requirements are vital to avoid surprises later in the
development process. Design churn is one symptom of indecision over Nonfunctional
Requirements.

Weaknesses

None.

Notation

Free format text augmented by diagrams, if appropriate, showing constraints on hardware
and software configurations. Nonfunctional Requirements may be grouped under headings
such as those mentioned above.

Traceability

This work product has the following traceability:

Impacted by:
• Problem Statement (p. 93)
• Issues (p. 176)

Impacts:
• Prioritized Requirements (p. 111)
• User Interface Guidelines (p. 234)
• Screen Flows (p. 237)
• Screen Layouts (p. 242)
• UI Prototype (p. 247)
• System Architecture (p. 257)
• APIs (p. 265)
• Target Environment (p. 272)
• Subsystems (p. 274)
• Design Object Model (p. 281)
• Design Scenarios (p. 293)
• Design OIDs (p. 298)
• Design State Models (p. 306)
• User Support Materials (p. 341)

Advice and Guidance

• Use a set of standard headings, such as those listed above, to organize and to check
the completeness of Nonfunctional Requirements.

• Consider prototyping activity to determine realistic constraints.

• Ask "What if?" questions to check the completeness of the Nonfunctional Require-
ments.

• Some constraints will be on the border between functional and Nonfunctional Require-
ments, such as user interface constraints. Document them in one place and reference
them from the other.

• Include Nonfunctional Requirements that refer to how the system might be expected to
change in the future. This will be very valuable when it is decided what flexibility to
build into the design.

• Include Nonfunctional Requirements that refer to the hardware and software environ-
ment in which the system must run, but include only those environmental constraints
that are truly requirements and not just design expectations. Design decisions about
the software environment, as opposed to imposed requirements, should be documented
in the Architecture work product, see Section 13.2. Use the Target Environment work
product, see Section 13.4., to document hardware environment decisions.

9.3 NONFUNCTIONAL REQUIREMENTS 109 108 REQUIREMENTS WORK PRODUCTS

Verification

• Check for coverage by preparing a list of the broad areas that are appropriate to be
covered by Nonfunctional Requirements. (This list will vary depending on the type of
application and Development Environment.) For each of these areas, check that ade-
quate Nonfunctional Requirements have been produced.

• Check that each Nonfunctional Requirement is in fact nonfunctional, that it is a con-
straint on system behavior and not a description of new behavior.

• Check that each Nonfunctional Requirement is really required. In particular, check
that it is not an attempt to do some premature design.

• Check for contradictions between Nonfunctional Requirements.

• Check for tensions between Nonfunctional Requirements and record these as Issues.

Example(s)

Nonfunctional Requirements for an application with a GUI might include the following.

• All queries must be completed within 0.5 second.

• All updates must be completed within 1 second.

• The system should support up to 20 concurrent users.

• MTTF (Mean Time to Failure) should be at least three months.

• Object technology should be used as a development technology to ease future mainte-
nance and enhancement.

• The IBM Open Class collection class library should be used to represent all collection
classes.

• Distributed System Object Model must be used for interprocess communications.

• User interfaces must conform to IBM's Common User Access (CUA '91) standards.

• The hardware architecture shown in Figure 9-3 is to be used as a customer require-
ment.

Sorter

Image
processing
sorter server

i t 	I

Sorting
workstation

Image
processing
server

Sorting
workstation

110 REQUIREMENTS WORK PRODUCTS

Image
processing
server 	•

PS/2
90

.rma
1111111111011

- 7•Z'wrIt17.7-•=;701Y

PS/2
90

RS 232C

Figure 9-3. Example Environment Requirements Diagram.

PS/2
90

Sorting
workstation

9.4 PRIORITIZED REQUIREMENTS 	111

9.4 PRIORITIZED REQUIREMENTS

References
None.

Importance
Essential. Clearly understanding the Nonfunctional Requirements for a system is critical to
ensuring that the system built satisfies the full breadth and depth of customer requirements.

Description
The Prioritized Requirements work product defines the relative priorities of system require-
ments: both the functional requirements that are represented by the Use Case Model and
the Nonfunctional Requirements. The prioritization can be formal or informal as appro-
priate and should reflect the views of the customer and users.

Note that a Prioritized Requirements primarily represents input from the customers and
users. By itself it cannot dictate the priorities of the development team as these are also
affected by dependencies between requirements, development risks, et cetera. This infor-
mation must be factored in before scheduling decisions are made.

Purpose
Whether the customer and potential users have been involved in the writing of the Use
Case Model and the Nonfunctional Requirements, these two work products alone do not
contain sufficient information to permit planners to begin to construct a Release Plan. Two
further kinds of information are required: the importance of each requirement, and the
urgency of each requirement.

It is very easy, when interviewing customers or users, for requirements to take the form
of "wish lists" of functionality that would be nice to have but which are not necessarily
essential. It is clearly important for a development team to be know which requirements
are vital and the ones that are wishes. Similarly, and particularly if delivery of the system
is to be phased over a long period, the relative urgency of requirements is very relevant.
Customers cannot necessarily have all their requirements satisfied. Both when constructing
the initial Release Plan and subsequently during development, trade-offs will have to be
made. Requirement X will take longer than we thought: Should we slip it or hit that
deadline at the expense of requirement Y? In such situations it is obviously necessary for
the priorities of the customer and the development team to be in tune. Disappointment and
surprise will be the results otherwise. Customers might be willing to accept a slippage in
the overall schedule if certain key features are provided early. You need to find out what
those key features are.

Participants
The customer, project planner, project manager and team leader are the people most
directly involved in writing this work product.

Timing
Prioritized Requirements is written as part of the process of requirements gathering. If it is
necessary for requirements to be prioritized in great detail, then it may continue into the
analysis phase.

9.4 PRIORITIZED REQUIREMENTS 	113 112 REQUIREMENTS WORK PRODUCTS

Technique
The basic technique for prioritizing requirements is very simple: The requirements are
listed, and customers and users are asked to evaluate the relative importance and urgency
of each. The role of the planner, manager, and team leader is to ensure that the customers
and users understand the costs and other implications of each requirement.

The degree of detail appropriate for a Prioritized Requirements will vary from project to
project. For example, a small project with a "friendly" customer can afford to be fairly
informal in its prioritization. On the other hand, a large, complex project must be prior-
itized in greater detail. You will have to decide the appropriate level of detail for your
project.

Detail is introduced in two ways: when listing requirements and when prioritizing
them. When listing requirements, one can be content with working at the Use Case level
only. Alternatively, one might wait till Analysis Scenarios are available and prioritize at
that level (similarly for priority levels). When deciding the relative urgency and impor-
tance of each requirement, at whatever level of detail the requirement is described, a coarse
or a fine grain spectrum of options might be used. No one level of granularity will fit all
projects.

Strengths
Making the priorities of the customers and users explicit in this way reduces the risk of
surprises and shocks later. It also helps the development team to make the inevitable
trade-offs that arise in design in a consistent and hence effective way.

Prioritization is the language of negotiation. It is both natural and vital to prioritize
when faced with project risks.

Weaknesses
In a very small development effort with few requirements and where no incremental
releases are planned, prioritization of requirements may not be needed.

Asking customers to prioritize requirements might seem inappropriate for someone who
is trying to present a "can do" image. Why ask about priorities if I want to create the
impression that I can do anything? If you can in fact do anything then you can forget
about prioritization; the rest of us need a way of knowing how to deal with resource con-
straints, with unseen design difficulties, and with all the other kinds of project risks, in
ways that will be acceptable to the customer.

Notation
The precise format of a Prioritized Requirements will depend on the size and nature of the
project, as suggested above. In general, however, the project requirements are listed, and
each requirement is assessed for both urgency and importance. For most projects it is
adequate to list functional requirements at the Use Case level; it is probably not necessary
to descend into the detail of Analysis Scenarios. It will probably be necessary to prioritize
each Nonfunctional Requirement separately.

For each requirement, its urgency and importance can be specified in greater or lesser
detail. For many projects a three-value scale for each is probably appropriate.

Importance 	1 (vital), 2 (important), 3 (would be nice)

Urgency 	1 (immediate need), 2 (pressing), 3 (can wait)

Requirements can either be listed by name, by numerical or other identifier, or the
prioritization can be added to the Use Case Model and Nonfunctional Requirements work
products directly. If the prioritization is separate from these other work products, then a
simple three row or column table is adequate.

Traceability

This work product has the following traceability:

Impacted by:
	

Impacts:
• Problem Statement (p. 93)

	
• Acceptance Plan (p. 119)

• Use Case Model (p. 96)
	 • Resource Plan (p. 135)

• Nonfunctional Requirements (p. 106)
	

• Schedule (p. 139)
• Issues (p. 176)
	

• Release Plan (p. 144)
• Risk Management Plan (p. 152)
• System Architecture (p. 257)

Advice and Guidance

• Involve customers, users, development team members, and management in prioritizing
requirements.

• Once you have drawn up the Prioritized Requirements table, go back to the Accept-
ance Plan, which should identify the acceptance tests that are most important to the
customer. If you meet 95 percent of the customer's requirements and the customer
tests first the 5 percent you didn't meet, you will have failed in the customer's eyes.
On the other hand, if you meet the most important 5 percent of customer requirements
(those that the customer will test first), you will probably have earned the customer's
willingness to tolerate some lower priority fixes if needed.

• Start with a coarse-grained set of urgency and importance values as suggested above.
Only if these result in too little information should you then use a more fine-grained
spectrum of possibilities.

114 REQUIREMENTS WORK PRODUCTS 9.5 BUSINESS CASE 115

• Start with prioritizing Use Cases and only if this is problematic, or if you estimate that
particular, individual Use Cases involve great effort, should you switch to prioritizing
functional requirements at the Analysis Scenario level.

• The Prioritized Requirements framework can be extended to deal with more than just
input from customers and users. Additional columns or rows could list estimates of
risk, complexity, et cetera. This information, in addition to dependencies between
requirements, can then be used as direct input to the scheduling process. An additional
row or column, a "scheduling prioritization index" might be added as a rough numer-
ical aggregate of the rest of the information accumulated for each requirement.

• Adding the prioritization information directly to the Use Case Model and Nonfunc-
tional Requirements work products makes sense, if they do not fragment the informa-
tion unacceptably. If the prioritization information is not entered as a separate table
then it must be possible to extract this table from the other work products. This
depends on tool support.

• Be sensitive to the statements of the customer and users. If they seem to imply that
part but not all of the functionality of a Use Case is vital, then explore this further
with Analysis Scenarios, if only informally by asking about different situations.

• It may well be that it is appropriate to prioritize at the level of Scenarios instead of
Use Cases, but be selective; do not do this automatically and uniformly.

Verification

• Check that writing the Prioritized Requirements has yielded real information. Having
all requirements listed with importance "2" is not useful. In such cases either use a
finer-grain set of values and/or force the issue by asking questions such as "What if I
could only supply this or that. Which would you choose?"

• Check that prioritization has been adequately detailed for listing requirements. If you
anticipate that particular Use Cases will be refined into many Analysis Scenarios then
try prioritizing a few of the Scenarios to see whether their priority values differ from
those of their Use Case.

• Present the prioritization table to the developers and ask for their feedback. They may
have insights into risks and complexity that warrant additional questions being asked
about priorities.

• Small projects might well make do with an informal statement of priorities. A few
lines of text might be sufficient to say what is most important and pressing, and what
can be slipped or dropped if necessary.

Example(s)
The following is a simple example of a Requirements Prioritization. The scale of urgency
and importance values is as suggested in the Notation section earlier in this work product
description.

Table 	9-1. An Example of a Requirements Prioritization.

Requirement Importance Urgency

Export to spreadsheet 2 3

Determine net worth 1 1

Get detailed changes 1 2

Purchase securities 1 2

Transfer funds 1 2

Make loan application 1 3

References
There are no references for this work product.

Importance
Optional, but very important for projects that may have more requirements than available
resources can reasonably handle.

9.5 BUSINESS CASE

Description
A Business Case provides a justification for the undertaking of a project. The Business
Case is complementary to the Problem Statement: The Problem Statement states the
problem to be solved whereas the Business Case justifies the effort. There are two kinds
of Business Case that one encounters: quantitative, which is based on hard measurements
(e.g., cost-benefit analysis); or qualitative, which is based on something less tangible and
not necessarily measurable (here, the move to objects may be based on a sponsor's vision
and may not be subject to a cost-benefit analysis).

Besides providing the justification for a project, a Business Case is important as a focus
for requirements. For example, if a Business Case rests on the project feeding certain
reusable parts into a parts center then this commitment must be taken into account during
all development phases.

A Business Case has to justify a project from a business perspective. It often takes the
form of a cost/benefit analysis. The cost of the project is an estimation of the resources

ir

116 REQUIREMENTS WORK PRODUCTS 9.5 BUSINESS CASE 	117

that it will consume. The benefits of the project have many possible sources including the
following:

• Revenues

• Productivity

• Customer goodwill

• Accomplishment of organizational mission statement

• Development experience gained, for example the project will result in three developers
sufficiently trained in C++ design and coding that they can work independently in
future projects

• Reusable components, for example, a telephony domain analysis and a framework for
simple telephony applications that can be reused in a future application.

Purpose

Too many teams begin projects without knowing why. Or perhaps each senior team
member knows why but the reasons differ from person to person. This is obviously unde-
sirable. The Business Case assists with achieving a shared vision and understanding of the
project's value.

Participants

It is usually the project manager who is responsible for articulating a Business Case,
though planners and financial analysts typically play a major role.

Timing

Either before or during requirements gathering.

Technique

Standard business techniques for justifying a project should be used.

Strengths

• A Business Case ensures that expectations are explicit and constant.

• The Business Case helps to focus attention on why the project has been undertaken.
Surprisingly many projects are started without any clear idea about why they have
been undertaken.

• Agreeing on a written Business Case is a good test of common commitment and direc-
tion. This is obviously vital during the planning phase of a project, but it is also very
helpful during development. For example, when selecting an Architecture, various
alternatives with different trade-offs may be considered. Understanding the justifica-
tion for a project can at times assist with making decisions during the project.

• Depending on the circumstances, a Business Case may be essential to obtaining project
funding.

BWuesiankesnsecsasseess
can be unreliable in their forecasts and it is often difficult to accurately

quantify the benefits of a project. Having to develop, sell, and defend a Business Case is
also hard work at a time when it might be more interesting to refine requirements and
begin to build project plans.

It is, however, essential and projects are much more likely to fail, or be perceived to
have failed, without one.

Notation

Free format text.

Traceability

This work product has the following traceability:

Impacted by:
	

Impacts:
• Problem Statement (p. 93)

	
• Resource Plan (p. 135)

• Issues (p. 176)
	

• Schedule (p. 139)
• Release Plan (p. 144)
• Reuse Plan (p. 158)

Advice and Guidance

• Include a description of the analysis, design, and code assets that the project is
expected to accrue. This might include a domain analysis, architectural or utility
frameworks, or reusable code.

• Include reference to the skills that will be acquired as a result of carrying out the
project.

• Use the Business Case as input into design decisions to ensure that design trade-offs
are consistent with each other and with the overall project objectives.

• Understanding the justification for the effort can be a major benefit in assisting the
team to make decisions relating to functionality.

Verification

• Check that the Business Case focuses on why the project should be undertaken by the
development team, rather than on why the customer needs the system.

time to introduce a new product), the company did not produce a quantitative Business
Case.

The following represents a qualitative Business Case—the benefits were not subjected to

hard measurement.

The company plans to adopt object technology hoping to achieve the following objectives:

• Deliver software that better meets our users' needs.

• Improve our ability to deliver new products to the marketplace in a timely fashion.

• Improve programmer productivity.

• Develop an infrastructure to support software reuse and lessen software development time.

• • Involve users more in the software development process via Object-Oriented Analysis techniques.

Figure 9-5. Example of a Qualitative Business Case.

References

• Chapter 4 of Goldberg and Rubin [Goldberg95] has some advice on how to make the
business case and obtain management commitment to use object technology.

• Chapter 1 of Malan [Malan96] offers advice and a case study on getting management
buy-in.

Importance
Essential. All projects need some level of justification before any significant amount of
resources are expended on them.

9.6 ACCEPTANCE PLAN

Description
The Acceptance Plan is a description of the sequence of steps by which the customer, or a
potential end user playing the role of the customer, will verify that the constructed system
does indeed satisfy its requirements. Each step of the plan should be clearly and fully
described in terms of how to set up the test, and the acceptable system behaviors in
response to the test. These behaviors should be stated in such a way that it will be
obvious whether or not the test is passed.

The contract with the customer should include a clause to the effect that the system will
be accepted formally if the acceptance tests are all successful. If there is no direct cus-
tomer, the contract and the Acceptance Plan will be informal, but their existence is still
relevant.

Example(s)

Below we present examples of qualitative and quantitative Business Cases. We have
chosen to show examples that are different in scope from others presented in this book in
that they are not specifically related to a project employing object technology. Rather, they
are examples from two companies of the Business Cases for the deployment of object tech-
nology in their software development communities.

We have chosen this approach since Business Cases for software development is really
a business as usual work product but for many projects, the question of how to justify the
deployment of object technology is a harder question. These are examples of how two
companies that we have had some involvement with approached this problem.

The first example is based on an actual Business Case but has been modified for
reasons of confidentiality. In making these changes, the arithmetic may not stand up, but it
is intended as an illustration only.

Initial plan outline for a move of 100 people to object technology:
• Our company has an Information Technology group consisting of 200 programmers.
• It is estimated that going to objects will improve productivity by 50 percent over time.
• Within the first three years we plan to convert at least 50 percent of our development staff,

roughly 100 persons, to using objects.
• It is estimated that the cost of training will average three months per person. The investment

per person is a rather complex calculation, bearing in mind that after some initial training,
programmers will be productive but at a lower productivity rate than usual.

• Assume productivity improvements achieve their target levels in year two of the transition.
• There will be an additional cost of six full-time mentors at a cost of $900,000 per year (planned

for 2 years).
• Administrative and infrastructure costs of the transition are a net cost of $1 million (rather

complex accounting comes into play here, and there are tax benefits that will not be covered here).
• Software acquisition costs are not factored in as they are covered by usual budget.
• Costs:

– 25 person years of effort (100 persons for 3 months) for a
total cost of $2.5 million (assuming a $100,000 internal cost for a
person year)

– Mentoring Costs = $1.8 million (for 2 years)
– Infrastructure Overhead = $1 million (for 2 years)
– Total Costs = $5.3 million (for 2 years)

• Benefits

– Starting in year 2, the 100 programmers will be 50 percent more productive.
— Yielding a benefit of $5 million per year (100 programmers will produce the work

of 150 programmers).
— Because of the current application development backlog, the productivity gain will

be applied to reducing the backlog (i.e., there is no plan to reduce the workforce).
– The investment will be recovered early in year 3 of the transition.
– Some internal object technology mentors will emerge from the group of 100 programmers.

Figure 9-4. Example of a Quantitative Business Case.

The following example outlines an actual Business Case for a company piloting the use
of object technology. While some of the benefits could be measured (for example, the

118 REQUIREMENTS WORK PRODUCTS 9.6 ACCEPTANCE PLAN 119

120 REQUIREMENTS WORK PRODUCTS

Purpose
Requirements documents are often long. Verifying that a given system satisfies every
statement of the requirements document can take a prohibitive length of time, and can be
open to interpretation, particularly if the customer is looking for excuses not to accept.
Furthermore, the burden of proof that the requirements are satisfied lies with the develop-
ment team. Proving correctness is notoriously difficult, at best. For example, the require-
ments document may state that a particular interface should use a particular protocol.
Proving that the code correctly generates the protocol is almost certainly not feasible.
Running tests is the only alternative, but which tests and how many? The scope for disa-
greement is considerable. Bearing in mind that disagreement might mean lack of payment,
it is up to the development team to ensure that this situation does not arise.

The Acceptance Plan is an integral part of the requirements document, and as such is
agreed to by both parties when the project is started. If requirements change during the
lifetime of the project then both new statements of requirements and a new Acceptance
Plan will have to be negotiated.

Participants
The Acceptance Plan will typically be developed and agreed to by a team made up of

representatives with decision-making responsibilities from the project team (perhaps the
project manager and/or the team leader) and the customer (or someone representing the
customer set).

Timing
The Acceptance Plan is written after the rest of the requirements document but before com-
mitment to the project is made by either side. If there is no direct customer, and hence no
formal contract or commitment, this timing can be relaxed and the Acceptance Plan written
in parallel with development work.

Technique
The Acceptance Plan should be designed to demonstrate in a positive manner that the
project requirements have been met. It should be driven by the functional requirements of
the system, that is, the set of Use Cases, see Section 9.2. The Use Cases each summarize
one way in which the system is to be used. For each of them, the Nonfunctional Require-
ments must be applied and an adequate set of tests decided upon. The tests should all be
closed. That is, it must be guaranteed that each can be determined to be either successful
or unsuccessful within a definite period of time. Sometimes this means that time-limits or
other bounds must be applied to tests.

Strengths
The existence of an adequate Acceptance Plan ensures that the customer is committed to a
definite way of determining whether or not to accept the system.

Weaknesses

The writing of an Acceptance Plan is time-consuming. In particular, it consumes scarce
resources at the start of the project that are also required for project planning. The tempta-
tion exists to claim that an Acceptance Plan is not urgent and can be constructed as the
project proceeds. Once the contract has been signed, however, the negotiating power of
the development team is considerably lowered, and there is no compelling reason for the
customer to commit to the plan at all. If there is no direct customer, of course, there is
less justification for writing an Acceptance Plan early.

Notation
The format of the plan is a grouped sequence of individual steps of the following form.

Test group name
Test number
Prerequisites 1.

2.
Set-up instructions 1.

2.
Test instructions 1.

2.
Acceptable behavior 1.

2.
Test performed on date
Test performed at time
Name of customer signatory
Name of project signatory
Test result (pass/fail)
Signed for customer
Signed for project

The Acceptance Plan should include instructions for the repetition of tests in the event
of failure. For example, it might be stipulated that if a test fails, then the development
team is permitted a given length of time to make corrections before the group of tests of
which that test is a part is repeated; the rest of the Acceptance Plan does not need to be
repeated.

Traceability
This work product has the following traceability:

Impacted by: 	 Impacts:
• Use Case Model (p. 96) 	 • Test Plan (p. 164)
• Prioritized Requirements (p. 111)
• Issues (p. 176)

9.6 ACCEPTANCE PLAN 121

Table 9-2. Example of an Acceptance Plan.

Test group name
Test number
Prerequisites

Set-up instructions
Test instructions

Acceptable behavior

Test performed on date
Test performed at time
Name of customer signatory
Name of project signatory
Test result (pass/fail)
Signed for customer
Signed for project

Installation

1. Hardware as specified in user guide
2. Software as specified in user guide
I. OS/2 running
1. Execute "AAINSTALL" from OS/2 command line.
2. Follow installation instructions in dialog boxes, using all

provided defaults.
3. Reboot.
4. Execute "PPP" from OS/2 command line.

Successful completion of installation procedure within 10
minutes. The PPP command results in the application sign-on
dialog appearing.

122 REQUIREMENTS WORK PRODUCTS 	 9.6 ACCEPTANCE PLAN 123

Advice and Guidance

• Review each test, asking under what circumstances it could fail. If any of these cir-
cumstances depend on the environment of the system, for example, they depend on
system loading, then add set-up or test instructions to ensure that a limit is not
exceeded.

• Set-up and test instructions should be constructive. That is, they should specify a defi-
nite sequence of steps for achieving the test. They should not, for example, say that
system loading must not exceed some specified value, because this does not state how
the permissible loading is to be achieved. Instead, they should specify the user actions
to be performed by a definite number of users. This can be achieved and controlled
precisely.

• Place time-limits on tests. No test should be allowed to drag out with no predeter-
mined time-limit.

• Link tests together by means of prerequisites to save complex test set-up instructions.

• If there is no direct customer, the need for strict criteria for determining release is still
valid.

Verification

• Check that each use case of the Use Case Model is covered by adequate acceptance
tests.

• Check that each Nonfunctional Requirement is covered by adequate acceptance tests.

Example(s)

The following is an example of an Acceptance Plan from a group which is testing that an
application can be installed successfully as per specifications:

References

None.

Importance

Optional. An Acceptance Plan is certainly a good idea and a good way to ensure that the
project team and the customer have the same understanding as to what will be delivered
and in what state. But, it is possible to have a successful project without such a plan.

10.0 Project Management Work
Products

The Project Management chapter of the workbook describes work products that are impor-
tant to the successful control and management of the project.

Many software development projects are large and complex. Throw in the possibility
of unclear and unstable requirements, dependencies on other organizations, and the use of
new technologies and processes (such as with object technology) and the difficulty of suc-
cessfully completing a project grows enormously. The management team and the project's
technical leaders must deal with staffing the project, scheduling it, selecting development
processes, managing risk, setting quality goals, and identifying and resolving risks, issues,
and dependencies.

The projects that succeed in that kind of environment are those on which the team has a
strong commitment to applying good Project Management principles to the project
throughout its life.

The project management section of the project workbook consists of the following work
products:

• Intended Development Process

• Project Workbook Outline

• Resource Plan

• Schedule

• Release Plan

• Quality Assurance Plan

• Risk Management Plan

• Reuse Plan

• Test Plan

• Metrics

• Project Dependencies

• Issues

These work products all "inherit" the common work product attributes described in Section
8.1, and have specialized attributes of their own.

Many of these work products are just as necessary in projects not using object tech-
nology as in those that are following an object-oriented software development approach. In

125

10.1 INTENDED DEVELOPMENT PROCESS 127
126 PROJECT MANAGEMENT WORK PRODUCTS

most cases, the changes to these work products caused by a move to object technology are
subtle. Yet, they should still be treated as essential work products in the project workbook
for any object-oriented project.

The Intended Development Process provides a broad outline of the development process
that the development team will be following. The general principles for development set
forth in it will be used in other work products that set specific schedules and plans.

The Project Workbook Outline may in some sense be particular to those projects using
a workbook-centered approach to development, but if seen as documentation of the act of
specifying what work products will be produced during each phase of a particular project,
it is important to all projects. An understanding of what work products will be built cer-
tainly impacts most of the other Project Management work products.

The Resource Plan identifies the resources needed, and the timing of when they are
needed, to produce a solution that addresses the requirements laid out in the Requirements
work products on the necessary Schedule. The Resource Plan must be coordinated with
Schedule, Release Plan, Project Dependencies, Issues, and various others work products.

The Schedule is a means for understanding the work that needs to be completed and
when in order for the project to complete successfully. Like many of the Project Manage-
ment work products it needs to be closely coordinated with the other work products
described in this chapter.

The Release Plan is used to place Requirements into manageable units of work reflected
by project releases, versions, iterations, and increments and is closely aligned with the
Schedule and Resource Plan.

The Quality Assurance plan sets project goals for quality, which usually have a lot of
customer input, and outlines the activities that will take place throughout the life of the
project to meet those goals.

Most projects involve some level of risk. The Risk Management Plan is used to iden-
tify potential risks and details plans to address them. Risks can impact Prioritized Require-
ments which in turn can affect the Schedule and the Release Plan.

The Reuse Plan work product recognizes the fact that reusing existing components, and
producing new components that can be reused by others, are often integral parts of an
object-oriented approach to software development. It also recognizes that reuse will not
happen unless it is planned in advance and the necessary time and resources are allotted for
it.

A Test Plan is a critical part of any software development project as testing is typically
needed to ensure that the project's Requirements are being met, and testing is usually a
large piece of any Quality Assurance Plan.

Metrics can be a very useful tool in projecting necessary resources, setting schedules,
and identifying issues and risks.

The Project Dependencies work product is an important tool for understanding those
items that your project requires, perhaps from other organizations, to successfully complete
a solution that addresses the project's requirements on the required schedule.

Finally, the Issues work product is an important tool for capturing, understanding, and
addressing the inevitable issues that will occur throughout the life of the project.

The following sections provide more detail on each of these work products.

10.1 INTENDED DEVELOPMENT PROCESS

Description
The Intended Development Process work product documents the broad outlines of the
development process that is to be used for this project. By itself it is not a plan; other
parts of the project workbook apply the information of this work product to the particular
project to form plans, schedules, workbook guidelines, et cetera. For example, this work
product may decree that the project will be incremental, with increments lasting approxi-
mately six weeks. The project manager will then use this information, and much more, to
generate a work schedule. The process documented in this work product is project-
independent, although it has obviously been selected for its appropriateness to deal with the
problems and constraints of the current project. The Intended Development Process should
be thought of as a development process template.

This work product is broad but shallow. That is, it addresses the entire project life
cycle, but only at a very high level. The work product should address the development
process itself, the techniques and notations to support the process, and the tools to auto-
mate some of the development activities.

There are two aspects to the Intended Development Process that may be described.
First, the overall project profile, and secondly, the individual project life cycle phases. The
overall project profile describes the large-scale shape of the project. That is, whether it is
to be iterative, incremental, waterfall, or some combination of these. Each of these profiles
has parameters that must be set for a project, for example, the length of each increment,
and the phases that constitute each increment and their durations. All of these parameters
have their approximate "ideal" values that consider the requirements to manage complexity,
communications, and change. These issues are common to all projects, and their solutions
are to a certain extent independent of the details of any particular project. External and
organizational constraints and project peculiarities are, however, significant influences. A
presentation in this work product of both the ideal and the actual Intended Development
Process will help the issues to be thought through and will make the work product more
reusable in future projects.

Besides the overall project profile, the individual phases of the project life cycle may be
described in outline in this work product. The phases and their definitions will vary from
organization to organization, but they must encompass the chapters of the workbook
described in this book.

For each of the life cycle phases, the techniques to be used, the notations to support the
techniques, and the tools to automate the techniques should be described, as far as is rea-
sonable at this early stage. The goal is to define a development process, leaving the local-

128 PROJECT MANAGEMENT WORK PRODUCTS 	 10.1 INTENDED DEVELOPMENT PROCESS 129

ized details of the steps to be dealt with later as appropriate. For each development phase,
the following issues may also be addressed.

• The process by which the work products are to be validated for correctness and veri-
fied for internal consistency.

• Version and change control.

• The way that the size of the activities may be estimated, and both progress and quality
monitored.

• The technology and techniques to be used to construct and use various kinds of proto-
types.

For the project planning phase, the planning work products may be described, along with
planning and scheduling tools that may be useful in producing and maintaining these.

For the requirements phase, the format of the requirements document may be presented,
along with tools that are capable of assisting the gathering and sorting of requirements.
The way that customers and end users can be involved in the process may be discussed.

For the analysis and design phases, the modeling notations may be specified, for
example Booch or OMT. Modeling notations tend to be neutral to the development
process used, but they influence tool and education choices, and may be controlled by
organizational rules. If possible, tools should be selected for their appropriateness to the
Intended Development Process and techniques, and not for their support of a particular
notation. The global impact of development tools, and hence of development techniques
and notations, makes them a proper subject of discussion in this work product although
they do not strictly fall under the heading of "process."

For the implementation phase, the target programming language may be specified, if
this is appropriate, along with code generation, programming and programming support
tools. The principles of code integration should be presented.

For the code testing phases, the testing principles may be established, along with any
testing or test generation tools that are relevant.

The Intended Development Process work product is used as the basis from which to
write the guidelines work products of each chapter of the workbook. The difference
between these is that the Intended Development Process work product is aimed at project
managers and leaders, whereas the guidelines work products of the workbook are aimed at
the team members responsible for completing the work products covered by the guidelines.

p process

Purpose
TheThe Intended Development Process work product enunciates the principles behind the

be followed, and some of their details. This is done to separate these principles
from their application within the context of a particular project. This in turn is for three
reasons.

• Documenting principles separately from their application helps the project manager to
separate them mentally.

• The principles represent a body of project management techniques that are independent
of a particular project, and hence they can be reused from project to project, provided
of course that they are applicable. It is difficult to reuse something unless it is docu-
mented separately.

• This work product can be reviewed at the end of the project to judge what worked,
what didn't work, and why. Reviewing in this way a project-independent statement of
development process principles makes the lessons learned more reusable than simply
reviewing the various project-specific plans.

Participants

The project manager must approve the Intended Development Process. It will probably be
written jointly by the team leader and the project manager.

Timing

The Intended Development Process is input to the other project planning steps. As such it
is a very early deliverable, at least in draft form. It is probably one of the first project
management work products to be completed.

Technique

Reuse the documented development process of a previous, successful project. If no such
process is available to be reused, use the process given in the example below as a starting
point.

Strengths

A well-documented Intended Development Process can prevent later confusion and unnec-
essary discussions about how the project is to be tackled. It represents the reusable portion
of the project management chapter of the project workbook. Thinking through and docu-
menting the complete development process at a very early stage permits tool and education
requirements to be anticipated.

130 PROJECT MANAGEMENT WORK PRODUCTS 	 10.1 INTENDED DEVELOPMENT PROCESS 131

Weaknesses
It is difficult to document an Intended Development Process if this is a first-time project
for the team. Giving guidance and still giving the team necessary flexibility is a difficult
balance to strike. A well-documented Intended Development Process takes considerable
time to produce.

Notation
Free format text, but you might use one heading for the overall project profile, and one for
each of the phases of the project life cycle. Under each life cycle step there should be
subheadings for techniques, notation, tools, metrics, et cetera.

An alternative, more formal approach would be to represent the Intended Development
Process as a complete, idealized process. If that approach is followed, this work product
would contain, in summary form, a complete project management document. Such a docu-
ment would be generic, because it would be independent of the details of any particular
project. These details are instead supplied in parametric form: the total effort of the
project, the project "profile," staffing, et cetera. The actual project management details
could then be supplied by "filling in the blanks," which would obviously have great advan-
tages. This is an approach similar to that used by automated project estimation and sched-
uling packages.

An advantage of this more formal approach is that it makes explicit the parametric
dependencies of the plan, and hence provides more guidance (for example) on how to esti-
mate effort and track progress. Furthermore, standardizing in this way on process not only
makes projects more repeatable, but means that metric data is more widely applicable.

A compromise can be reached. For example, an informal approach can be used for an
initial project, after which the project management workbook chapter of that project can be
summarized and abstracted to form the Intended Development Process for later projects.

Traceability

This work product has the following traceability:

Impacted by:
	 Impacts:

• Quality Assurance Plan (p. 147)
	 • Schedule (p. 139)

• Test Plan (p. 164)
	 • Release Plan (p. 144)

• Issues (p. 176)
	 • Analysis Guidelines (p. 183)

• User Interface Guidelines (p. 234)
• Design Guidelines (p. 253)
• Coding Guidelines (p. 322)

Advice and Guidance

• Where appropriate and when time permits, note the reasons for selecting a particular
process. This will help when this work product is reused by other projects, or assessed
for its reuse potential.

• It should be clear that the development team can deviate from the intended process if
there are good and well-documented reasons for so doing.

• The Intended Development Process work product should not duplicate material pre-
sented in the Analysis, User Interface, Design, and Coding Guidelines work products.
Use references to those work products to provide information on how the Intended
Development Process is to be applied.

Verification

• Check that all reusable process management material is included in or referred to from
this work product.

• Check for balance of release process documentation and development process doc-
umentation.

• Check that tool support, if covered in the Intended Development Process, ensures that
manually-entered information needs to be entered only once.

Example(s)

An Intended Development Process might include details such as the following:

• Use the workbook and basic techniques described in the book Developing Object-
Oriented Software: An Experience-Based Approach (that's this book!).

• Use a combination of a waterfall and an iterative and incremental process. Require-
ments gathering, initial project planning, analysis, and architectural definition phases
are performed in a waterfall manner, followed by a series of incremental development
cycles. The work products of these initial phases, like all others, are subject to itera-
tive improvement during the life cycle of the project.

• Use conventional estimation techniques to provide initial project sizing estimates.
From the end of the analysis phase, estimate total classes (including utility and graph-
ical user interface) in the ratio of 1:6 analysis classes to final implementation classes.
Use an initial estimate of one person-month (PM) per implementation class for all
project phases through to delivery. (This is an estimate for experts. For intermediates,
use 2 PM's per implementation class; for novices, use 3 PM's per implementation
class.) Use these figures to update the original estimate of project size.

• The incremental part of the development process follows a seven-month release
schedule. Each release consists of three eight-week increments, followed by a four-
week system test cycle, culminating in the release.

132 PROJECT MANAGEMENT WORK PRODUCTS 10.2 PROJECT WORKBOOK OUTLINE 133

• Each increment has three distinct phases of two weeks each:

— design and interface development

— implementation and documentation

— integration, final verification test (FVT), metric data analysis, process adjustment,
and plan adjustment.

Further, the activities associated with the first two phases include a week of devel-
oping the work products followed by a week of review and iterative rework. As an
estimate, a person can design, implement, and document the solutions to five scenarios
throughout the two week cycle (including the review and iteration).

• The very first development increment follows a depth-first approach (Section 17.1),
consisting of a series of four minicycles of two weeks' duration each. The goals of
these minicycles are to establish the Development Environment, to give all team
members a taste of all development phases, and to establish the basic Architecture.

References
Succeeding with Object Technology by Goldberg and Rubin [Goldberg95j, in particular the
chapters on "Strategies for Developing with Objects," and "What is a Process Model."

Importance
Optional but important. All projects should have an understanding of what their approach
is going to be before starting. But, it is possible that this understanding can be gained
through some of the other work products such as Schedule and Resource Plan.

10.2 PROJECT WORKBOOK OUTLINE

Description
The Project Workbook Outline is an organized list of work products that will comprise the
project workbook. As the name suggests, it takes the form of an outline. The key items in
the outline are work product types (e.g., Problem Statement). It is recommended that those
items be grouped by the phase or facet of work to which they belong (e.g. Project Manage-
ment, Requirements).

The outline shows not only the intended content of the workbook but also the order that
the items will appear in the workbook. It represents a commitment by the development
team to produce that set of work products and to record them in the workbook.

Remember that a project workbook is a logical container of concrete work products.
The workbook needs to have a place for every agreed to work product, though the actual
work products may physically be stored in a database managed by a CASE tool or a con-

figuration and version management tool. In fact a physical work product might even be
stored in a file drawer.

Not all work products are "deliverables," as in "customer deliverables," but all that the
team agrees to produce do need to be kept and be made accessible to the development
team via the project workbook.

Purpose
The Project Workbook Outline is needed to find agreement among the development team
members about the set of work products to be created for the project. It is also needed to
establish a commitment from the development team to record each of the identified work
products in the project workbook.

There is no reason not to create a Project Workbook Outline. The mere existence of a
project workbook implies a de facto structure or outline. Establishing the outline first
forms a plan for consistency and completeness.

If an outline is not created first, development team members will not know which work
products to create and record for the project. A good development team will question the
lack of a Project Workbook Outline. A team less experienced will probably set off cre-
ating the work products that they used in their last project. If there is more than one team,
there will be several different outlines.

Participants
The Project Workbook Outline should be developed by the team leader and the project
manager.

Timing

The Project Workbook Outline should be decided and recorded during the project manage-
ment phase, but it will be retroactive to the requirements phase.

Technique

Start your outline with the essential work products listed in Table 8-1. Add other work
products to the outline depending on the size and risks of your project. Review the work
product list with the project manager and team leaders to ensure that each work product in
the outline is suitable for the project.

Strengths

If you have a published Project Workbook Outline, everyone in the project will know
which work products they need to create and which they can expect to find and work with
from other team members.

Weaknesses
None.

134 PROJECT MANAGEMENT WORK PRODUCTS 10.3 RESOURCE PLAN 	135

Notation
Since the outline will only be used to establish the workbook, any form (numbered or not)
of two level outline will suffice.

The recommended structure for a project workbook is one major section per phase or
facet of work and one subsection for each work product type associated with that phase.
Intuitively, the order of phases and work product types within the phase should approxi-
mate the chronological order in which they are normally produced.

The Project Workbook Outline should match the intended workbook structure.

Traceability

This work product has the following traceability:

Impacted by:
	

Impacts:
• Quality Assurance Plan (p. 147)

	 • Quality Assurance Plan (p. 147) 	•
• Issues (p. 176)
	 • Analysis Guidelines (p. 183)

• Analysis Guidelines (p. 183)
	 • User Interface Guidelines (p. 234)

• User Interface Guidelines (p. 234)
	 • Design Guidelines (p. 253)

• Design Guidelines (p. 253)
	 • Coding Guidelines (p. 322)

• Coding Guidelines (p. 322)

Advice and Guidance
Especially for new projects with teams who have not worked together before, create and
distribute the Project Workbook Outline early. It helps the team to see the scope of work
that they will be performing and the work products they will be expected to create and
record.

During team orientation meetings make sure that the entire team understands the nature
of each work product and the relationships that exist among them (i.e. the common facets).

Ensure that the team agrees with the necessity of each work product in the outline.

Verification
Use either the complete development team (for a small project) or the team leaders (for a
large project) to review the Project Workbook Outline. Ensure that the review group
understands what each work product is and how it is related to others. Seek consensus
from the review group that each work product is necessary and that the list is sufficient for
the success of the project.

Example(s)
For a small project, the following outline would be a reasonable starting point, with other
things like User Interface Model work products or the Application Programming Interfaces
work product added if applicable to the application.

• Requirements
- Problem Statement
- Use Case Model
- Nonfunctional Requirements
- Business Case

• Projectpro
Project

WoermkebnIk Outline

- Resource Plan
- Schedule
- Test Plan
- Issues

• Analysis
- Analysis Object Model
- Analysis Scenarios
- Analysis Object Interaction Diagrams

• Design
- System Architecture
- Target Environment
- Design Object Model
- Design Scenarios
- Design Object Interaction Diagrams
- Design Class Descriptions

• Implementation
- Coding Guidelines
- Source Code
- User Support Materials

• Testing
- Test Cases

• Appendix
- Glossary

Figure 10-1. Example of a Project Workbook Outline.

References

Just this book!

Importance

Essential. If you are going to create a project workbook, you need an outline. There's no
way around this.

10.3 RESOURCE PLAN

Description

A Resource Plan identifies requirements of the project in terms of staff, training, equip-
ment, services, and budget. It should state the types and quantities of the resources, and
when they are required. This item is a normal project management deliverable.

136 PROJECT MANAGEMENT WORK PRODUCTS 	 10.3 RESOURCE PLAN 137

Purpose
Early in a project's life it is essential to identify all of the resources that will be required
during the life of a project for its successful completion. During the life of the project the
Resource Plan needs to be updated and reviewed periodically to manage resource exposure
risk.

Participants

The project or resource manager would normally perform this task. To acquire the neces-
sary resources it will require negotiation with the resource owners.

Timing

A basic Resource Plan should be completed as early as possible. The plan should then be
updated and refined as the project proceeds and more details of the project are available. It
should be reviewed regularly to identify risks.

Technique
A possible approach to building a Resource Plan is:

• Choose and obtain a project management tool. A site or development organization
will normally have standardized on one, and there are numerous choices. Example
tool sets that have been used with the approach described in this book can be found in
Appendix C.

• Estimate the resources needed for each phase of the project. The estimates for later
stages are likely to be less accurate than the initial ones; therefore, they should be
reevaluated as the project progresses.

• Enter this data into a project management system.

• As resource requirements and timings change, update the data in the project manage-
ment tool.

• Pay heed to warnings about resource exposures that the tool gives.

• Do not underestimate time and effort associated with activities such as installing tools,
educating staff on object technology and the tools to be used, and ramping up staffing.

There is little difference in resource planning between traditional development and
object technology-based development.

Strengths
It ensures that the project identifies the resources needed for successful completion. It
helps in the management of risk.

Weaknesses

requires

 es kn

effort

 ens

discipline to establish and maintain but is a good investment in all but

ea es I 	 rt and disci

the smallest projects.

Notation

Many available tools support PERT charts, time lines, and critical-path analysis. These
capabilities are essential to good project management.

Traceability

This work product has the following traceability:

Impacted by: 	 Impacts:
• Prioritized Requirements (p. 111) 	 • Schedule (p. 139)
• Business Case (p. 115) 	 • Release Plan (p. 144)
• Schedule (p. 139)
• Release Plan (p. 144)
• Reuse Plan (p. 158)
• Test Plan (p. 164)
• Metrics (p. 169)
• Project Dependencies (p. 173)
• Issues (p. 176)
• Subject Areas (p. 187)

Advice and Guidance

Building a Resource Plan is difficult, but it really needs to be done to have control of a
project and to minimize the risks of not having enough resources to successfully complete
the project. Some simple advice and guidance follows:

• If this is your first project using an object-oriented software development process and
have no idea how to estimate resources, it might be useful to start by estimating the
resources as you would if this were not an object-oriented project. You can then add
some appropriate buffer (say 10 to 25 percent) to cover the fact that you are using a
new approach, and it will likely cost some time and resources during this initial
attempt to use it.

• Factor in costs for training, mentors, tools installation and support, process definition
and deployment, and other factors related to the move to the use of object technology.

• Revisit the Resource Plan often (certainly after each iteration of your project) and
make adjustments based on the new knowledge you will have at hand.

• Keep a history of Resource Plans and adjustments to them to build a base of data from
which to estimate resource needs for future object-oriented development projects.

138 PROJECT MANAGEMENT WORK PRODUCTS 10.4 SCHEDULE 	139

Verification

• Check that all appropriate kinds of resource have been addressed.

• Check that the plan identifies when and for how long each resource is needed.

• Check that the timing of each resource is appropriate; not too early and not too late.

• Check that resources are not overcommitted in the sense that the same resource is
required to do too much at once.

• Check that resources specified are adequate for each task.

Example(s)
The following example demonstrates that a Resource Plan should cover specific project
activities as well as things like vacations and other "absences" in order to be truly useful:

Activities 1997
Jun 	Jul Aug 	Sep Oct

--Holidays, etc ------ ---.

----Vacation CF ,
	CF (CF)

. 	
II

. CF (CF) 	 41

CF (CF)

----Vacation (AMW) ,
mumal

.
----Conference (AMW) i

---Vacation (STH) 11Mil

--Development
----Inc 6A Build 0

----Inc 6B Build 1

----Inc 6C Build C.

----Increment 6C ,

References
Succeeding with Object Technology by Goldberg and Rubin [Goldberg95], in particular the
chapter "Plan and Control a Project."

Importance
A Resource Plan is essential for ensuring that the appropriate resources are available to a
project at the proper times. While a very small project might choose to document its
Resource Plan informally, it still needs to have some idea of resource needs and avail-
ability.

10.4 SCHEDULE

Description

The schedule is a set of:

• Activities
• Start dates and durations for each activity
• Work assignments
• Milestones

It is closely allied to the Resource Plan. At the start of a project a schedule will be created
based on the functions to be delivered and the deadlines that have to be met, using project
estimation Metrics, comparisons to similar projects, and general experience.

Purpose

The schedule is produced to understand the work completed and the work needed to be
completed for the project. It is used to plan and measure project progress.

Initially it will be a feasibility exercise to see whether the project can deliver the
required functions on the desired deadlines. During the life of a project, it provides a view
of the progress of the project.

Comparison of the actual dates achieved for the items in the schedule to the planned
dates provides feedback to the project managers on the progress of the project and whether
it is on track. If the project is behind schedule, it provides a driver for corrective action to
bring the project back on schedule. The reasons for the differences between planned and
actual have to be analyzed to determine their causes so that remedial action can be taken as
appropriate. If appropriate, metric data used for project estimations should be updated to
reflect actual schedule data.

Participants

The project manager and planner(s) share responsibility for the schedule with help from the
project team leaders.

Timing

A basic schedule should be completed as early as possible. The schedule should then be
updated and refined as the project proceeds and actual details of the project become avail-
able. It should be reviewed regularly to identify divergence from the plan so that correc-
tive action can be initiated as appropriate.

140 PROJECT MANAGEMENT WORK PRODUCTS

Technique

• Obtain a project management tool. Example tool sets that have been used with the
approach described in this book can be found in Appendix C.

• Build an initial schedule by entering milestones, tasks (with durations), resources, and
work assignments.

• Often, initially, the minimum task duration is a week. As the project plan is refined,
activities can be broken up into more detail and shorter duration activities.

• Link dependent activities together. Group related activities together under a hammock
(an abstract superactivity). This helps to avoid micromanagement by hiding small
items from the project plan.

• Examine critical path(s) to see if plan alternatives can be found to reduce the
criticality. A critical path is a set of linked tasks within a project that have no float
(gap between the end of one task and the start of the next task) and end with some
deliverable of the project. This means that if any one task in this critical path slips,
that deliverable slips and possibly the entire schedule slips.

• Critical paths in a project should be flagged as high-risk elements during risk manage-
ment planning.

Strengths
It ensures that the project identifies the critical activities that the project team has to
achieve on time for successful completion of the project. It alerts project management
when the project is slipping behind the plan.

Weaknesses
It requires effort and discipline to establish and maintain but is a good investment in all but
the smallest projects.

Notation
There are a variety of notational styles for schedules and they are typically tool-dependent.
Please see the example section of this work product description for a look at one possible
notation.

Traceability
This work product has the following traceability:

10.4 SCHEDULE 141

Impacted by: 	 Impacts:
• Prioritized Requirements (p. 111)

	
• Resource Plan (p. 135)

• Business Case (p. 115)
	

• Release Plan (p. 144)
• Intended Development Process (p. 127)
• Resource Plan (p. 135)
• Release Plan (p. 144)
• Risk Management Plan (p. 152)
• Reuse Plan (p. 158)
• Test Plan (p. 164)
• Metrics (p. 169)
• Project Dependencies (p. 173)
• ' Issues (p. 176)

Advice and Guidance
Building a schedule is not easy, but it is critical to the success of the project. Some simple
advice and guidance follows:

• If this is your first project using an object-oriented software development process and
have no idea how to build a schedule, it might be useful to start by estimating time
needed as you would if this were not an object-oriented project. You can then add
some appropriate buffer (say 10 to 25 percent) to cover the fact that you are using a
new approach and it will likely cost some time and resources during this initial attempt
to use it.

• Factor in time for training, mentors, tools installation and support, process definition
and deployment, and other factors related to the move to the use of object technology.

• Revisit the Schedule often (certainly after each iteration of your project) and adjust it
based on the new knowledge you will have at hand.

• Keep a history of Schedules and adjustments to them to build a base of data from
which to estimate resource needs for future object-oriented development projects.

• Keep initial iterations small both in time and content. This will allow you to begin to
shake out your development process and environment and give the team some early
experience with object-oriented software development. This can be a valuable tool for
getting an early assessment of how good your schedule is and for making any needed
adjustments.

Verification

• Check that the schedule takes account of technical dependencies implied by the Sub-
system Model.

• Check that the critical part through the schedule is marked.

• Check that the milestones are adequate.

• Check that all identified risks have been addressed in the schedule.

142 PROJECT MANAGEMENT WORK PRODUCTS 10.4 SCHEDULE 	143

• Check that adequate buffers of time exist in the schedule.

Example(s)

The following example is the initial plan for a three-month feasibility study:

Activities 1995

Mar 	Apr May 	Jun 	' Jul 	Aug

Setup
. 	 . 	 . .

—refine plan

--Assign resources

	hardware

	

Li 	

software

	people al

Space planning ' al .
--Project KO El

3Months

--Get scenarios 	
. . .

Scenario I
.

1E1
. .

	Get a . 	.
	Analyze

.
4E1

. .
----Scenario 2 ' 	MI 	.

. .
	get . 	0

. .
	Analyze

-

' 	MN 	'

- ----Scenario 3
.

Mil 	- 	 -
.

	get . 	Cl 	'
.

----analyze
.

MI 	. 	
.

.
---Scenario 4 l' 	

.

.
	get

.
8

. 	 . .
----analyze 11MI

.
---Scenario 5 - . -

	
IN . 	 . .

------get . a . .
' ■ . 	 . .

----Scenario 6
. .

------get 0 	.
. 	 . .

----analyze IM 	'
. .

--Learn Visual Age
.

MI
--Review requirements

. .

- --Define API
.

----Baseline OOD MI
. 	 .

----baseline API
. .

--00 Design

----API Def Doc
. 	 . 	

.

-

IMUMML

---Main team review

-

-

--Perform. Prom

-
. 	 .

----define scope

---create Bus Vol DB MI

Activities 	 _____
Apr 	May Aug

----Rand DB generate

- ----Build DB -

❑ --hand bld PPIT1

- ---hand bld PPITn MI -

-----hand bld PP2T1 al -
_

..---hand bld PP2Tn

- -----investigate patterns - FM -

.----refine products 11:1

----Create Harness 131

---Run tests

-

11111111111

----test PP1TI -

-

El

-
	

- 	test PPITn . - MI

---- test PP2T1 - -

-

- - 	 - El
	test PP2Tn - 1111 	- 	

.

	test refinements . IN
----batch test -

.
- - 14 	

.

	Produce perf rpt
.

. .
- 	MI 	-

.
—Workshops M.

. . 	 .
--Prod Decomp ws

-

ill

	DPI

-

1:11 - - 	 -

----Contract Adm WS

-
WI - 	-

-----DPI all scenario - 	-
-- Prod Dev WS -

-

111 - 	 -

	DPI Scenario - ® - - 	
.

--User Interface

----Product def

-
.

-----DPI -def
. .

10MIMMIMMEMMI

-----Testing & Valid.
. . .

. illk

--Documentation . 	111111ERIMME1

----Product API
. . v 	El .

---promotion proces

- 	Product knowledge
.

-
. .

. 	Iiiiill

------DB knowledge
. .

- 	OM 	.

--Quality Plan
. .

. MM 	.

----Full Proj plan ' LEM 	' 	-

References
Succeeding with Object Technology by Goldberg and Rubin [Goldberg95], in particular the
chapters "Plan and Control a Project" and "Case Studies of Process Models."

Importance

Schedules are essential for planning the project and its resources and for tracking progress
against that plan.

144 PROJECT MANAGEMENT WORK PRODUCTS 10.5 RELEASE PLAN 	145

10.5 RELEASE PLAN

Description
The Release Plan maps the requirements gathered in the Requirements section of the
workbook into the releases, versions, iterations, and increments during which the system
will be developed (or changed) to handle them.

At the lowest level of granularity, the plan will group the phases and activities that are
scheduled. These phases and activities are derived from the Intended Development Process
that serves as the model to be followed during the development of the release.

Purpose

The Release Plan is essential to set the scope of the project and divide the work up into
manageable units. Having the scope of a release, version, iteration and increment helps to
avoid the various forms of paralysis that can stall the project. For example, analysis activ-
ities can often result in the identification of additional desired function, the exploration of
which can lead to "analysis paralysis" (i.e., the inability to determine when to stop and
move on to the next phase). By clearly setting the scope of the requirements to be
addressed in each increment, new function that is identified should be allocated to another
increment unless its development is certain not to affect the current schedule. New func-
tions that are deemed to be high priority should displace lower priority requirements into
later increments if necessary to maintain the plan integrity.

Participants
The Release Plan is the responsibility of the project manager in conjunction with the plan-
ners and team leaders. Marketing representatives will also be involved to the extent that
they are representing the customers and their requirements. Together, they insure that the
overall plan delivers an application that meets the requirements within the window of
opportunity and is cost-acceptable to the customers.

Timing
An initial Release Plan is built early in the project cycle; however, it is not a static docu-
ment. Using an "iterative and incremental" approach, one starts the Release Plan after the
requirements have been prioritized and the dependencies between them noted. Customer
priorities may change—also technical challenges may arise that require retuning of the
plan. After each increment is completed, the plan is adjusted to reflect any changes that
have occurred that could affect delivery of the releases.

TUseucahllyn,klituies best to work first on the highest value, most complex requirements with a
ear-term window of opportunity. This will make it easier to adjust to problems and/or

cancel the project altogether (the latter might occur if it turns out that the problems are
Insurmountable). It is always better to find the problems sooner than later, so do not put
the hard stuff off until later.

To avoid plan "paralysis" do not try to plan the entire project in detail up front.
Instead, break the project into 6 to 12 week increments per release, allocating the high
'priority requirements to the first increments. You might put fewer requirements in the
'early increments to allow room to adjust for learning curves and other changes to the team
productivity "model."

To avoid plan "churn" do not stop work to change the plan for the current increment.
If for some reason a work product is not going to be finished on time, decide whether to:

I. "Stretch" the phase to allow it to be completed as planned as part of the current incre-
ment. Do this when a high-priority requirement that many others depend on is in
jeopardy.

2. "Shift" the work product in question to the next increment to keep the date intact. Do
this with lower priority requirements or in early increments where a learning curve (or
other forms of "paralysis") may be involved. Moving to the next increment as sched-
uled can get your team "over the hump."

3. "Share" the work by allocating additional resources to keep both the date and the
deliverables of the current increment intact. Do this for a complex work product that
can easily be decomposed into two subsystems and worked on separately. Of course,
this solution assumes that some resources have been left "in reserve" for this purpose.

Plan some time after each increment to adjust the plan for the later increments and
releases. During this period, the complexity measurements of the work products should be
used to revise productivity estimates and facilitate Release Plans that are more and more
accurate as the project unfolds.

Strengths

• As discussed above, two of the strengths of this approach are that a team can avoid
"plan paralysis" and "plan churn." It allows a team to get going in the face of uncer-
tainty and build up a baseline of knowledge to reduce that uncertainty within the life-
time of the project.

• This work product allows the development team and, more importantly, the customer,
to see what functionality will be delivered in what time frame.

Traceability

This work product has the following traceability:

Impacted by:
• Prioritized Requirements (p. 111)
• Business Case (p. 115)
• Intended Development Process (p. 127)
• Resource Plan (p. 135)
• Schedule (p. 139)
• Risk Management Plan (p. 152)
• Reuse Plan (p. 158)
• Project Dependencies (p. 173)
• Issues (p. 176)

Impacts:
• Resource Plan (p. 135)
• Schedule (p. 139)

Advice and Guidance

Releases normally are planned with the customer. Usually functionality is prioritized and
this is a key driver of releases. It is also impacted by the schedule, the resources available,
the technology available, and costs.

Verification

• Check that the functionality of each release can be tested.

• Check that the plan is risk-driven.

Example(s)

While the following is not a complete plan, it should give you some idea of what a
Release Plan contains. It is based on a recent banking project:

146 PROJECT MANAGEMENT WORK PRODUCTS 10.6 QUALITY ASSURANCE PLAN 147

Weaknesses

This approach makes it more difficult for inexperienced teams to commit to the exact
content of any increment or release ahead of time because of the lack of good productivity
estimates to apply to the plan. However, the ability to identify problems early and adjust
in a systematic fashion without disrupting development more than makes up for the uncer-
tainty at the beginning.

Notation

Free format text is sufficient.

Release 1 will include (to be released 12/95):

• Customer opening an account

• Automatic notification of overdrawn accounts to Client
representative

Release 2 will cover (planned for 3Q96):

• Collection of data for management reports

Future Release Content, not yet scheduled:

• Management report generation

Figure 10-2. Example of a Release Plan.

References

None.

Importance

Optional for a project with only a single release. Essential for projects planning multiple
releases.

10.6 QUALITY ASSURANCE PLAN

Description

The Quality Assurance Plan in some form is a traditional part of most software develop-
ment processes and is not unique to the use of an object-oriented development process.

The Quality Assurance Plan involves:

• Establishing quality goals, defining success criteria, and defining expected results

• Validation and tracking

• Removing defects

• Addressing global quality aspects

A Quality Assurance Plan is a required item in the development processes of many
companies. The details of the Quality Assurance Plan should be specified in terms of the
measurements that will be taken and the expected results. This will help drive the review
part of the process in a much more objective and systematic fashion.

An organization may have a common Quality Assurance Plan that is a template for all
development projects. Based on that template each project will have a project specific
Quality Assurance Plan. The specific form that a Quality Assurance Plan takes may vary
by organization. This section will, therefore, only address Quality Assurance Plans gener-
ally.

10.6 QUALITY ASSURANCE PLAN 149

Quality Assurance Plans generally include:

• Customer Satisfaction goals: overall satisfaction and satisfaction for areas such as usa-
bility, capability, and performance

• Code Quality Goals: typically, still, some ratio of "Total Valid Unique Problems per
Thousand Lines of Shipped Source Instructions"

• Tools and approaches: some specification of the tools or methods that will be used to
track customer satisfaction and code quality

• Defect removal models: showing the number of defects that are to be uncovered at
each phase of the development cycle

• A Quality Management section: describing processes for change control and defect
management, how quality will be tracked and assessed, and specific quality improve-
ment line items or actions that will be taken

Purpose

A Quality Assurance Plan forces a focus on quality and defect removal throughout the
development process and is a valuable tool for ensuring that quality is built into the
product from the beginning. If the quality goals are realistic and based on past product
results, then the Quality Assurance Plan can allow managers to quickly assess whether the
current product is going to achieve its quality objectives.

Additionally there may be other reasons why a Quality Assurance Plan is useful:

• There may be organizationwide quality activities, processes, goals, et cetera, that are
best captured in a separate document.

• Quality data is input to future planning (for example, code quality influences mainte-
nance costs, usability influences user support costs).

• ISO 9000 or other processes may require a plan to track quality related aspects of a
project separately.

Participants

The project manager owns the Quality Assurance Plan, but typically, many people in
related groups such as testing, usability, performance, and service will contribute to the
development and implementation of the plan.

Timing

• Quality goals and their verification criteria are one kind of Nonfunctional Requirement.
They are defined at the beginning of the project. These quality-related requirements
are either given by the organization as cross-project quality goals or are set by the
customer. They are quite often based on previous versions of the product or on the
results of similar products.

• Quality Plans typically have activities and goals that are performed and tracked
throughout the life cycle during the development of the work products.

• Overall results are reported when the project is shipped and they continue to be modi-
fied as customer problem data is reported.

Technique

The four aspects listed previously in the Description Section are discussed here in more
detail:

1. Establishing quality goals, success criteria, and defining expected results:

As stated above quality goals and criteria are part of Nonfunctional Requirements.
There may be different requirements that address specific aspects such as usability,
performance, or code quality. Each product may, because of its nature, place a dif-
ferent importance on different aspects. All functional and Nonfunctional Requirements
are addressed and validated in the appropriate work product. For example:

• Usability may be addressed in the user interface design work product, which is
validated through usability tests. For this, the overall quality goal is likely defined
with the user.

• The Acceptance Plan described in Section 9.6, also defines quality criteria that
need to addressed in the Quality Assurance Plan.

• Performance is addressed during design and architecture and validated in a proto-
type or early drivers.

• Code quality is an aspect of implementation and will be validated by tests or code
inspections.

A Quality Assurance Plan may then select a few key quality-related requirements and
assign priorities. (For example, there may be an organization-specific focus on code
quality, which may receive higher priority than usability or a product may have to
achieve certain performance measurements in order to be competitive in the market
place.)

These key quality criteria need to be defined together with the customer of the
product (or with the funding organization).

2. Validation and tracking

• Each work product described in this book has advice and guidance on how to
validate the work product.

• Causal analysis and defect prevention are concepts used to improve the quality
beyond single projects.

• Tracking design changes (and errors found during validation activities and testing)
will give quantified feedback about quality levels.

148 PROJECT MANAGEMENT WORK PRODUCTS

150 PROJECT MANAGEMENT WORK PRODUCTS 	 10.6 QUALITY ASSURANCE PLAN 151

• Metrics need to be established that define what is tracked. Section 10.10 intro-
duces various metrics relevant for an object-oriented project.

• The Test Plan, described in Section 10.9 will be used to plan the detailed activities
needed for validating and tracking various quality metrics.

3. Removing defects

• As stated above, most Quality Assurance Plans include defect removal models.
They normally describe the number of defects that are expected to be uncovered
during each phase of the development process.

The Quality Assurance Plan should also define the steps that will be taken to
uncover and remove these defects. These actions can range from reviews (i.e., of
analysis or design work products) to testing (of the code at various iterations).

The object-oriented development process described in this book is very
front-end intensive. This suggests that with the proper reviews of analysis and
design work products, many defects should be removed early in the development
cycle. Additionally, we recommend an iterative and incremental process which,
among its other benefits, provides for testing of functional code far earlier in the
product development process than would occur using a waterfall approach.

4. Addressing global quality aspects.

There are various technical or organizational decisions that can be made early in a
project life cycle that can have a positive impact on the overall quality of the project.
Some examples of these kinds of decisions include:

• Using proven class libraries, such as IBM's Open Class Library, allows the reuse
of important functions provided in code of exceptional quality. The Open Class
Library has the added advantage of being available on multiple platforms. The
library reuses a large, common, platform independent code base. This ensures
common quality on all platforms.

• Solutions aimed at a particular customer or set of customers can (and should)
include the customer(s) to identify required functions and to help define quality
criteria and quality assessment plans.

• Agreeing on a specific object-oriented development approach for the project or
across projects will allow you to reap the benefits of object-oriented development.

• Most products can adapt an iterative and incremental development process as
described in this book. This allows for early verification of particular implementa-
tions of functions.

• Larger development areas can benefit from common quality procedures across
multiple product development efforts.

Strengths
A Quality Assurance Plan defines a formalized approach to delivering a product of high
quality and demonstrates an organizational commitment to quality. A thorough Quality
Assurance Plan can help a project to judge quality and react to any problems throughout

the development cycle.

Weaknesses

■ Quality Assurance Plan can take a lot of time to develop and execute and as such
requires a very strong organizational commitment to a planned approach to quality.

•Another pitfall to be aware of is that overemphasis of one or a few quality aspects (too
often code quality) can often lead to overlooking other potential quality problems (for
example, performance).

Notation

English text or graphics, showing customer feedback or error removal rates, can serve as
notation for this work product.

Traceability

This work product has the following traceability:

Impacted by: 	 Impacts:
• Project Workbook Outline (p. 132) 	 • Intended Development Process (p. 127)
• Test Plan (p. 164) 	 • Project Workbook Outline (p. 132)
• Metrics (p. 169) 	 • Test Plan (p. 164)
• Issues (p. 176) 	 • Analysis Guidelines (p. 183)

• User Interface Guidelines (p. 234)
• Design Guidelines (p. 253)
• Coding Guidelines (p. 322)

Advice and Guidance

• Ask customers to define key quality requirements

• Follow the Quality Assurance Plans defined for your organization

• Use the Advice and Guidance that are listed for each work product

Example(s)

Please refer to the case study for an example (page 508).

152 PROJECT MANAGEMENT WORK PRODUCTS
10.7 RISK MANAGEMENT PLAN 153

References

• Succeeding with Object Technology by Goldberg and Rubin [Goldberg95], in particular
the chapter "What is Measurement?"

• The Defect Prevention Process (DPP), found in (Mays90], discusses improving quality
by preventing defects from getting into a product.

• Chapter 7 of [Malan96], discusses metrics and defect tracking.

• The International Standards Organization (ISO) has a standard for quality management
called ISO 9000. The document: 'ISO 9000 International Standards for Quality Man-
agement' is available from the ISO Central Secretariat.

• [Schulmeyer90] proposes statistical controls over the development process to produce
quality software.

• [Kaplan95] discusses 40 innovations that have lead to improved quality software.

• The Total Quality Management (TQM) approach to improving software quality is dis-
cussed in [Arthur92].

Importance
Each work product described in this book has a description of how to verify it. This helps
to build quality into every aspect of the process recommended herein. A Quality Assur-
ance Plan is therefore optional, unless the organization where the project is performed
requires the use of a separate Quality Assurance Plan.

10.7 RISK MANAGEMENT PLAN

Description

A risk is anything that may jeopardize the success of the project. Risks in a software
project do not relate only to technical matters. Developers must also deal with things like
politics, competition, window of opportunity, credibility, reputation, shrinking market,
unproven target environment, fuzzy requirements, fickle clients, et cetera. For example, the
possibility that a key project architect may leave the company midproject may be a risk
that has to be addressed.

A Risk Management Plan identifies risks associated with a project and provides plans
to manage them. Risk management is important in any type of software development
project, but the use of object technology does introduce certain risks of its own.

A risk, once identified and assessed for probability and impact, may be managed at the
following levels.

1. Elimination of risk. Some risks can be eliminated entirely. For example, the risk
that a particular key architect may leave midproject may be eliminated by bringing into

the project someone else with comparable skills. If the architect leaves, the second
architect could step in. The event under discussion (architect leaving) may still occur
during the project, but it is no longer a risk. Of course, most risks cannot be elimi-
nated in this way.

One particular form of risk elimination is risk transference, which involves trans-
ferring the risk to another party. For example, a project might be concerned about not
being able to recover its expenses to develop a product that has questionable market
value. This risk could be transferred by having the customer pay expenses up front,
the expenses being recoverable if the project is successful. This kind of strategy, of
course, only eliminates the risk for the development team.

2. Risk reduction. If a risk cannot be eliminated, the next form of risk management to
be considered is to try to lower the probability that the event identified as a risk will
occur in practice. An example of this in the case of the architect who may leave
might be to improve that person's working conditions. Depending on the anticipated
reasons for leaving, this strategy may make it less likely that the architect will actually
leave.

Another example of risk reduction is reducing announced release requirements to
reduce the probability of schedule slip.

3. Damage control. If it has proved impossible to lower sufficiently the probability of
the event associated with the risk, then the possibility that the event will actually occur
must be faced. If it does, then by definition the project will be harmed in some way.
Steps must then be taken to limit this damage as far as possible. As an example, if the
architect leaves midproject, an adequately qualified person from elsewhere in the
company must be found as a replacement. Before the replacement is found and up-to-
speed, the project leader will provide cover.

Other examples of damage control are car bumpers, sprinkler systems (for fires),
circuit breakers (for electrical overload), and running tasks in separate processes
(OS/2).

4. Contingency planning. If damage control steps are planned, their implementation
must be effective as soon as possible after the risk event has occurred. For this to
happen, contingency plans must be laid to remove obstacles from the critical path to
damage control. For example, if the architect leaves, then the finding of a replacement
will be speeded up by preparing in advance a list of qualified people who might be
available. Another contingency plan might be to provide time for the project leader to
familiarize herself with the application Architecture.

Other examples of contingency planning are spare parts, backup systems, and
archiving.

For each identified risk, the Risk Management Plan should address each of these levels as
appropriate. A risk management strategy for handling a particular risk may combine ele-

10.7 RISK MANAGEMENT PLAN 155

ments of more than one of the risk management levels. This does not matter; the above
list should serve as a checklist only.

Purpose

Innovative projects inherently involve risk. It is important for people to recognize and deal
with all facets of the risks that they face. Awareness breeds readiness, competence, and
confidence. Not recognizing and managing risks will lead to unpleasant surprises that in
turn lead to budget and schedule overruns, or noncompetitive products.

Some projects suffer because of factors outside the control of the project, while others
are harmed by internal factors. Analyzing and managing the risks in your project can limit
damage and reduce wasted investments.

With an iterative and incremental development process, criteria must be agreed upon for
deciding how to sequence development work. Probably the most important criterion is
risk. Requirements should be partitioned between development cycles to minimize risk to
the project. This is impossible without knowing what the risks are, and without a plan to
manage them.

Participants

Risk management should be part of the way all project members do business. Of course,
broader and more expensive risks should be coordinated by the project management, but
everyone should be aware of risks, thereby documenting, and planning for them.

Timing

Risk management is a continuing activity throughout the project life cycle. Obviously, a
concentrated focus on risk assessment and planning occurs while the initial project plan is
being constructed. Risk management should be done, however, throughout the project life
cycle.

Technique

For each project phase (requirements gathering through to maintenance) and for every
release and development cycle, all the risks for that phase, component, release, or activity
should be identified, weighed, prioritized, assigned ownership, and scheduled for resolution.
Risk resolution is the process of determining how to manage a particular risk. The likeli-
hood of failure (the undesirable event identified by the risk actually occurring) com-
pounded by the cost of that failure should be used to rank the risks. Those with the
highest rank should be resolved first and assigned to the most competent people for the
earliest completion.

Doing this involves looking at nearly everything as a potential risk:

• If we start too late, we will never get done.

• If the network delay is too great, the product won't perform well.

• If the user interface isn't more intuitive and powerful than the competition, the product
won't sell.

• If we miss the window of opportunity we will have to be xx percent better to catch up,
and we will have yy percent less money to do it.

• If the product is buggy, we will lose our reputation.

• The users are fickle; we don't know what they want.

Besides analyzing each risk directly as it is recognized, groups can run brainstorming
sessions to develop checklists of risk management strategies that might be appropriate for
different kinds of risk.

Strengths

A risk is anything that may jeopardize the success of the project. Anticipating them and
laying plans to manage them is vital for any form of project management. A formal Risk
Management Plan helps a manager track risks and acts as a management checklist.

Weaknesses

Risk management requires effort at times when project resources are probably already
stretched.

Judgment must be exercised when deciding what is a risk worth managing formally.
Categorizing everything as a potential risk will grind the project to a stop.

Notation

A template of the following form can be used to document each identified risk:

Test group name
Description
Owner
Deadline
Dependencies (on other risks)
Likelihood of occurrence
Cost of occurrence (without applying strategy)
Cost of applying strategy
Cost of occurrence (when strategy is applied)
Priority [1 to 10 (max)]
Management strategy

Traceability

This work product has the following traceability:

154 PROJECT MANAGEMENT WORK PRODUCTS

156 PROJECT MANAGEMENT WORK PRODUCTS 10.7 RISK MANAGEMENT PLAN 157

Impacted by:
	 Impacts:

• Prioritized Requirements (p. 111)
	

• Schedule (p. 139)
• Project Dependencies (p. 173)

	
• Release Plan (p. 144)

• Issues (p. 176)

Advice and Guidance

• Assess the probability of Project Dependencies being met. Some of these may be
risks.

• Technical risks may frequently be managed effectively through prototyping. It is
usually employed as a risk elimination strategy. Technical risks often take the form of
not knowing in advance whether something is technically feasible or efficient. Proto-
types are experiments designed to answer these questions and hence eliminate the risk.

• Another technique for managing technical risks is the judicious use of an iterative and
incremental development process. Early development cycles may be used to imple-
ment a component with which some form of risk is associated, such as low perform-
ance. If this implementation is judged to be unacceptable, later development cycles
may be used to rework its design and implementation. The use of the development
process in this way is damage control. The damage of an unsatisfactory design is
controlled by redesign. The contingency planning required is to advance the imple-
mentation of this component to a sufficiently early development cycle so that there is
adequate time for the subsequent rework if it proves necessary.

• The use of object technology and object-oriented development can introduce some
specific risks into a software project where each must be managed. The risks of the
use of object technology include the following:

The learning curve might swamp the project.

— Inexperience with the object-oriented approach might result in a low-quality
design.

The immaturity of object-oriented tools might affect development productivity.

An iterative and incremental development schedule might lead to design churn
and/or unnecessary development.

— The emphasis sometimes placed on object-oriented analysis and a lack of experi-
ence with object-oriented design may lead developers to try to implement the anal-
ysis directly, without adequate consideration of the many design Issues.

Uncertainty about the problem or how to proceed might lead to "analysis
paralysis."

• Ari initial checklist for use in brainstorming sessions to identify risk management strat-
egies might include the following:

— Prototype to eliminate a well-defined technical risk. If the risk can be phrased as
a well-defined technical question, for example: Is it efficient to use a relational
database to store image objects; the answer can frequently be obtained by con-
structing a prototype. See Section 17.4 for a discussion of the use of prototypes
in risk management.

— Schedule work in an early development cycle to manage technical risks arising
from the uncertainty of untried designs. This differs from prototyping because a
prototype is targeted at answering a specific question whereas a development
increment is a check of the complete design, albeit a design with reduced
functionality.

— Reduce risks associated with productivity uncertainty by estimating effort using a
parameterized formula and comparing the estimated and actual productivity and
effort values. Use updated estimates in later development cycles.

— Reduce the risk that the user interface may not be as the customer wants by
involving the customer in user interface prototyping activity.

— Reduce the risk of external drivers not arriving in time by omitting this
functionality from early development cycles, or by building scaffolding to simulate
the driver. For example, a project dependent on a database interface to be sup-
plied by another project may omit persistence from the requirements of the first
development cycle.

• Each subsystem should have its own Risk Management Plan that should be reprior-
itized during each development cycle. The highest ranked items, based on whatever
realistic weighting scheme the project chooses, should be addressed in the current or
imminent cycle.

Leaders of projects involving the parallel development of multiple subsystems
should have an integrated Risk Management Plan for the entire system. Subsystem
and system plans may be connected either by delegating a risk item from the master
plan to a particular subsystem, or by promoting a risk item from a subsystem plan to
the master. Risk promotion may be effected by having the project manager personally
weigh and integrate the subsystem risk plans or by having the subsystem team leaders
prepare an update to the master plan for the project manager to review.

Verification

• Check that all appropriate kinds of risks have been addressed. This can be done by
producing a list of the risks that are appropriate to your project (which varies from
project to project), and checking for coverage under each of these headings.

Example(s)

The following is a Risk Management Plan for a project that is under threat of budget cuts:

158 PROJECT MANAGEMENT WORK PRODUCTS 10.8 REUSE PLAN 	159

A project manager is concerned that her budget may be cut mid-project.

• Risk will be managed at two levels:

1. Risk Reduction

— Project Plan heavily incremental to allow early product-level
deliverables

— Allows reduced function deliverable prior to likely date of
a budget decision

2. Damage Control and Contingency Planning

— Work staged through an iterative and incremental approach

— Allows for a sequence of smaller releases

— Any design investment is only to satisfy requirements of
the current release

— Helps to ensure that the most recent product-level deliverable
represents a large proportion of the development effort up to that
point in time

Figure 10-3. Example of a Risk Management Plan.

References

• See [Rakos90] for a discussion of risk management in general

• See [Boehm88] on the use of risk management to guide the development process.

• [Boehm89] is a collection of papers on Software Risk Management.

Importance
Optional. But, many projects would find it essential. You must assess the level of risk
your project has and decide whether you need this work product. Understanding and plan-
ning for risks is an important part of successfully completing software projects.

10.8 REUSE PLAN

Description
A Reuse Plan is a statement of which existing software parts are going to be reused, which
reusable parts are to be built, and the costs and benefits of doing this. In the case of
building reusable parts, the Reuse Plan must include a business justification and details of
how the parts are to be supported.

Effort, costs, and the schedule of a project greatly depend on the amount of "reuse" the
project will be doing. This may include savings if the project can reuse existing reusable
parts. It also may include additional effort if the project decides to build reusable parts.

So, a Reuse Plan is very intertwined with the Business Case and the overall project
plan (Schedule, Resource Plan, and concrete actives such as Design).

A Reuse Plan might also explain why parts of the projects had to be written from
scratch and why parts of the project could not be made reusable.

Purpose

Both reusing existing parts and building reusable parts will affect a project plan and have
to be taken into consideration.

There are two major items that are affected by reuse:

1. The Business Case (for example, development costs): Saving through reuse will affect
the Business Case and may be the decisive factor for an investment decision. Any
costs from reusing parts or building parts have to be taken into account as well.

2. The Project Plan (for example Schedule, Resource Plan, and concrete activities such as
design): Reusing parts can lead to savings in time and effort and creating reusable
parts can increase the required time and effort on a project. Thus effective planning of
project activities requires an understanding of what reuse activities are planned.

Development for reusable parts has to be justified, planned, and tracked separately from the
rest of the project, so this has to be documented as a separate item in the project plans.

In general, additional efforts have to be planned and there has to be management com-
mitment to these efforts. Otherwise a project under short-term pressure may stop reuse
efforts in which the value is not seen until much later in the project or perhaps not until
subsequent projects.

If a project does not exploit the benefits of reuse, it may want to document which steps
were made to try reuse, which reuse options were considered, and why the reuse options
were rejected. Reuse is one of the best ways to improve productivity and quality so it is
important to understand impediments to doing it.

Participants

The project planner, the architect, team leaders, and the manager all have input on the
project's reuse efforts.

Timing

Planning for reuse should be done when:

• Preparing the Business Case
• Preparing a detailed project plan
• Reviewing project plans after each development cycle

160 PROJECT MANAGEMENT WORK PRODUCTS 	 10.8 REUSE PLAN 161

Technique

• Analyze opportunities for reuse (what could be reused and what could be built).
• Use previous experience (your own, or that of other projects), use prototyping, and

make estimates for costs and savings based on experience or prototyping.
• Step through all development phases and consider activities, efforts, and savings.
• Make appropriate sizings.
• Factor results into the appropriate plan documents.

Strengths
Reuse requires concerted effort and planning outside of what is "normal" for a develop-
ment project. Committing those efforts in a written plan will encourage the allocation of
the proper time and resource to ensure the necessary activities are done.

Listing reused components will document increased Project Dependencies.

Weaknesses
If reuse is not a strong commitment of the entire project team, including management, the
investments needed to identify reuse opportunities and to build reusable parts may be the
most likely to be cut when the project experiences schedule pressure. Actual opportunities
for reusing existing parts may not be known during project planning. Unless you have past
experience and/or a very clear understanding of your technical requirements and the tech-
nical capabilities of the reusable part, you may discover during development that you can't
use a particular part. Take this into consideration and refine your plan for each develop-
ment cycle.

Notation
Free format text.

Traceability
This work product has the following traceability:

Impacted by:
	 Impacts:

• Business Case (p. 115)
	

• Resource Plan (p. 135)
• Issues (p. 176)
	 • Schedule (p. 139)

• Release Plan (p. 144)
• Project Dependencies (p. 173)
• Analysis Guidelines (p. 183)
• Design Guidelines (p. 253)
• System Architecture (p. 257)
• Subsystems (p. 274)
• Physical Packaging Plan (p. 326)
• Source Code (p. 334)

Advice and Guidance

For reusing existing parts:

• Reusing existing parts is not free. Plan for the "costs of reuse." If your people are not
familiar with the parts you must allocate time to scan available reusable parts, to eval-
uate the reusable parts early in the project cycle, to "look for reuse opportunities"
during inspections, et cetera.

• Plan for the savings, including savings for design, development, test, and maintenance.

• Understand what's available.

• Understand your needs. Depending on the kind of project, this may be easy ("we need
just the same as last time") or hard ("we never worked in this domain, so we don't
know what we really need").

• Before you commit yourself to use a reusable part, know your requirements and under-
stand if they are met.

• Reusing existing parts creates an additional dependency. You have to manage this
dependency. You may have to make compromises in order to be able to use a gener-
ally reusable part.

• Consider giving a team member time and responsibility for driving reuse in the project
much as you would give someone responsibility for other line items.

For building reusable parts:

• There is no firm requirement to develop a reusable part completely within your
project. But ideally you should make a complete analysis and design including aspects
outside your immediate need. Otherwise the parts may be too project specific and not
reusable in other projects.

• After a (relatively) complete analysis and design you may still decide to implement
only the pieces that you need in your project. Any future extensions then should not
require changes to the existing code.

• If there is no time to make at any parts fully reusable, you should at least make some
effort to enable future projects to "harvest" pieces from your project.

• Building reusable parts increases the short-term costs. There is a rule of thumb that
reusable software costs three times as much as "normal" software. These costs may be
spread over several projects or iterations, but the actual savings may only occur after
the third usage. The decision to spend extra effort and how much will be spent has to
depend on usage projections. For example, if parts are only going to be reused a
couple of times, extensive documentation will be unnecessary. It may be more effec-
tive to get direct help from the owner. On the other hand for parts that are expected to
be reused hundreds of times it becomes essential to reduce the cost of reuse by pro-
viding good documentation, examples, usage patterns et cetera.

162 PROJECT MANAGEMENT WORK PRODUCTS 10.8 REUSE PLAN 	163

• Be aware that others will become dependent on you.

• Strongly consider building a small separate team responsible for building the reusable

parts.

• Get support from a management "sponsor." Usually projects will face schedule pres-
sure. You need strong management support to keep the investment for the reusable
parts in your schedule.

• Understand what's available; for example, don't build what's already available.

• Do a domain assessment to select where to invest. A domain assessment helps to
decide whether parts are needed in the domain, if the domain is mature enough to
invest in parts, or if this is a domain where your organization will work in the future.

• Include the necessary efforts in your plan. For example, make sure there is appro-
priate time allocated for analysis, design, development, et cetera. for the reusable parts.
They don't just "happen."

• Be aware that even after the project is finished, somebody has to maintain the reusable
part.

• Consider adding reuse topics to your local process guidelines.

Verification

• Check that all intended reuse work tasks have been planned and appropriate staff
assigned.

• Check that effort is being made to search for reusable work products.

• Check that a minimum of new development is being undertaken.

• Check that reasonable effort is being made to enable the work products of the project
to be reusable.

Example(s)
The following example shows a potential Reuse Plan of a client-server application. The
application is supposed to deal with archiving data.

Reused Assets:

Open Class
The project will use the class libraries that are shipped with VisualAge C++ (Open Class).

Effort: Three members of the development team need training for
the use of the class libraries early in the project so that design can
be done with those class libraries in mind.

Justification: Rewriting Graphical User Interface classes or collection classes would destroy the
Business Case for the project.

DSOM
Distribution will be done through the Distributed System Object Model (DSOM).

Effort: Two members of the team need training for SOM/DSOM.

Justification: Developing a mechanism for distributing objects from scratch would destroy the
Business Case for the project.

No application specific reusable parts
After a brief survey we couldn't find any reusable parts in the application domain.

Building Reusable Assets:

Reusable Classes for Archiving Data
The project will not be able to build fully reusable classes or class libraries, but since archiving
data is a common problem, there will be an attempt to make this service reusable. The goal will
be to have classes that can be easily extracted and made reusable in a separate project.

Effort: To make classes reusable an additional person month will be spent during design.

Justification: The common need for an archive function will offset the small investment needed
to make the classes for this function easily extractable.

Domain Model
Although the concrete classes will not be fully reusable, we plan to have a complete model
for archiving data.

Effort: To make the domain model as complete as possible, two person months of effort will
be spent to interview domain experts and to review the domain model with domain experts.

Justification: It is important that the model for this critical function be complete and accurate.

Figure 10-4. Example of a Reuse Plan.

References

• Chapters 9 through 11 of Goldberg and Rubin [Goldberg95] offer a good introduction
on issues related to reuse.

• [Tracz95] provides a good overview of a number of reuse topics.

164 PROJECT MANAGEMENT WORK PRODUCTS
10.9 TEST PLAN 165

Importance

Optional, but, for projects doing reuse it is important that any major reuse activities are
explicitly documented and committed and would therefore be essential for them.

10.9 TEST PLAN

Description
A Test Plan is a document answering the who, when, what and how of testing. It specifies
which kinds of tests should be performed and in what order. If any specific environment is
needed (hardware, software) it is also described there.

Here the term "testing" refers only to the testing of code. Any noncode testing, such as
the validation and verification of work products other than code, can be put either into the
Quality Assurance Plan, the Intended Development Process, or the various Guidelines work
products.

Planning for testing must take into account the acceptable quality level of the product,
as defined in the Quality Assurance Plan, that the project is delivering with given
resources, because that is the ultimate requirement that governs the testing. For example, a
drawing program might be quite acceptable if it has fewer than one error reported per week
of exploitation, while such a rate would clearly not be acceptable for a life-support
machine's software. Depending on the required quality level that the product must fulfill,
the amount of resources dedicated to testing will be different.

If an iterative and incremental development process is being used, testing is done both
as an integral part of each development phase of each increment, and also as a distinct
phase in its own right in order to function test the executable deliverables produced by the
increment. A Test Plan should refer to both increment function testing as well as testing
the whole deliverable.

Purpose
It is produced to ensure that testing is complete, feasible, and successful, and that adequate
resources for testing are identified and planned for. A Test Plan ensures that the testing
strategy is agreed to in advance.

Participants
A testing team, in cooperation with the team leader, planner, developers, human factors,
and information developers build and maintain the plan. Coordination between the testers,
the team lead, and the project planner is necessary in order to ensure that development and
testing activities are synchronized (in the Test Plan). This is especially important when the
development process is incremental and iterative.

Timing

This typically happens at the same time that the project and iteration plans are made. Like
any other planning activity, it is impossible to make a final plan before the beginning of
the project, but that should not be an excuse for not having a plan. An initial Test Plan, as
complete as possible, with clearly identified dependencies on the Resource and Release
Plans and Schedules, offers a good document that should be updated as the project
progresses from iteration to iteration.

Technique

For each activity identified in the iteration plan, an appropriate testing period needs to be
allocated in the Test Plan. What the appropriate time is depends on the particular project,
iteration, and work products concerned:

• Projects new to object-oriented technology may want to allocate more time for testing
to allow for thorough testing of all work products, while projects already experienced
in object-oriented technology can plan to focus more on testing those work products
that in their previous engagements were identified as not being at the required quality
level.

• Every iteration consists of analysis, design and implementation work products, only
their ratios are different from iteration to iteration. This results in different times
being required for testing code in different iterations.

• Implementation work products (code) can be reviewed, but are largely tested by
running Test Cases that test different aspects of their quality (function, performance,
usability, et cetera). Planning to complement code reviews with code testing will yield
the best results, as those activities are complementary and used to discover different
categories of problems. When planning for testing of code, one must plan resources
for Test Case development, execution, and maintenance. If the projected number of
Test Cases turns out not to be sufficient (for example, because during development the
code was discovered to be more complex than was initially anticipated), the Test Plan
should be revisited and updated accordingly. The best approach is to plan to review
the Test Plan on a regular basis.

Strengths

• Identifies potential bottlenecks of testing resources.

• Enables planning of resources.

41

166 PROJECT MANAGEMENT WORK PRODUCTS

Weaknesses

• If the project and/or iteration plan is incorrect, the Test Plan will likely be wrong as
well.

• Not knowing the required quality level of the product may lead to too little testing
(potentially dangerous), or too much testing (unnecessary).

Notation
The same syntax used for project and iteration plans can be used. Typically, management
tools have scheduling possibilities, the output of which can be printed and included in the
Test Plan document.

Traceability

This work product has the following traceability:

Impacted by:
	 Impacts:

• Use Case Model (p. 96)
	 • Intended Development Process (p. 127)

• Acceptance Plan (p. 119)
	 • Resource Plan (p. 135)

• Quality Assurance Plan (p. 147)
	 • Schedule (p. 139)

• Metrics (p. 169)
	 • Quality Assurance Plan (p. 147)

• Issues (p. 176)
	 • Analysis Guidelines (p. 183)

• Screen Flows (p. 237)
	 • Design Guidelines (p. 253)

• Test Cases (p. 346)

Advice and Guidance

1. Determine the required quality level for the product.

2. Identify all software and hardware dependencies and when they are needed (for
example: before the first iteration, after the second iteration, et cetera).

3. Based on the projected size of the project, required quality level, and initial number of
iterations, allocate the resources accordingly. The higher the required quality level, the
more time is needed in testing. As a very rough estimate, for projects with a required
quality level that is:

• High: Plan for 95 percent or more of overall project resources for testing (no
errors are acceptable, for example, a nuclear power-plant management system). 1 °

lo From a talk given by Nancy Leveson on "System Safety and Software Design" describing experiences about
designing software for safety-critical systems, delivered at OOPSLA '94, Portland, Oregon, on October 26,
1994.

10.9 TEST PLAN 	167

• Medium: Plan for between 20 to 50 percent of overall project resources for
testing (a few errors are fine, providing the fixes are available quickly, for
example a customer solution for assisting bank managers in granting loans);

• Low: Plan for up to 5 percent of overall project resources for testing (a few errors
are fine, even if the fixes are not available until the next release, for example a
general-purpose text editor).

Verification

• Check the testing. process: Test Case generation, testing, test result logging, and anal-
ysis of testing must be as automated as possible.

Example(s)

A project is developing a customer solution for an investment company. It will need to be
able to handle information pertaining to about 10,000 customers from several different
countries and to process any of their transactions (transfer, buy, and sell) in no more than
five seconds. The customer's hardware is one RS/6000® 990, as a central server, and five
RS/6000 590's, as local servers for each country. The operating system of all machines is
AIX 4.1.2, with TCP/IP communication over fiber-optic cables between the servers. The
contract states that the solution provider will provide 24 hour on-line help, and will find
and fix any reported problem within 24 hours from notification, otherwise a penalty of
$20,000 per exceeding day is due.

The initial analysis model consists of 20 classes and 7 Use Cases that expand into 16
scenarios. The design model is likely to add 20 new classes, bringing the total to 40
classes. DB2/6000 will be used for storing all the customer and transaction data. The
development is planned as four iterations of six weeks, as follows:

I. User management scenarios
2. User transactions on a local machine
3. Concurrent user transactions
4. Backup and recovery procedures.

Given information about the project, we note the following:

1. The required quality level for the product is medium to high.
2. The hardware requirements are:

• One RS/6000 990 with 30GB disks for data and 512MB of RAM (needed before
iteration 4)

• Five RS/6000 590 with 6GB disks for data and 512MB of RAM (one needed
before iteration 1, the rest needed before iteration 3)

• Fiber-optic communication boards (needed before iteration 3)
3. The Software requirements are (needed before iteration 1):

• AIX 4.1.2
• TCP/IP
• DB2/6000

168 PROJECT MANAGEMENT WORK PRODUCTS 10.10 METRICS 	169

As this is a project with a medium to high required quality level, the testing time should
take between 50 to 70 percent of resources, as follows:

• Before iteration 1:

— Get the testing hardware and software (note that this is different from the Devel-
opment Environment).

— Prepare the testing environment.

• During iteration 1:
— Plan for four days for review of analysis and design models.
— Based on accepted design model, plan for designing, implementing, and executing

five Test Cases per class and five Test Cases per scenario for code being devel-
oped during this iteration.

• During iteration 2:
Plan for three days for review of analysis and design models.

— Based on accepted design model plan for designing, implementing, and executing
five Test Cases per class and five Test Cases per scenario for code being devel-
oped during this iteration, and an additional 40 Test Cases that explicitly test the
integration with code developed during iteration 1. Re-execute all the Test Cases
that failed during iteration 1.

• During iteration 3:
— Plan for two days for review of analysis and design models.
— Based on accepted design model plan for designing, implementing, and executing

five Test Cases per class and five Test Cases per scenario for code being devel-
oped during this iteration, and an additional 20 Test Cases that explicitly test the
integration with code developed during iterations 1 and 2. Also plan for design,
implementation, and execution of 30 performance and 10 stress Test Cases. Do
the usability testing with at least 10 people. Re-execute all the Test Cases that
failed during iterations 1 and 2.° 0

• During iteration 4:
— Plan for a day for review of analysis and design models.
— Based on accepted design model plan for designing, implementing, and executing

five Test Cases per class and five Test Cases per scenario for code being devel-
oped during this iteration, and an additional 20 Test Cases that explicitly test the
integration with code developed during iterations 1, 2, and 3. Continue with per-
formance and usability testing. Do the regression testing based on a random
selection of 40 Test Cases in addition to all that have failed before. 00

• After iteration 4:
— Plan three days for installation test.
— Plan two weeks for system test in conditions as close to real life as possible.
— Plan three days for "internal" user acceptance test.

Note that in every iteration, the test plan addresses reviewing the analysis and design
models. This is done to obtain an understanding of how the application will be used as
well as how it is being designed in order to build the necessary test cases for that iteration.

References

• See [Pressman92] for a general discussion of software testing strategies.

• For a general review of object-oriented software testing, see [Siege196].

• For an overall review of quality processes, see [Whitten89].

Importance

A Test Plan is an essential means for projects to ensure that their products achieve and
maintain the required quality levels.

10.10 METRICS

In order to understand and control a project or activity it is necessary to understand the
critical factors that will influence its successful delivery. These factors should then be
expressed as Metrics that can be estimated and tracked.

Description

Metrics are measurements of essential elements of the development project that enable suc-
cessful planning and tracking of projects. A measurement is a particular value of a metric
at some time. For instance the value of the average lines of code per class metric might be
200 at the end of the first iteration of a project. Metrics fall into four general categories.

Metrics that measure the dimensions of a project and its compo-
nents. This will include things like number of classes and number
of people.

Productivity Metrics Metrics that measure the rate at which project members are able to
produce project deliverables.

Quality Metrics 	Metrics that provide a measure of the quality of the design and
implementation.

Reuse Metrics 	These Metrics focus on the exploitation of existing assets, both
internal and external to the project.

There are two distinct uses of these Metrics that are related to the separate tasks of
planning and tracking the project. In performing these tasks, estimates must first be made
of the size of the project, and of the productivity that will be achieved. This provides the
information to do schedule planning. Other Metrics, for example related to quality, must
also be selected and estimated as part of the planning process. The chosen set of Metrics

Size Metrics

170 PROJECT MANAGEMENT WORK PRODUCTS 10.10 METRICS 	171

should then be tracked during the project. Estimation of metric data is an essential part of
project planning; the tracking of the same Metrics is vital for determining progress and
conformance to plan. The actual project size may vary from the estimate; it usually grows
by a factor of two to three due to poor estimation, poor understanding of the requirements,
and the expansion of project scope. Productivity assumptions, like all other metric data
estimates, should be validated against the actual productivity being achieved.

Note that, like good objects, individual development work products are responsible for
their own metric data. For example, the Design Object Model work product should contain
the metric data relevant to it, perhaps total class count and total method count. For each of
these, the estimated and actual values should be included. The Metrics attribute common
to all work products is used to do this. The Metrics work product presented in this section
is used to document which Metrics are to be used in the project and to contain summary
estimated and actual measured metric data.

Purpose
The definition, collection, and analysis of metrics can be very useful in building project
plans and schedules, tracking projects, managing project risks, and providing benchmarks
for process improvements. Metrics can:

• Provide data on which to produce a project plan.

• Provide a baseline for tracking project progress.

• Manage risk, which includes schedule and quality.

• Provide benchmarks for development process improvements.

Participants
Many people are involved, but there are two main types of people, users, and collectors of
Metrics. Ideally the tools being used in the development process will provide Metrics
collection. The project managers, planners, and team leads will be users of the Metrics.
The project manager and planner in conjunction with team leaders also select the Metrics
to be used.

Timing
During the planning of the project, existing metric data should be used to estimate the
resources required for the project. During the life of the project the Metrics should be
collected and tracked against the planned values.

Tec.Dhecni

Decide deon the way in which the project will be estimated and tracked in terms of size,
schedule, resource expenditure, and quality.

• Choose an appropriate set of Metrics. The following basic Metrics are recommended
by the authors:

— Number of Use Cases (if used).

— Number of Scenarios for each Use Case.

— Number of events for each scenario.

— Number of classes and instances for each scenario.

— Number of classes at analysis, design, and implementation.

— Number of methods for each class at analysis, design, and implementation.

— Lines of code (LOC) for each method.

— Development effort per class at analysis, design, and implementation.

• Make a projection of the values that will be expected during the development iter-
ations, increments, and phases.

• Collect the actual measurements of the chosen Metrics and review them against the
planned values.

• Analyze variations to determine reason, evaluate risk to project, and take remedial
actions as appropriate. For example if LOC per method is predicted to be in the range
15 to 40 and a method is found to have 150 LOC, investigate why this is the case. It
may be found that there is a rational reason, the method is implementing a complex
algorithm for instance.

• Complexity Metrics can also be collected. These Metrics measure things like class
coupling, cohesion, and method complexity.

See the references section of this work product description for references that can provide
more complete sets of possible metrics.

Strengths
A set of Metrics by which a project is planned and tracked is essential for a successful
project. They help to make the assumptions of the project plan explicit, and provide a
means to measure conformance to the plan. Metrics from previous projects enable better
use of resources and more accurate planning.

Weaknesses
Getting developers to collect Metrics is a difficult task. Automatic collection by tools
should be strongly considered.

172 PROJECT MANAGEMENT WORK PRODUCTS 10.11 PROJECT DEPENDENCIES 173

Notation
If using a tool, it will have a particular format for collecting data.

Traceability
This work product has the following traceability:

Impacted by:
	 Impacts:

• Issues (p. 176)
	

• Resource Plan (p. 135)
• Schedule (p. 139)
• Quality Assurance Plan (p. 147)
• Test Plan (p. 164)

Advice and Guidance

• Determine which set of metrics are most important to your ability to plan, run, and
track your project.

• Using tools, basic Metrics can be collected for tracking purposes and for subsequent
use in estimating. Tools can be very useful in monitoring Metrics that seem to be out
of line.

Verification

• Check that the parameters of heuristics or algorithms used to estimate the project size
are being tracked.

• Check that the measurement data needed to improve the process of estimating your
next project are being gathered.

• Check that the data required to check quality targets are being gathered.

Example(s)
Here is a very brief example from a project that was piloting object technology and the use
of C++. It is provided only as an example of the types of metrics that could be interesting
and useful to collect.

Table 10-1 (Page 1 of 2). Example of Project Metrics.

Metric Actual Values

Number of Classes Implemented (total) 24

Root Classes (total) 11

Number of Classes Reused 3

Lines of code 13423

Number of Methods 194

Maximum depth of hierarchy 3

Table 10-1 (Page 2 of 2). Example of Project Metrics.

Metric Actual Values

Analysis Person Days 180

Design Person Days 100

Implementation Person Days 75

Test Person Days 30

Documentation Person Days 40

Education Person Days 240

Methods Per Class 8.1

LOC/Class 559.3

Lines of Code Per Method 69.2

References

• [Lorenz94] discusses specific metrics for objects.

• [Henderson-S96] provides a detailed discussion on various metrics.

• Chapter 20 of Goldberg and Rubin [Goldberg95] offers a good introduction on issues
related to metrics and measurement.

Importance

Optional. Our experience indicates that metrics are essential to the efficient planning and
tracking of medium and large projects, but we also understand that many projects have
managed to complete projects without doing this. Even if they are not needed at a project
level, an understanding of metrics can have a great benefit organizationally. The more
metrics on hand, the easier to estimate and plan future object-oriented development efforts.

10.11 PROJECT DEPENDENCIES

Description

Project Dependencies are items that your project requires for successful completion. You
identify these items and build assumptions that these items will be provided at specific
times during the course of your project. If they are not, then the project is at risk of
failure. Anything is valid as a Project Dependency, but it most often involves prerequisite
artifacts, personnel, skills, hardware, or software function to be delivered by a group
outside of the management scope of your project.

174 PROJECT MANAGEMENT WORK PRODUCTS 	 10.11 PROJECT DEPENDENCIES 175

Purpose

If you could assume everyone had a memory like an elephant, you would never need to
write anything down. Since this is not the case, you need to track the important items that
might kill your project. Keeping a record of these items and periodically reviewing them
to ensure completeness is essential.

Many times dependencies are not under your span of control. These items need to be
watched carefully, since their owners may not have the same priorities as you. Should a
dependency default, you need to know as quickly as possible to be able to react.

Participants

The planner is responsible for maintaining the list. Everyone in the project is responsible
for identifying dependencies and assumptions. The project manager may need to get
involved to resolve issues with organizations that own specific dependencies.

Timing

The list should be created when the project and iteration plans are made. At this time only
global assumptions may be identified. Dependencies may only be flushed out during low
level design or implementation, so a checkpoint during each iteration must be created to
review status of existing dependencies and assumptions. Any fallout from this review
should be addressed and new items should be added. This checkpoint can be placed at the
end of each iteration.

Technique

Each dependency should be documented separately and tracked. These items should also
be integrated into the project plan. Any dependency that is in the critical path must be
flagged and tracked tightly as a key plan item.

Dependencies on other organizations should be discussed with that organization. If crit-
ical, a document of understanding may be created to ensure both parties understand the
agreement. At a minimum, for critical dependencies, they should have in their project plan
a reference to your dependency date.

Dependencies should be kept in a database of sorts for tracking, updating, and
reporting.

Strengths

If dependencies can be integrated into the project plan, you should be able to know if they
are being met, and if there are any problems, you can react quickly. Maintaining a list and
reviewing it frequently will help in keeping the project on track and possibly identifying
other assumptions or dependencies.

Weaknesses

In the past, this type of activity was documented very poorly, if at all. Most of the time,
assumptions existed in the heads of the architect or developers and were forgotten or not
shared with the rest of team. Building a worthwhile list is dependent on the team's partic-
ipation and commitment to help to identify, document, track, and resolve dependencies.

Notation

 e

ion Each dependency should have the following information provided:

.:octh pe Short description of dependency
• Full explanation of dependency
• Organization responsible for dependency and responsible contact
• Date dependency required/committed
• Person in your team who is tracking this dependency
• History of activity and current status

Traceability

This work product has the following traceability:

Impacted by:
	

Impacts:
• Reuse Plan (p. 158)
	

• Resource Plan (p. 135)
• Issues (p. 176)
	

• Schedule (p. 139)
• Release Plan (p. 144)
• Risk Management Plan (p. 152)
• System Architecture (p. 257)
• Subsystems (p. 274)
• Physical Packaging Plan (p. 326)

Advice and Guidance

• Make sure the owner of what you are dependent on is aware of your dependency. If
possible, have them document a date in their plan to provide the deliverable to you.

Verification

• Check that the people and projects on which you are dependent are aware of your
dependency.

• Check that a process is in place for tracking each dependency.

Example(s)

The following example is for a project with a dependency on receiving a class library in
stable, working order:

Dependency #: 	7

Abstract: 	Transaction Class Library (TCL)

Explanation: 	We need a stable TCL to validate our interaction with
the register input.

Responsible: 	Joe Benjamin, TCL Development manager

Date required: April 1, 1996

Tracker: 	Marie Russell

History/Status:
1/19 - TCL scheduled for a 3/23/95 delivery (Joe)

3/12 - Schedule has slipped one month to 4/24 (Tom Junior,
TCL team lead)

4/2 - Verified required portion of TCL is still on target
for 4/24 (Joe/Marie/Tom)

Figure 10-5. Example of a Project Dependency.

References
None.

Importance
Optional. But, you should assess whether your particular project does have dependencies.
If it has a number of them then you might find this work product to be essential. Your
project should record dependencies in some manner and periodically review their status and
effect upon your schedule.

10.12 ISSUES

Description
During the software development process, it will often occur that there are disagreements,
areas of uncertainty that require clarification, or questions requiring answers or decisions
by users or a sponsor. These should be recorded as issues to ensure that they are not
forgotten. All resolved issues or decisions made should be recorded and remembered.
Recording decisions is an important aspect of this activity.

Note that the issues being discussed here are global, project impacting issues (ones that
a project manager or team lead would want to be aware of). We have said elsewhere in
this document that an individual work product may have issues associated with it. Those
issues should be considered private to the work product owner.

176 PROJECT MANAGEMENT WORK PRODUCTS 	 10.12 ISSUES 177

Purpose
Issues are worth their weight in gold. It is vital that issues are surfaced, recorded, tracked,
and resolved in order to keep the project moving forward as planned.

Identifying and resolving issues is a major objective of the application development
process. The earlier in a project that issues can be identified, the better.

Participants

The collection of all issues has an owner who is responsible for ensuring that all issues are
resolved in a timely fashion. The project manager has the ultimate responsibility for
ensuring issues are tracked and resolved. This responsibility is often shared with team
leaders. Anyone can identify and submit an issue.

Each issue is assigned to someone who is responsible for its resolution.

Timing
Throughout the duration of the project.

Technique

Gathering issues is a natural part of the application development process and they should
be actively solicited. Any area of disagreement should be recorded and added to the issues
list. As part of the project management process, issues should be reviewed on a regular
basis. They should be prioritized, assigned, and due dates for resolution determined.

Strengths

Tracking issues is simple and a powerful means of ensuring that the correct application is
built.

Weaknesses

For the effort involved when compared with the risk of not recording and tracking them,
there is no downside.

Notation

Issues should be dated, numbered, and kept in a list or a book or even on-line in a Lotus
Notes® database. The general form for an issue is:

• Number or identifier
• Title
• Owner
• Assignee
• Status (such as unassigned, assigned, or closed)
• Description
• Priority (such as High, Medium, or Low)

178 PROJECT MANAGEMENT WORK PRODUCTS 10.12 ISSUES 	179

• Open date 	 For example, during a planning session someone asks, "What UI standard are we fol-
• Close date 	 lowing?" and after a very brief discussion, it is decided that the CUA89 standard will
• Due date (used when there are activities dependent on resolution of this issue) 	 be adopted. This should be documented as the issue, "What UI standard will be
• Action plan 	 adopted" and then the reasons for the decision should be recorded.
• Activity log
• Decision (record rejected alternatives) 	 r 	• The use of Lotus Notes, or some similar mechanism, for managing an Issues database

is recommended.
There are many possible outlines for an issue and it should be structured to meet the

project's needs.
Note that some of these attributes are inherited from the common work product attri-

butes already defined (Section 8.1) and so are redundant. They are reiterated here for
emphasis.

Traceability
This work product has the following traceability:

Example(s)
The following issue is from a project to develop a tool for host database management:

Advice and Guidance

• It is best to have someone on the team assigned the responsibility of managing the
issues list.

• The transcribe and converge technique described in Section 18.3 is a terrific source of
issues. You will frequently observe differences of opinion when using this technique.
These differences often merit recording for subsequent review.

• Watch out for emotional arguments during analysis and/or design. It is best to record
them as issues and move on. The assignee can then do whatever fact-finding is best
and present findings to the team.

• If you ever encounter a situation where there is consensus but an individual still holds
out for his or her position (often identifiable by the phrase "Yes, but ..."), suggest
recording as an issue for later investigation. Often, over time, the issue goes away.

• Issue resolution: OlDs (see Section 11.5) are a useful means of working out a resol-
ution. Either find or invent a scenario that covers the area of dispute, construct an OID
that addresses the concern, and see how it works out.

• Issues should be reviewed on a regular basis by management.

• Closed issues should be retained for future reference, and they should include proper
detail to ensure that the reasoning can be recalled.

• Note that decisions made, even if made on the spot, normally represent identification
and closure of an issue.

Impacted by:
• None.

Impacts:
• All Other Work Products

Verification

• Ensure that the issue list has an owner.

• Check that the status of all issues is correct.

• Check that all issues are being tracked. During most project-related meetings,
someone should be responsible for recording issues.

180 PROJECT MANAGEMENT WORK PRODUCTS

Table 10-2. Example of an Issue.

Issue: 29

Title: Resolve Alert Management Process

Owner: Charles

Assignee: Mary

Status: Closed

Description: It was recorded in the requirements that alerts would be sent to an Operator's console or proxy.
However during analysis, the domain expert (Mike) recommended that the notification should go directly to
the Data Base Administrator.

Priority: Urgent (Alert design cannot proceed until resolved).

Open date: Feb. 23, 1996

Close date: Mar. 11, 1996

Action Plan: Resolve by asking the expected users of the application

Activity log:

• 2/25 - Mary asked our second expert (Sheila) her opinion. She suggested this should be a programmable
option that would be specified at install time.

• 3/1 - Mary asked User Council. After much discussion, they favored the programmable option.

• 3/3 - met with design team leads to discuss cost. Determined that this would be a costly addition as
install program development has already begun.

• 3/4 - asked sponsor who concurred with the decision below.

Decision: While the suggestion has merit, due to the impact on the project, it has been decided that this will
not be built into the first release—especially as the User Council did not express strong views. It will be
closed and recorded as a suggestion for Release 2.

References

None.

Importance

Essential. Identifying and resolving issues drive the software development process.

11.0 Analysis Work Products

The Analysis portion of the project workbook details those work products that are created
during the analysis phase of the project.

Analysis is the separation of a whole into its component parts; an examination of a
problem, its elements, and its relationships.

Object-oriented analysis is the process of identifying objects that are relevant to the
problem to be solved and their relationships. The process includes classifying the objects
and finding relationships among the classes.

During object-oriented analysis, we apply object-oriented methods and techniques to
understand, develop, and communicate the functional requirements of an application.

From the modeling viewpoint, we model the problem domain by focusing on both the
static and the dynamic aspects of a problem. The static and dynamic work products are
separate, but tightly coupled, as is their development.

The static aspects are best described in an object model, which shows the objects in the
system and how they relate to other objects.

The dynamic aspects, the transition between object states and the interaction between
objects, are best explored by analyzing the behavior of objects as they collectively fulfill
the goals set up by the Use Cases. Use Cases and their Scenarios provide the input to the
dynamic modeling process in the form of object interaction diagrams. Such diagrams also
provide sample test cases for the system.

Analysis is focused on the problem domain, and not on the application. Thus, as far as
possible, the only classes that should be included in an analysis are those that an end user
would recognize. An area that is problematic is the system boundary. On the one hand
the analysis is restricted by the boundaries of the application; on the other hand the design
of the system interfaces is not an analysis concern. A solution that works in practice is to
produce a problem domain analysis that covers the application. That is, it is aimed
squarely at the problem domain (and not at the application per se), and it ignores as far as
possible all the details of the system interfaces. The analysis covers the application in the
sense that it includes the abstractions mentioned in the Use Case Model, but is not much
broader in scope.

According to this viewpoint, the Actors of the Use Case Model become analysis classes
with responsibilities and collaborations like any other analysis classes. After all, they are
first-class class entities in the problem domain. This enables communications across the system
boundary to be described in abstract terms during analysis, deferring their design till design
time.

One of the problems many teams have to deal with is to decide how detailed the anal-
ysis should be and/or for how long one should perform the analysis activities. Analysis
paralysis is the name given to the phenomenon of a team being extremely reluctant to

181

11.1 ANALYSIS GUIDELINES 	183

leave the analysis phase. The analysis phase as a result consumes much more resource
than planned. The following is a list of rules of thumb for avoiding analysis paralysis.

• Adopt an iterative and incremental development process. This means accepting,
among other things, that the analysis of early cycles is provisional and subject to
change following feedback from developers and customers.

• If an iterative and incremental approach is used, define the requirements of each devel-
opment cycle as a series of scenarios. Only perform enough analysis to enable the
scenarios of the current cycle to be expressed.

• Obtain feedback from customers and domain experts. One cause of analysis paralysis
is a lack of confidence in the domain. Ask the experts.

• If analysis discussion is getting bogged down, make a working assumption and record
the matter as an Issue to be checked off-line.

• Use predefined, although maybe rotating, roles during each analysis session. Roles
should include a leader, a timekeeper, and a scribe. The role of leader should not
rotate.

• Do not use modeling CASE tools until the central analysis work products have stabi-
lized.

• Consider using a depth-first approach (see Section 17.1) to development. One of the
causes of analysis paralysis is uncertainty in the boundary between analysis and
design. Depth-first development ignores this boundary for a small, initial set of sce-
narios.

• Beware of introducing design detail into analysis. If in doubt, err on the side of
minimal analysis. Design details are characterized by constraints. If an analysis team
finds itself worrying about efficiency or performance, then it has crossed the border
into design.

• Try using transcribe and converge (see Section 18.3) to achieve consensus.

The analysis section of the project workbook consists of the following work products:

• Guidelines

• Subject Areas

• Object Model

• Scenarios

• Object Interaction Diagrams

• State Models

• Class Descriptions

These work products all "inherit" the common work product attributes described in Section
8.1, and they have specialized attributes of their own.

Analysis Guidelines are documented rules on how analysis will be performed in the
project. The intent is to ensure that process for developing the other analysis work pro-
ducts and the format in which they will be delivered is consistent and well-understood
across the development team.

Subject Areas allow a large system to be partitioned into smaller and distinct business
domains allowing for a more effective divide and conquer approach to analysis.

The Object Model, a static model of the problem domain, is a critical work product that
provides a decomposition of the system into classes of objects.

Analysis Scenarios provide refinements of the Use Case Model and are necessary for
building Analysis Object Interaction Diagrams that provide a graphical representation of
the interactions between objects.

State Models describe the life cycle of classes in graphical form and can lead to better
understanding of the nature of a class.

Analysis Class Descriptions provide a summary of information about classes.

Much more detail is provided on these work products in the following sections.

11.1 ANALYSIS GUIDELINES

Description

Analysis Guidelines are the set of rules intended to document the way in which analysis is
to be performed on a particular project. There are, in general, two kinds of Analysis
Guidelines: work product guidelines and process guidelines.

Work product guidelines describe the nature of the analysis work products that are to be
produced by this project. This includes both the range of work products expected and the
nature of each. This information will, in general, depend on both application and team,
although many guidelines will be common. In addition to describing standard notations
that should be used, the analysis work product guidelines should add project-specific rules,
if any, for documenting analyses. These additional rules often fall into the following cate-
gories.

• Boilerplate conventions, which describe the overall format of the analysis work pro-
ducts. This information can be provided most simply by a set of templates. Doc-
umentation templates too should be provided, for example to describe the information
to be provided per class, per association, et cetera.

• Naming conventions, if relevant.

• Diagramming conventions. If any variations on the basic notation are to be used then
they should be documented here.

182 ANALYSIS WORK PRODUCTS

184 ANALYSIS WORK PRODUCTS
11.1 ANALYSIS GUIDELINES 	185

Process guidelines provide guidance on the process by which analysis is to be per-
formed. These guidelines may take the form of a list of suggested techniques, or may be
more prescriptive. The guidelines might also include tools advice and recommendations
for the usage of the tools.

Purpose

The point of Analysis Guidelines is to ensure that the analysis deliverables and process are
planned in advance, and that team members are consistent in their application of the
process to achieve the deliverables. This does not mean that analysis must necessarily be
planned in a step by step manner, but that thought is put into the analysis procedures and
are made publicly available. The last thing that a team needs is to be involved in proce-
dural discussions when it should be doing the analysis itself. The existence of guidelines
also acts as insurance that there will be relatively few surprises when the analysis delivera-
bles come to be reviewed. The reviewed analysis work products may contain mistakes, but
their format should be as expected.

Participants

The team leader and analysts are the people most likely to document the Analysis Guide-
lines. The guidelines must be written by someone with considerable experience in software
engineering, and object-oriented analysis in particular.

Timing

The guidelines must obviously be in place before any analysis activity is started. If there
is to be any analysis education then this must be consistent with the guidelines. If the
education is just-in-time then the guidelines should be established before the education is
delivered, and the education should take them into account, if this is possible. This
involves the educators being flexible, and giving them sufficient time to tailor their mate-
rial. The alternative is to adopt the set of guidelines taught by the educator provided that
these are appropriate and well documented.

Technique

Beg, steal, or borrow some existing guidelines. Interview experienced developers to check
that the guidelines are reasonable and complete. Consider asking a mentor for advice on
Analysis Guidelines, or to comment on those that have already been assembled.

Strengths

Ensures that analysis time is spent doing analysis, as much as possible, and not in meta-
discussions on what analysis is, or how to do it.

Weaknesses

potential problem is that the guidelines may be overly restrictive or prescriptive. The
tithor of the guidelines should only provide rules for cases in which, if they were not
cillowed, it would be difficult to understand or review the work product, or • the work
roduct would be hard to use subsequently.

Another potential drawback is that the writing of guidelines will be seen as a distraction
om the real work. The guidelines should be minimal, within the constraint that they are

sufficient to ensure that the analysis work products are understandable, usable, and con-
sistent.

Notation

Free format text augmented by work product templates or examples.

Traceability

This work product has the following traceability:

Impacted by:
	

Impacts:
• Intended Development Process (p. 127)

	
• Project Workbook Outline (p. 132)

• Project Workbook Outline (p. 132)
	

• Subject Areas (p. 187)
• Quality Assurance Plan (p. 147) 	 • Analysis Object Model (p. 192)
• Reuse Plan (p. 158)
	

• Analysis Scenarios (p. 203)
• Test Plan (p. 164)
	

• Analysis OIDs (p. 208)
• Issues (p. 176)
	

• Analysis State Models (p. 219)
• Analysis Class Descriptions (p. 227)

Advice and Guidance

• Group the guidelines into lists of guidelines by work product.

• Use work product templates where relevant.

• Use standard guidelines where they are available and appropriate. Modify these only
as necessary.

• If they are novel, publish your guidelines for others to comment upon and to use.

• Harvest good templates from the workbooks of other projects.

• Use the guidelines as entry criteria to analysis reviews.

• If the project team consists largely of object-oriented novices, guidelines that are more
prescriptive might be appropriate.

• Briefly review the guidelines at the end of each iteration to check their adequacy and
completeness.

• Change or add to the guidelines during the project if this is considered necessary.

186 ANALYSIS WORK PRODUCTS 11.2 SUBJECT AREAS 	187

• Include statements about what analysis is and what it is not. These statements should
be backed up by some criteria for deciding when to stop analysis. For example, it
might be stated that if analysis modeling activity has started to discuss alternative ways
in which the system may be designed or implemented, then it has strayed too far
towards design.

Verification

• Check for coverage of each analysis work product. That is, use the list of analysis
work products as a checklist of headings under which to add guidelines.

• Check that adequate guidance is provided for the usage of all tools, where appropriate.

• Check that the guidelines provide for maximal integration of analysis work products.
For example, are the Analysis Class Descriptions being generated automatically from
the Analysis Object Model and other models?

Example(s)

Analysis Guidelines for a particular development team or site might include the following:

• Use Object Modeling Technique (OMT) as a modeling notation and Select OMT as a
modeling tool. The tool should be used for documentation only; during modeling ses-
sions use white boards, post-it stickers that double as Class Description cards, and a
flip chart for Glossary entries.

• All classes, as soon as they are proposed, should be defined with a Glossary entry.

• Glossary entries, when stable, should be transferred to Select OMT®.

• The analysis process is highly iterative, but the following cycle should broadly be fol-
lowed.

– From each of the requirements Use Cases generate a set of Scenarios by consid-
ering the different sets of assumptions under which the system would behave in an
essentially "straight-line" (unconditional) manner.

– Generate an initial object model, possibly preceded by a semantic net brain-
storming session to generate ideas. Focus on the essence of the business in ques-
tion and ignore infrastructure and peripheral concerns. Do not worry about
cardinality or aggregation at this point. Use transcribe and converge to achieve
consensus on the key concepts and relationships. Do not worry for the moment
about whether the classes are strictly required, or about identifying generalizations.

– Produce an object interaction diagram for each scenario. This involves identifying
responsibilities and assigning them to classes. As this is done, add the responsi-
bilities to the class descriptions. Distribute responsibilities evenly throughout the
model as far as possible. Where helpful, but only then, identify data attributes.
Iterate between OID modeling and object modeling in order resolve any tensions

that arise. Do not iterate after each OID, as the model will be too unstable if this
is done. Wait till a critical mass of OIDs, perhaps five, are available before
returning to the object model.

– Document the outcomes of each scenario in terms of objects created, destroyed,
and modified.

– Optimize the object model by pruning disconnected classes, identifying
generalization/specialization hierarchies, and promoting responsibilities and
relationships up the hierarchies if appropriate.

• Avoid including design detail in analysis models. Design detail is characterized by
constraints: if proposed detail is included only to satisfy a constraint, omit it.

• Be sure not to do more modeling work than necessary: Only do a sufficient amount to
understand how the object model can support the scenarios, without introducing con-
cerns about constraints or other Nonfunctional Requirements.

• For those classes with important and significant dynamic aspects, such as transactions,
units of work, or some real-time interfacing classes, draw state transition diagrams to
capture their dynamics. Use the OIDs to produce an initial diagram, which is then
completed manually.

References

None.

Importance

Optional, but it is our opinion that Analysis Guidelines are important. The existence of
these guidelines can keep analysis focused on analysis issues and ensure that time allotted
to analysis is spent productively.

11.2 SUBJECT AREAS

Description
A Subject Area is a distinct domain of interest that can be identified at analysis time. It is
a recognizable part of the problem domain that can be analyzed as a separate unit. Subject
Areas are to Analysis what Subsystems are to Design. Subject Areas might or might not
become Subsystems at design time—that is a design issue.

In an object-oriented approach, Subject Areas tend to be defined as clusters of analysis
classes that are closely related to each other by inheritance ("is-a"), aggregation ("has-a"),
and other ("uses") associations. So it is common (and useful) to associate key classes with
a primary Subject Area—the one with the most closely related classes.

11.2 SUBJECT AREAS 189

would recognize. Thus, things such as Customer Management or Account Maintenance,
but not User Interface or Persistence, would make useful Subject Areas.

If Subject Areas emerge as an organizing principle during rather than before analysis
work, then it will probably be as a result of the realization that the quantity and size of the
analysis work products is getting unmanageable, and that some way of organizing them
must be found. The primary way to discover Subject Areas once analysis has started is to
partition the Analysis Object Model into a few clusters that are essentially independent of
each other, but which are closely related internally. The remaining analysis work products
can then be allocated to these Subject Areas according to their prime focus. But how do
you find the "prime focus"?

Since Use Cases (see Section 9.2) are specified in the form of actor-verb-object, we can
use the object part of each Use Case to associate it with its Subject Area. For example, if
an analysis of a banking problem has identified Subject Areas: Accounts, Journals, Audits,
Operations, ..., then the Use Case: "Customer deposits funds to savings account" would,
most likely, be assigned to the Accounts Subject Area (We are assuming here that savings
account is a class in the Accounts Subject Area). Note that the direct object of the Use
Case ("funds") is rather passive (often an attribute of the verb, e.g., deposit-funds) and the
indirect object ("savings account") is the active receiver. Also note that the other Subject
Areas (e.g., Journal, Audit) will eventually be used by the Account Subject Area, probably
during the development of the Analysis Object Interaction Diagram (see Section 11.5).

Strengths

Just as the design of large systems needs organization, so does their analysis. Structuring
the analysis work products according to Subject Areas allows each aspect of the application
to be examined and understood in isolation. It also facilitates checking for consistency and
completeness among the closely related classes within a Subject Area.

Weaknesses

Identifying and maintaining Subject Areas takes some time and organization. Partitioning
an analysis into Subject Areas erects barriers that might result in inconsistencies between
Subject Areas. Effort must be put into communication and reviewing to ensure that this
does not happen.

Notation

A simple table of the Subject Areas is sufficient. For each Subject Area, the following is
relevant:

• Name of Subject Area
• Brief description
• Key Classes
• Dependencies (Subject Areas used by this one)
• Workbook

188 ANALYSIS WORK PRODUCTS

Note, however, that it is unlikely that classes only have relations with other classes in
their own Subject Area. Subject Areas are usually not self-contained and it is common to
have some classes within a Subject Area interact with classes in other Subject Areas. It is
useful to promote these "uses" relations from the class level to the Subject Area level.
Thus, Subject Areas will "use" or depend on each other.

Purpose

The use of Subject Areas permits a large system to be partitioned very early in its develop-
ment cycle. It encourages a separation of analysis concerns, and provides a means of
organizing work products. Without Subject Areas, or an equivalent organizing concept,
analysis work products can become unmanageable due to their size and quantity. Subject
Areas provide a means of breaking the analysis into manageable chunks.

Many large applications have natural Subject Areas that may usefully be explored sepa-
rately at analysis time. This allows different domain experts to be used for (say) an
Account Subject Area and a Audit Subject Area, or it might simply allow parallel develop-
ment in an organization.

Partitioning an analysis using Subject Areas facilitates reuse as it is then easier to
examine and to extract information or whole work products related to a common Subject
Area shared by applications.

Participants

The analysts, in consultation with customers, domain experts, and end users partition the
analysis into Subject Areas.

Timing

Subject Areas are identified during the analysis phase and used to organize the analysis
work.

Technique

Subject Areas are either defined "up front," as a way of getting into the analysis of a large
application, or they are introduced during analysis as a means of organizing the evolving
analysis work products.

If Subject Areas are defined up front, then a very early analysis step is to identify the
general categories of objects suggested by the Problem Statement and Use Cases. Identify
the objects, especially the indirect objects, in actor-verb-object statements of functional
requirements. Then cluster them into their natural Subject Areas. This will probably, but
not necessarily, take the form of a partitioning of an early version of the Analysis Object
Model.

Don't be influenced by Nonfunctional Requirements: "User Interface" may be a great
idea for a Subsystem (design), but it's probably not a Subject Area (analysis) from the
problem domain. Subject Areas should be structured along lines that domain experts

190 ANALYSIS WORK PRODUCTS 11.2 SUBJECT AREAS 	191

The last item refers to the fact that each Subject Area may be given an entire workbook of
its own. This workbook might be a part of the overall system workbook or a distinct book
or file. Obviously, a Subject Area (like a Subsystem, see Section 13.5) need only include
those work products that are relevant to it. It will probably include most of the analysis
work products. At design time it will be decided whether to proceed with design at the
Subject Area level by adding design work products to each Subject Area workbook, or to
proceed with design at the system level by adding design work products to the main
workbook. Subject Area workbooks, like Subsystem workbooks, are logically part of the
overall project workbook.

Alternatively, most object-oriented CASE tools support the concept of Subject Areas
via views or hierarchical layers. They take the form of named boxes connected by depend-
ency ("uses") arrows. They often show the key member classes as attributes but hide the
description in a "properties" panel. See Figure 25-5 on page 554 for an example of "Cat-
egory Diagram" generated by Rational Rose.

Traceability

This work product has the following traceability:

Impacted by:
	 Impacts:

• Problem Statement (p. 93)
	 • Resource Plan (p. 135)

• Use Case Model (p. 96)
• Issues (p. 176)
• Analysis Guidelines (p. 183)
• Analysis Object Model (p. 192)
• Analysis OIDs (p. 208)

Advice and Guidance

• Ensure that Subject Areas partition the analysis and not the design work products.
Subject Area descriptions should refer to the business domain and not to design
artifacts.

• Use Subject Areas as candidate Subsystems, but ignore this use of Subject Areas at
analysis time.

• Be prepared to adjust Subject Area boundaries, or even to split or merge Subject
Areas, as analysis proceeds.

• At design time, each Subject Area may form the basis for one or more Subsystems
that may be described and developed in their own workbook.

Verification ckth

that definitions and glossary entries are consistent across Subject Area bounda-

che

ries.

• Check the completeness of the set of Analysis Scenarios in each Subject Area inde-
pendently.

• Check the dependencies between Subject Areas implied by the Analysis OIDs.

• Ensure each analysis class is represented in one and only one Subject Area.

Example(s)
The following demonstrates a nongraphical presentation of Subject Areas for a banking

application:

Accounts

Description 	The various types of accounts managed by the bank.
Key classes 	Account, Savings Account, Checking Account, Loan
Uses 	 Journals
Workbook 	BANKACCT

Journals

Description 	Transaction recording facets of the bank.
Key classes 	Log, Transaction Log, ATM Log, EFT Log, Teller Tally
Uses 	 Operations
Workbook 	BANKJRNS

Audits

Description 	Error and fraud detection mechanisms of the bank.
Key classes 	Audit, Teller Audit, Branch Audit, ATM Audi, EFT Audit, Account Audit
Uses 	 Journals, Accounts
Workbook 	BANKAUDT

Operations

Description 	Personnel and scheduling facets of the bank.
Key classes 	Schedule, Bank Schedule, Personnel Schedule, Employee, Manager
Uses 	 (none)
Workbook 	BANKOPER

Figure 11-1. Example of Subject Areas.

References

• Our notion of Subject Areas is similar to the "layers" discussed by Grady Booch
[Booch94].

• The concept of "domains" of Sally Shlaer and Steve Mellor [Shlaer92] is similar to
Subject Areas.

192 ANALYSIS WORK PRODUCTS 11.3 ANALYSIS OBJECT MODEL 193

• The concept of "Subjects" of Peter Coad [Coad90] is similar to Subject Areas.

• James Rumbaugh discusses "subsystems" in OMT [Rumbaugh9 I a]

Importance
Optional in small and medium-sized projects but essential in large projects. Subject Areas
provides an important means for dividing analysis work products into more manageable,
more understandable pieces.

11.3 ANALYSIS OBJECT MODEL

Description
The Analysis Object Model is a static model of the part of the problem domain relevant to
the Problem Statement. In common with the Design Object Model, it consists of classes
and relationships between classes. Three kinds of relationships are normally used: associ-
ations, aggregations, and generalizations/specializations (inheritance). The Analysis Object
Model is a key object-oriented analysis work product.

Purpose
An object model is the fundamental way to document the static aspects of objects in the
problem domain. Object modeling is what makes object-oriented development different
from traditional development. The basic idea is to decompose a system down into classes
of objects that cooperate by passing messages to get the job done.

The power of object modeling, as opposed to data flow or control flow modeling, is
that by focusing on modeling complete abstractions (objects), which encapsulate both func-
tion and data, it is possible to use the same basic concepts during all development phases
from analysis to code. By contrast, one might analyze a problem conventionally in terms
of data and then design a solution in terms of function.

Participants
Object modeling is the task of architects and analysts. It is essential to get the active
participation of clients and/or domain experts in this modeling activity. Since the real-
world objects represented in this model belong to the problem domain; clients, end users,
and domain experts are the right audience to give inputs and to validate the model. With
their participation, the problem can be better understood, and less mistakes will happen in
the analysis.

Timing
The Analysis Object Model is developed primarily during the analysis phase but it needs to
be maintained during design or implementation if domain understanding changes.

Technique

state ,

 • Identify key problem domain abstractions that satisfy the criteria of objects: identity,
and behavior

• The behavior of objects at analysis time can be activities and/or services

• Define each identified candidate class using a short glossary entry

• Connect the candidate classes by identifying relationships between classes: associations
and specializations/generalizations

• Add responsibilities

— Key attributes
— Behavior
— Aggregations

• Check consistency with 01Ds and state diagrams

• Iterate until model is stable

• Update class descriptions

• Restructure and refine as required over time

After the Analysis Object Model is complete, if the domain is large enough, you may
choose to partition the model into Subject Areas (cf. Class Category in Booch [Booch94]
or subsystem in OMT [Rumbaugh9 1 a]). Large models require internal organization
[Rumbaugh95a] and partitions help us to group classes and concentrate our attention on a
subset of the model at a time. Partitioning borders between analysis and design. The
boundary between object-oriented analysis and object-oriented design is not as clear as it
was between structured analysis [Demarco79] and structured design [Stevens81]. The clus-
tering of classes can already begin during analysis as is proposed in [Nerson92]. Dividing
the analysis into Subject Areas facilitates parallel development by various teams.

Subject Areas are decided by logical criteria aimed at producing a clear and simple
analysis. The goal of partitioning a design into Subsystems (Section 13.5) is different.
While analysis Subject Areas and design Subsystems might be aligned in some systems,
that is incidental and not inherent in the definition of the work products.

Strengths

A key deliverable for capturing and communicating problem domain understanding.

An effective means of communication between team members, customers, and domain
experts.

grade

Student Course

Book

title

add Footnote

Car Truck Van

Vehicle

11.3 ANALYSIS OBJECT MODEL 195

Weaknesses

Only shows the static relationships.

Maintenance of the Analysis Object Model is often neglected. This stems from the
(incorrect) assumption that the design supersedes the analysis. This weakness is shared by
all analysis work products.

Notation
An Analysis Object Model is a specialized form of work product whose purpose is to
capture the relationships between classes of objects in a system or an application. An
Analysis Object Model is best represented visually as a class diagram. The following
information is usually shown in a class diagram:

• Classes
• Relationships

— Generalization/specialization (IsA)
— Association (KnowsAbout)
— Aggregation (HasA)

• Attributes
• Behavior

Instance objects can also be added if this aids domain understanding.

Some forms of documentation show these aspects separately while others combine thei
all on one diagram. The choice is up to you and your team members, but our recommei
dation is that you document all of them in the single diagram described below.

Each of these aspects is discussed in detail below:

Classes: A class can be drawn as a 3-part box, with the class name in the top part, a li
of attributes (with optional types) in the middle part, and a list of services or operatio
(see Figure 11-2).

Class

attributes

services

Figure 11-2. Class Notation.

Generalization/specialization: Generalization/specialization is usually shown as a hier-
archy of super/sub type relationships where the sub types inherit the properties (both attri-
butes and services) of the supertypes. Figure 11-3 shows the notation for class inheritance
hierarchy. A Truck, a Car, or a Van are considered to be specializations of Vehicle.

Figure 11-3. Inheritance Notation.

Association: Association is the simplest form of relationship. It represents knowledge
of the existence of other objects. An association can be thought of as a class in its own
right, so that it can support attributes, services and other relationships to enforce the details
of the contract. Different notations handle this in different ways, but the basic idea is that
associations are the fundamental way to describe how one object uses another to complete
a task.

If two classes have an association between them, then instances of these classes are, or
might be, linked. These links between instances can be thought of as instances of the
association between the classes. Often it is useful to model these links with state and
behavior and not just identity. That is, associations can be classes in their own right. For
example, the Student-Course association in Figure 11-4 might have the attribute "grade"
(link attribute in OMT [Rumbaugh95a]).

Figure 11-4. Associations Notation.

Associations have cardinality. The cardinality shows how many instances of the class
can be associated with one instance of the other class. Cardinality can be 0 or 1 (hollow

194 ANALYSIS WORK PRODUCTS

196 ANALYSIS WORK PRODUCTS 11.3 ANALYSIS OBJECT MODEL 197

ball), 1 (no marker), 0 or many (solid ball), or some other integer range. Cardinality is
important if it is so for the problem domain, for example, a customer can only place one
order, et cetera.

An association is, figuratively speaking, the connection through which messages will be
passed to access the attributes and services of other model components.

An association is a binary relationship at the analysis level. It reflects conceptual or
physical links between objects of associated classes [Rumbaugh9la]. At the analysis level,
no determination is made whether an association represents conceptual or physical links.
This distinction becomes more important at design time and will be discussed later in
Section 13.6, Design Object Model. It is sometimes useful to tag associations on an object
diagram with a name. These names are often verbs, as the associations usually exist so
that instances of one class can "do something" to or with instances of another. For
example, Factory and Employee classes might have an "employs" association between
them.

Aggregation: Aggregation is a special form of association and shows another view:
namely the part-whole hierarchy relating object classes in the model. For example, when a
car is decomposed into body and engine (see Figure 11-5), it is thought to "contain" the
components, i.e. body and engine; they are its parts. Aggregation often means ownership:
The lifetime of the whole encompasses that of its parts. If you are not sure whether a
relationship is an association or an aggregation then leave it as association.

Composite

Car

Engine

Components

Figure 11-5. Aggregation Notation.

During analysis, aggregations are used to model type composition in a domain. Aggre-
gations can be classified by the cardinality or multiplicity of the aggregate:

Assembly or container; where a component cannot be part of more than one whole or
aggregate (cf. Aggregates in [Civelo93])

Collection; where a composite can have many components [Civelo93]

Catalog; a component can be used in more than one composite (cf. Catalog aggre-
gation [Rumbaugh95a])

ttributes: Attributes represent the structural properties of a class. For example in
figure 11-6 the static properties of the class Car are Make, Model, and Year. Each
stance of that class will contain its own set of values (for example, "Porsche,"

'Carrera," "1987") for the attributes.

Car

Ford

Tempo

1992

Car

Make

Model

Year

Figure 11-6. Attributes Notation.

Behavior: The behavior of a class, often documented as services or operations, is a state-
ment of the responsibilities of the class. Behavior is what separates object modeling from
traditional forms of data modeling (such as data models that result in Entity-Relationship-
Attribute diagrams). The fundamental aspect of an object class is to encapsulate both data

Car

Porsche

Carrera

1987

11.3 ANALYSIS OBJECT MODEL 199

and function into one package and exploit inheritance, polymorphism, and contracts to ge
a high degree of reuse. Services encapsulate this function.

During analysis we model real world objects that can be physical or conceptual. The rep
resentation of a physical object such as a customer is modeled if it exhibits interesting
behavior from the model point of view, in other words, if it carries out activities that influ-
ence or communicates with the model. For example, a member object (Part 5, Video Store
Case Study) could perform the activity: cancel membership.

The differences between activities and services are that activities are not invoked. They
are performed by objects by their own initiative. However, we treat activities and servic
in the same way. Conceptually, we could think of an object sending a message to itself
We have a different situation with view class, for example, CustomerView. One should no
include view classes in an Analysis Object Model, because they do not influence the model
classes, and only communicate with the model classes for their own benefit.

The operations or services of a class can have formal parameters, a return type, an
textual description.

Traceability

This work product has the following traceability:

Impacted by:
	 Impacts:

• Issues (p. 176)
	 • Subject Areas (p. 187)

• Analysis Guidelines (p. 183)
	 • Analysis OIDs (p. 208)

• Analysis OIDs (p. 208)
	 • Analysis State Models (p. 219)

• Analysis Class Descriptions (p. 227)
• Design Object Model (p. 281)
• Glossary (p. 355)

Advice and Guidance

• Don't overburden the modeling notation with unnecessary complexities. The simpler,
the better. Object models must be readable by the expert and the beginner.

• The model should not contain any design decisions. Design, not analysis, is driven by
the system's Nonfunctional Requirements that represent constraints in the way that the
system works; for example, performance or availability constraints. Do not add detail
to an analysis model simply to satisfy a Nonfunctional Requirement. Leave it for the
design work products.

• Objects in the Analysis Object Model should relate to problem domain objects an
mean something to the end user.

• Avoid being overly abstract; use the names that people familiar with the domain use
(for example, in the bank-lending domain, name objects and services as a Loans
Officer would).

Name objects and services consistently and meaningfully.

— Name object classes with common noun phrases (for example, customer)
— Name services that modify objects with active verbs
— Name services that query objects with verbs indicating queries

• Watch out for objects like computers or databases that may represent implementation
constructs. Ask the user what the function is that they provide and try to name
accordingly (for example, call a customer database a customer repository).

• Avoid controller objects that control the rest. One (slightly tongue-in-cheek) test for
controller objects: Ask all developers which object they would not like to implement.
If they all agree on one then you have a controller. Controller classes are often char-
acterized by names such as "controller," "manager," and the like. A goal of using an
object-oriented approach is the distribution of function in the system. Controllers act
against this trend.

• Avoid multiple inheritance (inheriting from more than one superclass) unless following
this guideline would result in a clumsy model.

• Eliminate unconnected objects from the object model.

• Decompose objects to the most primitive components that have meaning to the user.

• Keep any inheritance trees as shallow as possible to reduce the impact of any changes
in superclass methods on lower-level subclasses. Most designs can be captured in
three or less levels.

• When determining operation ownership, the service should be associated with the pro-
vider (server), not the requester.

• It is generally better to have many simple objects than a few complex ones. An overly
complex object with too many attributes may be a sign that the object can be split into
smaller objects. In other words, ensure that each class represents only-one abstraction.
One sign that this rule is being violated is an inability in find a good name for the
class. Another danger sign exists if a glossary entry cannot simply be phrased in the
form "An instance of this class is a" Avoid glossary entries that simply list attri-
butes or services: concentrate on the entire abstraction.

• Don't worry about efficiency or minimization of classes in the analysis object model.

• Associations at analysis time are bidirectional, as it is too early to decide which of the
two objects will have the responsibility to keep the information about the other or
neither object may actually know about the other. During design we may decide to
invent a third object that will keep this information (relating to the link between two
objects).

198 ANALYSIS WORK PRODUCTS

11.3 ANALYSIS OBJECT MODEL 201 200 ANALYSIS WORK PRODUCTS

Associations should be labeled. Some people insist on labeling both ends of associ-
ations, others are comfortable with only one end being labeled (since the inverse asso-
ciate can be derived).

• Watch out for processor and data objects

Data objects superficially have behavior but only access functions. Focusing on the
abstract responsibilities of a class instead of its concrete services and attributes helps to
clarify whether an object is there only to encapsulate data.

• When in doubt, use association instead of aggregation; it is more general.

• When a class is identified, record a short definition of it in some form of Glossary.
With the help of a tool the object model and the class descriptions could probably be
different representations of the same information.

• If the model is large (more than what fits in a diagram), consider breaking it up into
Subject Areas

Verification

• Check that class names are appropriate. Names should convey intent. Be suspicious
of names such as Controller and Manager as these often indicate a centralization of
control.

• Check each class against the criteria that a class should have identity, state, and
behavior.

• Check necessity and consistency of cycles of associations.

• Check for symmetry of associations, for instance, that related associations are at
related levels in the inheritance hierarchies.

• Check that all aggregations imply lifetime encapsulation.

• Check for an absence of overlapping aggregations such as aggregations with the same
components might be owned by multiple aggregates at the same time.

• Check the correctness of all unitary cardinalities.

• Check for absence of design artifacts and bias.

• Check that inheritance always implies specialization.

xample(s)
e following requirements describe a library system containing accounts of those users

ho want to access library documents. A document can be contained either directly in a
brary, or in a folder. A folder can be contained inside another folder or inside a library.

h account has an associated capability. When a user wants to access a document or a
older, her account's capability is checked against the threshold required by the document

or folder. A user can logon the library, if the user has an account. The user with the right
apability can open, delete, and copy a folder or a document. A document can be edited

also by the user.
Based on the system requirements and using the approach described in the technique

ection of this work product description, the project team has made the following observa-
tions:

• Class User has an m:1 association with class Library, called Logon;

• Class User has an I :m association with class Account, called . Own;

• Class User has an m:n association with class Libraryltem, called Access, and the asso-
ciation class is Library;

• Class User is not within the system to be developed;

• Class Library has an /:m aggregation relation with class Account; It also serves as an
association class between User and Libraryltem;

• Classes Folder and Document have common behaviors which can be generalized into a
class called Libraryltem;

1. Their objects have the behavior of checking capability through the Security
objects.

2. Their objects have the behavior of being contained by a Library object, or a
Folder object directly.

3. Their objects also have the behavior of being opened, deleted, and copied by a
user object.

• Class Library has an I :m aggregation relation with class Libraryltem;

• Class Account has an aggregation relation with class Capability;

• Class Libraryltem has aggregation relations with class Security;

• Class Security has an association with class Capability, called VerifiedBy, and the asso-
ciation has an association class Threshold.

11.4 ANALYSIS SCENARIOS 203 202 ANALYSIS WORK PRODUCTS

The object diagram at the analysis level for this example, rendered as a Class Diagram,
is shown in Figure 11-7.

Capability
gelVakie0

LJ
Threshold

Figure 11-7. Class Diagram Representation of the Object Model at the Analysis Level.

References
How to build an object model is well documented in Object-Oriented Modeling and Design

[Rumbaugh91 a] and in various papers by James Rumbaugh.

Importance
An Analysis Object Model is absolutely essential. Decomposing the system into classes of
objects that encapsulate data and functionality allows the use of the same concepts
throughout the development cycle.

11.4 ANALYSIS SCENARIOS

Description
Scenario is an elaboration of a Use Case. Use Cases are statements of high-level func-

tional requirements; Scenarios add more detail and describe factors that may result in
behavioral variations of a given Use Case.

A Scenario can be defined as follows:

Scenario = Use Case + Assumptions (initial conditions) + Outcomes

A Scenario describes the behavior of the system in a particular situation. The Use Case
Model and the set of all Scenarios together constitute the functional requirements of a
system. These requirements may be stated as formally or informally as considered appro-
priate.

Purpose

Use Cases are statements of user needs; however, they are not sufficiently detailed to
enable the development of analysis models. Scenarios are refinements of Use Cases and
are used to develop Object Interaction Diagrams. A single Use Case can generate multiple
Scenarios, and Scenarios derived from the same Use Case can involve the interplay of
different classes.

It is very effective to define the requirements of each cycle of an iterative and incre-
mental development schedule in terms of the Scenarios that must be implemented in that
cycle.

Participants
An analysis team, led by a qualified analyst who is knowledgeable in object technology
should create the Scenarios. It is essential that domain experts or people familiar with the
domain participate.

Timing

Start in analysis, after some Use Cases have been identified, and continue throughout the
analysis phase.

Technique

Scenarios can be generated directly from Use Cases. They are constructed by taking a Use
Case and identifying possible different outcomes (for example, loan granted vs. loan
rejected) and different conditions that might result in different kinds of collaborations (for
example, the loan requiring a cosigner that in turn results in different kinds of interactions
with different classes). At times, this is not as simple as it sounds—sometimes it is hard to
imagine different outcomes or assumptions. There will be times when you will have to
watch for these happenings while building Object Interaction Diagrams.

VerifiedBy

204 ANALYSIS WORK PRODUCTS 11.4 ANALYSIS SCENARIOS 205

1.

There are other sources of information to augment the Use Cases:

• The brains of people with domain knowledge

A brainstorming session is a useful means of doing this

• Problem Statement

• Reviewing or walking through case studies

• Functional requirements (if a separate functional requirements document exists)

• Variations of other Scenarios

It is possible to generate new Scenarios by varying the assumptions and outcomes

• Working out Object Interaction Diagrams.

Scenarios are generated by considering each Use Case in turn. For each Use Case the
possible behavioral variations of the Use Case are considered. Each variation is docu-
mented as a separate Scenario. The behavior of the Scenario is captured by describing the

assumptions that the Scenario makes, that is, the initial conditions that must be true, and
the outcomes (results) of the Scenario. No information on how the Scenario is to be per-
formed is provided, only the conditions before and after the Scenario. The conditions may
be informal, textual statements, or they may be formal preconditions and postconditions of
the Scenario stated in terms of the states and attribute values of the participating objects.

To generate Scenarios while building Object Interaction Diagrams, watch for questions
that will determine what the next request will be or where it should be directed (for
example, when processing a loan application, it may make a difference if the customer is
known to the financial institution or is a new client). When making an assumption to
process an OID, make sure it is explicit and added to the corresponding Scenario. Once
this is done, it is easy to generate variations by altering the assumptions (change an
existing customer to a new customer, change good credit rating to bad, et cetera).

Like all work products, analysis Scenarios are subject to iterative rework. For example,
if state modeling discovers new states of a class, then the language of Scenario assump-
tions and outcomes has effectively been enriched. It may then be possible to restate the
assumptions and outcomes of Scenarios more precisely, or it might be possible to identify
new Scenarios.

Strengths

One cannot overstate the importance of Scenarios. They are vital to identifying ways in
which the system must respond to real-world situations, or initiate activity in the real
world. By identifying assumptions and outcomes we are better able to get a handle on
variations that may occur, which may in turn drive out different responsibilities and partic-
ipants.

Weaknesses

t can be difficult to identify underlying assumptions, as they are often implicit in the situ-
tion. One needs to be quite rigorous in searching for assumptions.

otation

cenarios are recorded textually; see the examples for a suggested format. The key Sce-
ario attributes to record are its assumptions and outcomes. If doing so would help, then
sts of participating objects and parameters may also be added as Scenario attributes.

raceability

his work product has the following traceability:

Impacts:
• Analysis OIDs (p. 208)
• Analysis State Models (p. 219)
• Design Scenarios (p. 293)
• Glossary (p. 355)

dvice and Guidance

Keep in a list and assign each one a permanent number (even if it is retired or aban-
doned).

Assign a Scenario the same number as its corresponding Use Case.

As one Use Case may generate many Scenarios, it is useful to extend the Scenario
number scheme. Thus Use Case #7 corresponds to Scenario #7.x (that is to say 7.1,
7.2, ...).

Watch out for implicit assumptions: Try to make all assumptions explicit.

This makes it easier to vary Scenarios and identify potential situations that may
involve different participants. For example, when a customer applies for a loan (in a
banking domain) it makes a difference whether or not they are "known to the bank"
(for example, an existing customer). If a customer is new to the bank and applying for
a loan, a quantity of background information will be requested. On the other hand, if
an existing customer, this step will be bypassed; however, the service person will
likely get current account information (for example, existing loan and credit card bal-
ances, previous loan history, et cetera).

New Scenarios are often developed by finding variations of old ones. When this
happens, make sure that the discriminating assumption is added to the original Sce-
nario.

Present a Scenario in terms of generic parameters and participating objects, that is, in
terms of formal parameters. When the formal parameters are not obvious, document

Impacted by:
• Use Case Model (p. 96)
• Issues (p. 176)
• Analysis Guidelines (p. 183)

206 ANALYSIS WORK PRODUCTS 11.4 ANALYSIS SCENARIOS 207

them explicitly. A Scenario should not refer to specific data values or objects unless
doing so is a necessary part of the Scenario. Scenario attributes that document the
participants and parameters of the scenarios are particularly useful if there are many
participants and/or parameters.

6. If multiple instances of the same class participate in a Scenario, then role names
should be given to each. Both role names and class names can be defined in the
participant's Scenario attribute, if these are used. If only one instance of a class partic-
ipates then no role name is necessary, unless it would be helpful to indicate it.

7. If a Scenario participant's attribute is used then only include in it those objects that are
mentioned in the assumptions and outcomes lists, not any additional objects that might
appear on the object interaction diagram for the Scenario.

8. If doing so would be helpful, use the names of possible states of objects to express the
assumptions and outcomes.

9. If a formal style of Scenario presentation is used, Scenario assumptions and outcomes
will "feel" more like preconditions and postconditions, and can be labeled as such.

10. If preconditions and postconditions refer to object attributes, they will need to distin-
guish between the values before the Scenario is performed, and the values after. A
useful convention is that all references to after values use the attribute name decorated
with a prime symbol. For example a postcondition stating that the new account
balance minus the old account balance equals AmountToBeTransferred (a Scenario
parameter perhaps) might be written:

Account.balance' - Account. balance = AmountToBeTransferred

Verification

• Check that each scenario description is as generic as possible. Scenarios must refer to
instances, but the description of each instance should be as generic as possible, and not
unnecessarily referring to specific instances such as account_512678.

Instance data is sometimes useful as a means of communicating with users during
analysis sessions (for example, Mary the Clerk rather than Clerk).

• To ensure coverage of scenarios, vary all of the assumptions that have been identified
and try different combinations and permutations of assumptions and outcomes.

Example(s)
The following are some Scenarios from a banking application that are derived from the
Use Case of "customer applies for loan":

Use Case 1: Customer applies for loan

Scenario 1.1: Customer Applies for Loan (Granted)

Assumptions:
• Customer is known to bank (an existing customer)
• Applied for amount is within Loans Officer's lending authority
• Customer is employed
• Customer has a good credit rating

Outcomes:
• Loan is granted to customer

Scenario 1.2: Customer Applies for Loan (Declined)

Assumptions:
• Customer is unknown to bank (not an existing customer)
• Applied for amount is within Loans Officer's lending authority
• Customer is employed
• Customer has a bad credit rating

Outcomes:
• Loan application is declined

Scenario 1.3: Customer Applies for Loan (Marginal Case - approved)

Assumptions:
• Customer is known to bank (an existing customer)
• Applied-for amount is within Loans Officer's lending authority
• Customer is employed
• Customer has a marginal credit rating
• Bank requires marginal applications to supply a cosigner
• Customer provides cosigner

Outcomes:
• Loan is granted to customer
• Cosigner is bound by loan contract

Figure 11-8. Analysis Scenario for Customer Loan Application.

The following is a scenario from a DB performance monitor project:

Use Case 1: Monitor Database

Scenario 1.1: Data Collection—First Sample (successful)

Assumptions:
• User has defined expression (page activity . page read + page write)
• All objects have been created
• Only shows the capture of the first sample
• Only shows collection for 1 database (there could be many)

Outcome:
• Successful

Figure 11-9. Analysis Scenario for Monitor Database.

208 ANALYSIS WORK PRODUCTS 	 11.5 ANALYSIS OBJECT INTERACTION DIAGRAMS 209

References

• [Jacobson92] has extensive discussion on Use Cases.

• [Spivey88] defines behavior in terms of assumptions and outcomes.

Importance
Absolutely essential. Scenarios allow the refinement of Use Cases necessary for building a
complete analysis model.

11.5 ANALYSIS OBJECT INTERACTION DIAGRAMS

Description

An Analysis Object Interaction Diagram (OID) is a graphical representation of an Analysis
Scenario, expressed in terms of the interactions between real-world or analysis objects. An
Analysis OID presents the dynamics of an Analysis Scenario by showing how the objects
that participate in the Scenario collaborate in order to achieve its desired outcomes.
Bearing in mind that Analysis Scenarios are derived directly from Use Cases, Analysis
OIDs complete the link between the requirements and the Analysis Object model.
Although Analysis OIDs present the dynamics behind a Scenario, they stay at the analysis
level of abstraction. The key for developing effective Analysis OIDs is to focus on the
real-world objects only for understanding and abstracting the problem and business, instead
of defining solutions.

Purpose
Analysis OIDs provide a high-level view of how objects or instances of those classes
defined in the Analysis Object Model interact in order to carry out the Scenarios that are
the requirements in the system. The graphical medium shows the end-to-end execution
flows in a simple and sufficient way. Analysis OIDs are used to discover responsibilities
that are needed to carry out Scenarios, and to assign those responsibilities to classes. As
Analysis OIDs link Scenarios to the Analysis Object Model, they may be used either to
help derive the Object Model or to validate an existing Object Model.

The expressiveness of Analysis OIDs in showing the dynamics of real-world objects
from the user's perspective makes this work product essential to the object-oriented soft-
ware development, especially in a scenario-driven process.

articipants
eveloping Analysis OIDs is the task of a development team led by an analyst. The team

consists of analysts, designers, domain experts, and developers. It is very important for
dients and domain experts to participate in this modeling activity. It is vital that the Sce-
arios and their Analysis OIDs that refine those Scenarios should represent their views,
usiness, and requirements. With their participation, the problem will be better understood,

and fewer modeling errors will be made.

Timing
alysis OIDs should begin to be developed early in the analysis phase. As soon as a

primitive Analysis Object Model is ready, relevant Analysis OIDs may be developed to
drive the analysis object modeling, such as, enlarging the model with more analysis
classes, validating its model, and assigning responsibilities and behaviors to its classes. In
an iterative process, it will be performed continuously and incrementally throughout the
development to represent the evolving understanding of the problem domain objects.

AnTecmhnaliqysuise

OID is created for a Scenario by recording how objects in the classes from
the Analysis Object Model could cooperate in order to perform the Scenario. The record
takes the form of a sequence of messages sent between objects. Writing an Analysis OID
forces one to take decisions about which classes are to have what responsibilities, or to
validate previous decisions. It is expected that Analysis OID writing and Object Modeling
take place jointly and iteratively. Analysis OID's frequently "break" the Object Model that
must then be modified.

Writing an Analysis OID with a primitive Analysis Object Model involves the fol-
lowing:

• Deciding which objects need to participate in the Scenario. These objects are inserted
into the Analysis OID as named vertical lines. Instance names should suggest the
roles that the objects play in the Scenario, for example, "sourceAccount" or
"destinationAccount."

• Deciding the class of each of these participating objects. Unless the Analysis OID
breaks the Analysis Object Model, which frequently happens, the class will be one that
has already been identified in the model. If no appropriate class exists in the model, it
must be added. As a result, the Analysis Object Model is enhanced.

• The question "what happens now" is asked repeatedly, preferably of a domain expert,
in order to carry out the Scenario. The object behaviors modeled in Analysis OIDs are
presented as messages and internal activities. Both must be explicitly represented in
an Analysis OID with regard to their occurring sequences. Use the responsibilities
identified for the classes of the participating objects as menus from which to select
messages. If no appropriate responsibility exists, or if it is assigned to an inappro-
priate class, then the Analysis Object Model is broken, and needs to be fixed. For

each message, it must be decided which object sends it, which one is to receive and
carry it out, and which parameters are appropriate.

Analysis OID modeling is an iterative process that includes a parallel development of the
Analysis Object Model. Whether the Analysis OID modeling drives the Analysis Object
Modeling or vice versa will depend on the problem to be modeled, as well as the modeling
style. For a behavior-centric problem such as real-time systems, Analysis OID modeling
often drives the analysis. On the other hand, for a data-centric problem such as informa-
tion system applications, Analysis Object Model often plays a more important role in anal-
ysis. In either case it is expected that information will flow in both directions as the
Analysis OID and Analysis Object Model are developed and made consistent and robust.

Strengths

The strengths of Analysis OIDs can be summarized as dynamics, intuitiveness, and expres-
siveness. The notation of time lines is intuitively appealing and simple but very powerful
in expressing what will happen to objects when the Scenario is in progress. An Analysis
OID is a very succinct way of expressing the dynamic and functional aspects of a system
through the interactions among objects. It should be noted that the notation of Analysis
OIDs is not novel to object-oriented software development, but their application within it is
highly effective.

Weaknesses
Each Analysis OID can only describe at most one Scenario of a system. A system can
consist of hundreds of Scenarios under different conditions and status; Therefore, the
amount of work can be too big to accomplish in a short period of time. One solution
proposed in this approach is to model only the key Scenarios of a system or to combine
several Scenarios into one.

Another weakness is that using Analysis OIDs might lead developers into premature
object design. Sometimes it is better to determine object interaction sequences only at
design time. Focus on problem domain objects, but even that rule will not always guar-
antee that an Analysis OID overspecifies a Scenario into the design level. The only real
solution is to use your judgment to avoid design decisions, and reflect your clients' point of
view, instead of developers'.

Notation
The notation for the Analysis OIDs is mostly straightforward. We will give a complete
description of all the concepts, although only a few may be used for any particular Anal-
ysis OID.

1. Object: Objects or instances involved in the current Scenario are listed. Each object
is identified by a name identifying its class and a name indicating its role in the Sce-
nario, in the format: <object name>xclass name>. These names are usually placed
at the top of the time line for that object. Role names can be thought of as instance

names, except that an attempt is made in an Analysis OID to refer to generic rather
than specific objects.

2. Time Line: Time lines are the vertical lines representing each object. They are used
as sources and targets of the time-ordered sequence of messages sent between objects.

3. Message: Messages represent object interactions. Every message in an Analysis OID
has one sender and one receiver. Sometimes the sender can be omitted if objects from
more than one class will send the message. Messages can either request information
from an object, or change its state. A message sent to self, that is, the current object,
is represented by a message whose source and destination is the current object. A
message can be either a synchronous or asynchronous one.

• Synchronous Message: The sender of a synchronous message expects a returning
one represented by a message line with return(parameter). The sender of the
message waits for the return before proceeding.

• Asynchronous Message: The sender of an asynchronous message does not wait
for an explicit return message before proceeding. This is the only distinction
between synchronous and asynchronous messages.

Incoming messages to a time line represent sync-points.
4. Message Parameter: A message can carry parameters in an interaction.
5. Condition: A condition within a pair of square brackets represents a decision point in

the message sender object. If the condition is true, the message attached will be sent.
In any case the object continues with its time line. Using the condition notation can
help make the Analysis OID more general, with weaker assumptions. The alternatives
to using conditions (and loops) are to use several Analysis OIDs to present the options
for a single Scenario, to split up the Scenario, or to omit certain details. Each of these
may be the best choice depending on circumstances.

6. Loop: In order to perform repeated actions, a loop can be attached to an object's time
line. A loop is also associated with a loop condition, which is the condition under
which the loop is performed again.

7. Internal Activity: An internal activity is any internal behavior that is relevant to a
time line, but whose internal details are either not appropriate to provide, or not yet
known. An internal activity is represented by the name of the activity in curly
brackets appearing at the appropriate point on a time line. Internal activities might be
entirely local to that object, or they may involve communications. The internal activity
can be further specified in an attached note. An example of an internal activity might
be "(Identify the right account)." A description of an internal activity can be provided
as a footnote to the Analysis OID.

The notation of an Analysis OID is shown in Figure 11-10. We understand that the
notation we use is not completely supported by every CASE tool. Users are encouraged to
tailor the notation, based on the CASE tool they use. Most commonly supported concepts
are objects, messages, and time lines.

11.5 ANALYSIS OBJECT INTERACTION DIAGRAMS 211 210 ANALYSIS WORK PRODUCTS

11.5 ANALYSIS OBJECT INTERACTION DIAGRAMS 213 212 ANALYSIS WORK PRODUCTS

Obilocer
	

Cibiookk
Closet
	

Closo2
	

aria

N••••0•10

[Condition) moosogo2fpwarnoblo)

M•••ro•S(Parofnol•n)

I mitigyil.1_

Mum(Parofnoloro)

M•°

4 	 _
AcflOyi) d••effption of doing som•lhing by object% when the fA••oog•3 affiVINk

Figure 11-10. Format of Analysis Object Interaction Diagram.

Traceability
This work product has the following traceability:

Impacted by:
	

Impacts:
• Issues (p. 176)
	

• Subject Areas (p. 187)
• Analysis Guidelines (p. 183)

	
• Analysis Object Model (p. 192)

• Analysis Object Model (p. 192)
	

• Analysis State Models (p. 219)
• Analysis Scenarios (p. 203)

	
• Analysis Class Descriptions (p. 227)

• Analysis State Models (p. 219)
	

• Design OIDs (p. 298)

Advice and Guidance

• Make Analysis OIDs consistent with the business logic. Analysis OIDs are used for
recording what happens in the real world. Any design and architectures related to the
system solution should be kept out of it.

• Keep Analysis OIDs as simple as possible. It can help avoid mixing in any design
objects and decisions.

• Focus on object general behaviors, instead of methods. Methods are only meaningful
under the design, and should be created at the object-oriented design phase. The mes-
sages sent between two objects in an Analysis OID help model the behaviors, and
these messages are not the methods for the message receiver (but they could be so in
the Design Object Interaction Diagram discussed later in this document).

• Make Analysis OrDs consistent with the Analysis Object Model. If object A sends a
message to object B, As class should have a certain relationship with B's class in the
Object Model.

• Due to the fact that hundreds of OIDs can be developed, it is important to capture only
the major ones that drive out the principal problem features. Do not explore every
exceptional condition unless it is significant to the users.

• Avoid Analysis OIDs overspecifying their Scenarios. One common mistake is for ana-
lysts to descend into unnecessary detail. If this happens, design objects and decisions
creep into the analysis model, resulting in clutter and overspecification. Avoid this by
focusing on using the problem domain objects in the Analysis OIDs, instead of imple-
menting the Scenarios. Internal activities in the OIDs can be used to defer low-level
object interactions that lead to possible overspecification.

• An important step ignored by many developers is the detailing of assumptions before
developing an Analysis OID for a Scenario. Check hidden assumption and outcomes.

• Avoid both overly passive objects (pure data objects), and overly active objects (man-
aging and controlling objects). Distribute the responsibilities throughout all objects.

• Identification and dating are very important. In the case of Analysis OIDs it makes
sense to assign to them exactly the same identification as their corresponding Scenarios
(as they have a 1:1 relationship).

• The object role names and parameters, or formal arguments, in a Scenario should be
consistent with its Analysis OID.

• Write an Analysis OID in terms of specific objects such as "anAccount" or
"Accountl," if this promotes clarity. The goal of Analysis OID modeling is not for
completeness, but an end-to-end understanding that is missing in the Analysis Object
Modeling.

• Make Analysis OIDs general and independent of technology, design, and constraints.
There are some situations in which the detail of object interactions is necessarily a
design Issue. In such cases leave the Scenario without a corresponding Analysis OID,
or leave the problematic interactions as internal activities in the Analysis OID. Post-
pone the resolution of the design issue to modeling of Design Object Interaction Dia-
grams.

• Watch out for implicit assumptions and make them explicit.

[Loopeondilon)

[answer = F] return(Reject) •	

214 ANALYSIS WORK PRODUCTS 11.5 ANALYSIS OBJECT INTERACTION DIAGRAMS 	215

• Make sure that assumptions are proven in the Analysis OID. For example, if we are
processing a customer change of address with the assumption that there is no territory
change, we still need to show the object that makes the decision related to territory
and its sale representatives in that Analysis OID.

Verification

• A walk-through of Analysis OIDs is an effective technique to check whether the model
reflects the reality.

• Check for an even distribution of system intelligence and control.

• Check for an absence of overly passive objects.

• Check that an Analysis OID does not overspecify its Scenario in the sense that it intro-
duces decisions which can better be made at design time.

• Check that Scenario assumptions are necessary and sufficient for each Analysis OID.

• Check that Scenario outcomes indeed occur in each Analysis OID.

• Check for hidden assumptions and outcomes in an Analysis OID.

• Analysis Scenario 1: A user wants to access a library item.

• Assumption: The user has already logged into the library, and a unique identity,
current user, is established.

• Outcome: A library item is permitted to be viewed, if the user passes the security
check for that particular library item.

• Description: When a library item receives a request for access from a user it first
passes the user's identity (account) to its own security object to check whether the user
is permitted access. If the user has the clearance to access this library item, the
item will display its own content. Otherwise, the request is rejected.

• Analysis OID: The Analysis OID for this scenario is shown in Figure 11-11

Ubraryltem1's Security: 	 Usert's Account
Security
	

Account
User1:
	 Ubraryltem1:

User
	 Ubraryltem

Open

Verify(User1) Example(s)

This example is simplified from a real project. It deals with users accessing the items in a
library system. The example presents two scenarios as well as a modification to the
second scenario.

A user has an account associated with the library system. The account has security
levels associated with each library item. Each library item's security object will check
whether the user is permitted to access that library item.

The first scenario shows the business logic for the access process for the library file
system.

This example is also explored at the design level in Section 13.8, Design Object Inter-
action Diagrams.

(perform verification

return(answer)

fanswer=T] DiaPlaY0

PollingCapability()

return(capability))

4{ perform verification }:
1) find User1's account, Accountl
2) Check this account's capability
3) return T if the user can access the item, otherwise return F

Figure 11-11. Analysis OID for User Access to Library Item.

Our understanding of requirements can change over time. Analysis OIDs can facilitate this
process. Consider the following example of the Use Case "Customer Changes Address" in
a marketing company. The Scenario being addressed is:

216 ANALYSIS WORK PRODUCTS

This could be a situation of a Help Desk (Clerk) for an Insurance Company receiving a
phone call from a customer who wishes to notify the company that he or she has moved.

Figure in Figure 11-12 shows a possible Analysis ODD for this Scenario.

11.5 ANALYSIS OBJECT INTERACTION DIAGRAMS 217

is confirmed and the sales agent is notified. This OID satisfies the requirement - at least at
first glance. However, later during analysis, we learn that agents have territories, and we
must revisit this OLD.

With this new information, we can modify the Scenario as follows:

We are faced with a problem - who (which object) knows about sales agents' territories.
Certainly it would be outside the responsibility of the customer's file. This is an important
question as we may be discovering the need for a new object. Figure 11-13 shows a
possible solution to the modified Scenario. It only shows the portion of the OLD which
would be modified.

Cheryt
Sales Agent

confirmation(info)

▪ request new info

new Info

update customer ilnfo 	•
(address, effective date)

client info update
(name, address, date)

Figure 11-12. Initial Analysis OID for Change of Address.

o't

The basic Scenario is that a customer calls the Help Desk, to notify the company of an
address change. The customer's file is found in the customer filing cabinet, its identification

Charles:
Clerk

Ruth:
Customer

aCustomerFla
RI.

change address(name)

find customer(name)

return(info)

confirm
too 	

• Analysis Scenario 2: Customer Changes Address

• Assumptions:
— Caller is an existing customer
— Address change is immediate (not in the future)

• Outcome: Customer's address successfully changed

• Description: A customer's address change usually involves an update of the customer's
file and notification to the customer's agent.

• Analysis Scenario 2 (modified) : Customer Changes Address

• Assumptions:
— Caller is an existing customer
— Address change is immediate (not in the future)
— Move involves change of territory and new agent must be notified

• Outcome: Customer's address successfully changed

• Description: A customer's address change usually involves an update of the customer's
file and notification to the customer's agent.

aManager:
aCustomerFile:
	

Agent Territory
File
	

Manager

change address

(old, new, name)
lab

remove customer(name)

11.6 ANALYSIS STATE MODELS 219 218 ANALYSIS WORK PRODUCTS

References

• Jacobson et al. [Jacobson92] were the first group employing Use Cases and OIDs in
dynamic modeling.

• OMT [Rumbaugh9 I a] has its own name for OIDs, that is, "event trace diagrams."

• [Booch94] also has interaction diagram.

• The Unified Modeling Language [Booch96] also utilizes the OlDs under the name
"Sequence Diagram" for dynamic modeling.

Chef*
Sales Agent

	awl

Carole:
Sales Agent

add new customer
(name, address)

add new agent (cuatname, agentriame, territory11))

Figure 11-13. Modification to Part of the Analysis OlD for Change of Address.

In the modified OID, the customer's file delegates the task of territory management to
the Agent Territory Manager object. This object knows about and understands the compa-
ny's approach to territory management (it can get quite complex). This object will apply
current business policies and determine who needs to be informed of the address change
(in this case the old and new Sales Agents). If the address change had not involved a
change of territory, it would simply have notified the existing agent of the address change
and then sent a no change notice back to the customer's file. Otherwise, the customer will
be removed from his/her current agent, and forwarded to another agent who is in the terri-
tory that the customer moves to. The customer's file is also updated for the change.

This example illustrates a number of points:

1. Analysis OIDs assist with the discovery process and understanding a business area;

2. Always present the business knowledge and logic in Analysis OIDs;

3. Delegation of responsibilities can change with our understanding of the business area;

4. We must always be prepared to learn new information.

Importance
Essential. Analysis OIDs are a powerful tool for showing the dynamics of the real-world
objects being modeled.

11.6 ANALYSIS STATE MODELS

Description
A state model, as used in object-oriented analysis, describes the life cycle of a class. It
describes states that a class may attain and transitions that cause a change of state. The
state transitions, representing external stimuli or events, show an object's state changes. A
state model is represented by a state diagram or a state transition table.

Purpose
A state model represents an object's life cycle in graphical notation or in a tabular form. It
gives an overview of how an object reacts to external events without getting into code
details. A state model is much easier to develop and understand in comparison with high-
level textual descriptions. It is useful because of the insight it can yield about the nature
of a given class.

Participants
At the analysis level, state models should be developed by the analysis team. Customers
should participate in this activity, so that the modeling can be as accurate as possible based
on clients' requirements and knowledge of objects in their domain.

Timing
Analysis State Modeling is done after an initial Object Model and a dynamic model with
scenarios and Object Interaction Diagrams (OIDs) have been completed. It is performed
for those classes whose OIDs show that they have significant dynamics. This is indicated
by incoming messages whose arrival order is vital to the class.

ris

220 ANALYSIS WORK PRODUCTS

Technique

• Select a class to model.

During analysis, we look for classes with an interesting or unclear interesting life cycle
(for example in a lending application the Loan class is quite interesting).

• Identify how the object comes into being. This will be a state transition leading to an
initial state.

• From the initial state, add all transitions that can occur and the states that they lead to.

• Repeat this process for all identified states until complete.

• Note that it is valid to include transitions that lead back to the same state (i.e. loops).

For example, a Loan is in an active state, a customer makes a payment, is shown
as a transition leading back to the active state.

• For completeness, it is advisable to probe whether or not there are transitions leading
between various states in the model.

Strengths

A state model provides a complete picture of the life cycle of a class. It is another way of
looking at an object, and object behaviors can be clearly presented through such a model.

11.6 ANALYSIS STATE MODELS 221

Figure 11-14. State Diagram Notation.

Impacts:
• Analysis OIDs (p. 208)
• Analysis Class Descriptions (p. 227)
• Design State Models (p. 306)
• Glossary (p. 355)

Weaknesses
The weakness of state models is that one model can only show information limited to one
class. It can be difficult to show simultaneous changes of state that occur between mul-
tiple, collaborating classes.

Notation

The graphical notation of a state diagram representing the state model is shown in
Figure 11-14.

The key elements of the notation are:

• A class's states are shown in circles (or boxes).

• Transitions are shown as directed arcs between states.

• Transitions should be labeled as doer-action tuples (for example, customer makes loan
payment).

Traceability

This work product has the following traceability:

Impacted by:
• Issues (p. 176)
• Analysis Guidelines (p. 183)
• Analysis Object Model (p. 192)
• Analysis Scenarios (p. 203)
• Analysis OlDs (p. 208)

Advice and Guidance

• One of the best ways of building a state diagram is to go through a role playing exer-
cise. This can be quite effective. Pretend that you are the object being examined,
assume a state and ask "what can happen to me now?"

• Examine the state chart and ponder whether it is possible to get from one state to any
other state. This sometimes uncovers behaviors or actions that otherwise might not be
anticipated.

• In analysis, it is important to avoid representing design decisions in the state models;
we observed that it is quite easy to fall into this trap.

Inactive > 6 months
and clerk doses

Customer Deposits $

CLOSED Customer Closes
ustomer

Deposits $

Customer
Closes

Customer
Withdraws $

Customer Overdraws
(balance < 0)

OVERDRAWN

Customer Deposits
(balance >= 0)

11.6 ANALYSIS STATE MODELS 223 222 ANALYSIS WORK PRODUCTS

• Watch that you don't wind up building flowcharts. The best way to avoid this is to
ensure you keep a consistent point of view. If you are the "Loan," then you only
concern yourself with the "Loan's" point of view.

• When working with "naive" users (i.e., noncomputer people) do not use terms such as
finite state machine or state transition diagram. Just say you are going to build a
picture of the life cycle of the object, how it gets created, what things can happen to it,
what causes it to go away, and so forth. Say that the reason for doing this is in order
to achieve a deeper understanding of the domain.

• State diagrams are built on a very selective basis during analysis. In a typical domain,
maybe one or two per 100 classes. This will increase dramatically in domains that
have a real-time aspect about them (like manufacturing, process control, monitoring, et
cetera).

Verification

• At every state close your eyes and ask "what can happen to me now?" and ensure that
all state transitions (and their respective states) are represented.

• From every state ask if it is possible to visit every other state in the model (for
example, "can I possibly get from here to there?" where "there" is every other state in
the model).

• If two states exhibit the same behavior, then collapse them into one provided they
exhibit the same behavior (i.e., have same entry and exit conditions).

Example(s)
Figure 11-15 presents a possible state diagram for an Account class for a bank application
with our basic state model notation. The life cycle for an Account object from creation
through being closed is demonstrated in the diagram.

Clerk Opens

Customer Deposits $

Figure 11-15. State Diagram for the Account class.

Figure 11-16 shows another example of a state diagram, this time for a loan class. This
was built with the help of a Loans Officer from a bank. If this process is presented to
users as being an inquiry about the life cycle of a loan object, users have little difficulty
assisting with producing such a diagram (i.e. it is best to avoid describing the process as
finite state machines or state modeling when speaking to users).

SUSPENDED-il— IN FORCE customer Makes

Customer Misses
Payments

1 	 Payments
Bank Sells Loan to
Collection Agency

SOLD OFF

PAID OFF

Customer Makes Last Payment

11.6 ANALYSIS STATE MODELS 225 224 ANALYSIS WORK PRODUCTS

•

Customer
Requests
Loan

PENDING REJECTED
Loan Officer

Loan 	Rejects

Officer
Atx>roves

APPROVED DECLINED
Customer
Changes Declinefl.

Customer Pays Mind

Arrears Customer Accepts
and

Clerk Transfers Funds

STMs work well when there are few states and events but have a rich set of possible

transitions. They force one to address completeness and consistency.

Table 11-1. State Transition Matrix for Account Class.

Event->

State

Clerk
Closes

Customer
Closes

Customer
Deposits
(bal+amt
>4]

Customer
Deposits
(bal+amt
<0]

Customer
Withdraws
(bal-amt
>=0)

Customer
Withdraws
[bal-amt
<0]

Open Closed Closed Active (can't
happen)

(can't
happen)

(can't
happen)

Active Closed Closed Active (can't

happen)

Active Overdrawn

Overdrawn (can't
happen)

(can't

happen)

Active Overdrawn (can't
happen)

(can't
happen)

Closed (can't
happen)

(cant
happen)

(can't
happen)

(can't
happen)

(can't
happen)

(can't
happen)

STTs work well when there are many states and/or events but sparse transitions; that is,

when very few states are sensitive to each event. These are less cluttered and easier to

create, but hide incompleteness.

Figure 11-16. State Diagram for a Loan.

State Transition Tables: State Transition Tables are useful when State Transition Dia-

grams (or Statecharts) are not feasible; for example, they must convey state model in an

ASCII medium, say e-mail; drawing tools are missing, limited, or not standardized in the

development (or documentation) environment.

There are at least two types of state transition table formats that show the same infor-

mation in different ways.

State Transition Matrix (STM): Has one row per state and one column per event.

The content of the cell is the Next state. (See Table 11-1)

State Transition Table (STT): Has three columns labeled Current State, Event, and

Next State. (See Table 11-2)

Table 11-2. State Transition Table for Account Class.

State Event Next State

Open Clerk Closes Closed

Open Customer Closes Closed

Open Customer Deposits Active

Active Customer Closes Closed

Active Customer Deposits Active

Active Customer Withdraws [bal-amt>=0] Active

Active Customer Withdraws [bal-amt<O) Overdrawn

Overdrawn Customer Deposits (bal+amt<0] Overdrawn

Overdrawn Customer Deposits (bal+amt>=0] Active

Using the full Statechart notation [Hare187], events can be elaborated with attributes,

conditions, and actions. States can also have entry and exit actions as well as internal

activities.

11.7 ANALYSIS CLASS DESCRIPTIONS 227

STATE1
do: activkyl
entry/ action2
exit/ action3
event/ action4

Event(attribute)[condition]/action

STATE2

Figure 11-17. Extended Notation for State Diagrams.

STMs and STTs can be annotated (extended) with adornments from the underlying

modeling technique. For example, the entry/exit actions above can be associated with the

Event entry for the transition. Table 11-3 is an elaboration of Table 11-2 that shows event

attributes and actions.

Table 11-3. Elaborated State Transition Table for Account Class.

State Event(attribute)(conditionYaction Next State

Open [6 months inactive]/send notice Closed

Open Customer Closes Closed

Open Customer Deposits(amt)/bal:=amt Active

Active Customer Closes/send check for balance Closed

Active Customer Deposits(amt)/bal:=bal+amt Active

Active Customer Withdraws(amt) [bal-amt>=0]/ bal:=bal-amt Active

Active Customer Withdraws(amt) [bal-amt<O]/ bal:=bal-amt Overdrawn

Overdrawn Customer Deposits(amt) [bal+amt<O]/ bal=bal+amt Overdrawn

Overdrawn Customer Deposits(amt) [bal+amt>=0]/ bal=bal+amt Active

References

• Rumbaugh et al [Rumbaugh91 a], and Booch [Booch94] recommend using state dia-

grams to model the dynamic behaviors of objects.

• Statechart, a diagramming notation for states, was developed by Hare! in 1987

[Hare187].

Importance

Optional, although as a rule it is extremely useful to use in business domains such as

banking where Loan would be very interesting or in insurance where an InsurancePolicy
can be very interesting.

In real-time domains this becomes essential as there will be objects with strong state-

dependent behaviors, such as the Connection class in a telephony application.

11.7 ANALYSIS CLASS DESCRIPTIONS

Description

Analysis Class Descriptions are summaries of all the information known about a class at

the analysis level. They are similar to the CRC cards of Wirfs-Brock et al

[Wirfs-Brock89]. Class-related information exists in several places in the analysis chapter

of the project workbook, for example in different parts of an object model, in scenarios,

and in state models. For each class, a class description provides a concentrated summary.

Class descriptions are not intended to overlap or conflict with object or dynamic

models. Good tool support should enable class descriptions to be updated automatically

whenever other model views are modified, for example to add a new responsibility to a

class in an object model view. Much of the information of a class description should be

generated automatically from the data of the various development models. Similarly, Class

Descriptions and Glossary entries (see Section 16.1) may in practice be generated from the

same source data.

Purpose

Analysis Class Descriptions are provided for two reasons.

1. To provide a place to put class-specific information, such as a short description, key

attributes, responsibilities, and the like, which might otherwise slip down cracks

between the other analysis work products.

2. To provide a single point of contact for analysis information regarding a particular

class.

3. To provide a place to record information that won't fit on other diagrams (Object

Model, OlDs, et cetera). This may take the form of pictures, descriptions, standards,

related documents, and the like.

Participants

The analyst who owns a class has the responsibility to maintain the Analysis Class

Description for that class. Tools that automatically derive the Class Description informa-

tion from other work products (for example, the Object Model and the State Model) signif-

icantly reduce the effort needed to maintain Class Descriptions.

226 ANALYSIS WORK PRODUCTS

228 ANALYSIS WORK PRODUCTS
11.7 ANALYSIS CLASS DESCRIPTIONS 229

Timing
Class descriptions are provided at analysis, design, and implementation levels. (Implemen-
tation class descriptions are used only if they are needed as a repository for new informa-
tion about the class.) Thus a particular class may have several class descriptions, one for
each level of abstraction in which it is involved: analysis, design, and implementation.
These multiple class descriptions may refer to each other, but they are different work pro-
ducts. The reason for this apparent redundancy is that the definition of a class may be
subtly different at each level of abstraction.

The Analysis Class Description serves as a repository for summary information as the
analysis modeling activity proceeds, and is completed in time to be reviewed along with
the remainder of the analysis work products. A class description is opened as soon as
there is a need to summarize the properties of a class.

Technique
The creating or updating of class descriptions should be one of the activities performed
after each analysis modeling session.

Exactly how the class description is filled in will depend on its format. A class
description will (obviously) have a name and it should have a short textual definition.
Names are very important and should be chosen to reflect the nature and intent of the
class. A vague or ambiguous name is often a sign that the abstraction named is insuffi-
ciently understood or inappropriate. The abstraction might be inappropriate because it
refers to more than one concept, in which case it is a candidate for splitting into multiple
classes (each with more precise names). Another problem that often surfaces with names
is that an abstraction is actually a function and not an object. Class names that are verbs
like Connect or Initiate might indicate this. Names such as Controller or Manager are
often hints that the system is too centralized; its intelligence has not been distributed in an
appropriate manner. This is a common mistake among experienced developers who are
new to object technology. Names should, therefore, be taken seriously.

Even if a modeling team agrees on a name, it frequently happens that they find out
later that they do not agree on what the class actually represents. This problem can be
solved by insisting that modeling sessions that propose new (or modified) classes also
agree on a short textual definition. The shorter the definition the better; one line is perfect
although sometimes inadequate. The definition cannot and should not define all aspects of
the class. It should, however, capture enough of the meaning of the class to ensure that all
developers are thinking along the same lines, and that newcomers to the project can gain
an immediate understanding of why the class exists in the model. Agreeing on definitions
is often difficult, but if it is not done then the outstanding inconsistencies will dig them-
selves into the model, requiring considerable excavation work subsequently.

Names and textual class definitions are most conveniently captured initially as Glossary
entries, and then incorporated into Class descriptions as the need to summarize information
about the classes arises.

Strengths
Class descriptions are an important part of all published development methods. If properly
used, they can also significantly improve the readability of a workbook by providing cross-
references.

Weaknesses

An appropriate format must be chosen. There are many published formats for class
descriptions. It is important that a format is fitted around a development method and not
vice versa. Tools complicate the issue by providing support for Class Descriptions, but not
necessarily the ability to tailor the format.

Notation

Beyond names and definitions, the format of class descriptions should serve the selected
analysis, and not the other way around. If a responsibility-driven approach
[Wirfs-Brock90] is being used, then class descriptions should resemble CRC cards. If
OMT [Rumbaugh9 I a] is being used, then the class descriptions will concentrate more on
attributes and operations. Whatever the method, it is important that the class description
format is decided in advance. Although there will be close correspondences between the
analysis and design class descriptions of particular classes, they may each have different
formats to support the different nature of the modeling work at each level.

While Analysis Class Descriptions are very important, they do not tend to be as struc-
tured as those at the design level, for less emphasis is placed on documenting interfaces at
the analysis level. The following template is adequate for Analysis Class Descriptions,
although it should be modified to suit the development method if required.

Name
Definition
Operations

Key attributes

Relations

States

Documentation

230 ANALYSIS WORK PRODUCTS 11.7 ANALYSIS CLASS DESCRIPTIONS 	231

In the above box, "Name" identifies the class name. Under "Definition," a sentence or two
describing the class should be provided. "Documentation" is a place holder for any mate-
rials related to the analysis of the class that cannot be expressed in the structured forms of
the other work products, such as the Analysis Object Model, the Analysis OIDs, et cetera.
An example of this might be an existing customer document describing part of the problem
domain.

It is useful to note specific key attributes as these often contribute significantly to an
understanding of the class. They are, however, to be understood as logical attributes, and
not attributes that will necessarily appear in the design. An example of a logical attribute
might be "Age." The presence of this attribute in an Analysis Class Description should not
be taken to imply that a corresponding attribute will exist in the design. The design might,
for example, employ a "dateOfBirth" attribute instead.

Attributes and responsibilities that appear in Class Descriptions should include those
inherited from other classes, and they should be marked as such.

Traceability

This work product has the following traceability:

Impacted by: 	 Impacts:
• Issues (p. 176) 	 • Design Class Description (p. 311)
• Analysis Guidelines (p. 183)
• Analysis Object Model (p. 192)
• Analysis OIDs (p. 208)
• Analysis State Models (p. 219)

Advice and Guidance

• Do not manually duplicate all class-related information in the class descriptions. For
example, do not copy association information manually from the object model into the
class descriptions. Good tool support will help to store the analysis work products in a
nonredundant fashion.

• Class descriptions should be consistent with the information specified in other analysis
work products. Thus, if the Analysis Scenarios have Object Interaction Diagrams
(OIDs) which specify messages between objects as operations with parameters and
results, then the class descriptions should record these operations, parameters and
results. If the OIDs specify only message names, then the class descriptions should
record only message names, et cetera.

There is obviously tension between this piece of advice and the one above. Judge-
ment must be used to decide how best to document a model. It is reasonable to sum-
marize operations from scenarios as the class-centered view will otherwise be missing.
It is probably unreasonable to include associations, because the graphic object model
will do a better job of that, and no summarizing value-add is provided by the class
descriptions.

• When initially opening class descriptions to document modeling sessions, don't worry
too much about whether it is correct to include a class. If a class turns out not to be
relevant to the model, then it will be isolated in the object model and, more tellingly,
it will not participate in any scenarios. The class description can be removed at that
point. It is often quicker to define classes that may be relevant and to proceed with
the modeling, than to worry prematurely about the relevance of classes. However ten-
tatively a class is included, though, it should be well defined.

• Design the class description formats and do not simply accept the format that a partic-
ular tool provides.

Verification

• Check that the class descriptions are being maintained.

• Check that the descriptive text accompanying each class description describes the
intent of the class, and not its internal structure.

• Check for the completeness of class responsibilities, namely, that there are no missing
responsibilities.

• Check attributes and relations for completeness, for relevance to the problem domain,
and for relevance to analysis.

Example(s)

The following is an example of a class description from a banking application:

o,

250 USER INTERFACE MODEL WORK PRODUCTS

Advice and Guidance
If you have a UI-intensive application or a general public-oriented application, create a UI
Prototype to resolve the risk of unintentionally creating a nonintuitive or unfriendly user
interface for your application.

• Use a specialized UI team (or human factors team) to do the prototype for you if you
can, it will save time.

• Use specialized UI Builder tools to create and exercise the UI Prototype.

• Limit the scope of the prototype to UI issues and concerns (don't overload the proto-
type with other issues like performance, persistence, distribution, communication, et
cetera).

• Develop the UI Prototype in stages (incrementally) and test them with customers
before tuning (iterating) or proceeding to the next increment. Don't pester the cus-
tomer with too many test sessions, but do use the test sessions to develop rapport with
customer.

• When performing this activity, don't waste a lot of time responding to minor changes
(like colors, placement, and such). Listen to the feedback and get back to work.

Verification

• Not applicable.

Example(s)
Not applicable, since UI Prototype is an executable program.

References

• Good arguments for rapid prototyping are offered in [Connell89]. Although it is not
specific to object-oriented technology, many general principles still apply.

• A general discussion of principles and guidelines for Graphical User Interface (GUI)
design can be found in [Mayhew92].

Importance
Optional, although very important for UI-intensive applications and applications oriented to
the general public (for example: banking, library, event kiosks, exhibitions, lobby facili-
ties).

13.0 Design Work Products

The Design portion of the project workbook details those work products that are created
during the design phase of the project.

Object-oriented design is the process of determining the Architecture for and specifying
the classes needed to implement a software product. It involves making global and local
decisions about a planned implementation based on constraints, Nonfunctional Require-
ments, and available alternatives.

During analysis we focused on problem-domain objects; however, during design we
focus on solution domain objects. During design, the emphasis is on defining a solution
[Monarchi92].

The problem domain classes encountered during analysis are refined during design.
New objects and classes are created during design as shown in Figure 13-1.

Figure 13-1. The Relationship Between 00 Analysis and 00 Design.

As part of the design activity, the system is partitioned into subsystems to make the
design process more manageable.

In summary:

251

• Object-oriented design transforms the analysis model into the design of a software sol-
, ution

• Definition of the overall software architecture (global decisions) is done during design.

• Attributes, operations, and algorithms are defined for all design objects during design.

• New objects, not domain-derived but implementation-oriented, are defined during
design process.

The boundary between design and implementation work products is both flexible and
subjective. The goal of design is to achieve sufficient agreement on interface definition
and internal structure that implementation. work may then proceed independently in parallel
teams. The amount of design detail that is needed will depend on many factors including
the size of implementation groups relative to the size of the project, the degree of coupling
between the team components, and the like. In practice this means that each project must
decide for itself exactly where to draw the line. Wherever that is, the following work
products are relevant, but projects must choose the degree of detail to include in each. As
mentioned above, this decision is project-dependent but is by no means arbitrary. The
amount of detail is chosen to enable independent parallel implementation of the design
after it has been completed and reviewed.

The design section of the project workbook consists of the following work products:

• Design Guidelines

• System Architecture

• Application Programming Interfaces (APIs)

• Target Environment

• Subsystem Model

• Design Object Model

• Design Scenarios

• Design Object Interaction Diagrams

• Design State Models

• Design Class Descriptions

• Rejected Design Alternatives

These work products all "inherit" the common work product attributes described on
Section 8.1, and they have specialized attributes of their own.

Design Guidelines are a set of rules that help in defining the design deliverables and
guiding the design process and as such have an impact on most of the other design work
products.

System Architecture is the set of broad design principles that allows the system design
to be coherent and consistent. It, too, has an impact on most of the- other design work -
products.

The Application Programming Interfaces (APIs) are a set of visible classes and their
interfaces that enable the system to be used without the need to- understand its internal
details.

The Target Environment defines the environment(s) in which the system is intended to
operate. This is typically part of the Nonfunctional Requirements or at the least is
impacted by that work product. This can have a big impact on the System Architecture.

The Subsystem Model partitions a system into smaller entities and delegates certain
system responsibility to those entities. The main benefit of this is the breaking up of large,
complex systems into more manageable entities. Each Subsystem will have its own set of
design work products such as Design Object Model, Design. Scenarios, and Design Object
Interaction Diagrams.

The Design Object Model is a static model that represents the structure of the classes
and their relationships with each other in the implementation of the system.

Design Scenarios enumerate the possible assumptions and resultant outcomes (starting
and ending states) for each intended behavior of the planned system.

Design Object Interaction Diagrams graphically depict the collaborations between
objects that is required to support the Design Scenarios.

Design State Models represent the dynamic behavior of design classes and are done for
all classes that have strong state-dependent object behavior.

Class Descriptions contain all of the information known about a class at the design
level. They provide the starting point for implementation work on a class.

Rejected Design Alternatives provided a repository of those major design directions that
were considered but rejected. They are valuable when the need arises to revisit design
decisions as often happens in complex system development projects.

The work products and their specialized content are defined and discussed in more
detail in the following sections.

13.1 DESIGN GUIDELINES

Description
Design Guidelines are the set of rules intended to define the design deliverables and to
guide the design process of a particular development project. In this respect they are
similar to the Analysis Guidelines (Section 11.1), but are broader in scope to reflect the
greater diversity of the design deliverables. Similarly to Analysis Guidelines, Design
Guidelines may be divided into work product guidelines and process guidelines.

rs

13.1 DESIGN GUIDELINES 253 2. DESIGN WORK PRODUCTS

Technique

Beg, steal, or borrow some existing design guidelines from existing object-oriented
projects. Customize these and review them with your project. Interview experienced
developers to check that the guidelines are still reasonable and complete. Consider asking
a mentor for advice on Design Guidelines, or to comment on those that have already been
assembled.

Strengths

Design Guidelines ensure common style and consistency among the various design work
products.

Weaknesses
None.

Notation

Design Guidelines take the form of check lists and/or templates addressing each work
product, process, and tool intended to be used by the developers.

Design guidelines are usually organized by work products.

Traceability
This work product has the following traceability:

Impacted by:
• Intended Development Process (p. 127)
• Project Workbook Outline (p. 132)
• Quality Assurance Plan (p. 147)
• Reuse Plan (p. 158)
• Test Plan (p. 164)
• Issues (p. 176)

Impacts:
• Project Workbook Outline (p. 132)
• System Architecture (p. 257)
• APIs (p. 265)
• Target Environment (p. 272)
• Subsystems (p. 274)
• Design Object Model (p. 281)
• Design Scenarios (p. 293)
• Design OIDs (p. 298)
• Design State Models (p. 306)
• Design Class Description (p. 311)

Advice and Guidance

• The guidelines should be minimal though sufficient to ensure that the design work
products are understandable, usable, and consistent.

• Use existing guidelines where they are available and appropriate. Modify these only
as necessary.

• If your guidelines are novel, publish them for others to evaluate and use.

• Use work product templates where relevant.

13.1 DESIGN GUIDELINES 	255

Analysis Guidelines must address object, scenario, and state modeling, and the proc-
esses to perform these. Design Guidelines must address these too. For the common
aspects, the Design Guidelines can probably just refer to their analysis counterparts. Some
additional notational concerns that are relevant at design time are those of concurrency,
distribution, and association directionality. Notational extensions should be defined to indi-
cate process boundaries and to make distinctions between synchronous and asynchronous
messaging on Design OIDs. The particular process for deciding upon process boundaries
and message types should be described in the guidelines also.

The other work products that are unique to design, such as System Architecture, Sub-
system Model, and Application Programming Interface also need guidelines to assure that
their documentation is consistent and useful. For example, the API for a subsystem might
be documented as a set of figures, tables, and descriptive text, or as a collection of pro-
gramming "header files," or as both formats. The Design Guidelines must make it clear
what is expected of all the participants. Contracts between subsystems are also useful doc-
umentation that the guidelines might insist upon.

A very important part of the design process is the way in which it treats design Issues
and their resolution. The Design Guidelines should provide guidance on this matter.

Purpose
Both Analysis and Design Guidelines are important, but for slightly different reasons.
Analysis Guidelines are required primarily to agree on notation and to help the team get
going, particularly if the team includes novices to object-oriented software development.
Design Guidelines are used much more to guide the development process. In analysis,
freedom is encouraged because the emphasis is on understanding the requirements, docu-
menting and analyzing them, and verifying them with the customer. The nature of design
demands a disciplined approach to process and documentation.

Participants
The Analysis and Design Guidelines will probably be written by the same people, perhaps
the team leader and the architect. Considerable experience is required of both software
engineering in general and object-oriented software development in particular.

Timing
The Design Guidelines must be completed before design can begin. They must, therefore,
be written either during the first analysis cycle, or earlier.

As is the case for Analysis Guidelines, Design Guidelines and team education are inter-
dependent. What is special to object-oriented design (as opposed to structured design) is
principally in the realm of process. It is therefore the design process that is concentrated
on in the Design Guidelines, and in the educational effort targeted at design. This depend-
ency means that the Design Guidelines might have to be agreed upon even before design
education has begun.

254 DESIGN WORK PRODUCTS

13.2 SYSTEM ARCHITECTURE 257 256 DESIGN WORK PRODUCTS

• Harvest good templates from the workbooks of other projects.

• Use the guidelines as entry criteria to design reviews.

Verification

• Check that guidelines exist for the process, notation, and tool usage for each antic-
ipated type of work product.

• Check that guidelines exist for the usage of all tools, where appropriate.

• Check that the guidelines provide for maximal integration of design work products.
For example, are the Design Class Descriptions being generated automatically from the
Design Object Model and other models? Is API documentation being generated
directly from the Design Object Model?

Example(s)
Sample Design Guidelines might be:

Process 	The design process is scenario-driven. That is, design proceeds by incrementally transforming
the analysis OIDs into design OIDs, each transformation being the result of a design decision.

API 	The Application Programming Interface should include C++ header files for each subsystem.

Scenarios The first few scenarios chosen for transformation should be central to the business of the applica-
tion. These scenarios are used to drive out the main architectural features of the application.
These initial scenarios are modeled by the entire design team under the leadership of the project

architect.

Subsequent scenarios may be designed by subteams, but the architect must be consulted if a

subteam is being forced to make a generic design decision. A generic design decision is one that
has implications beyond the single scenario. Daily design meetings are to be held at which the

evolving Architecture is presented and discussed.

If there is significant doubt as to how a scenario is to be designed, a formal Issue is opened
and tracked. An Issue is specified as a problematic scenario and a list of alternative OIDs. The

Issue is resolved by selecting one of the OIDs, and documenting the decision including the

rejected alternatives.

Issues
	

Issues are to be tracked by the architect.

Figure 13-2. Example of Design Guidelines.

References
None.

Importance
Formal Design Guidelines are optional, but useful in guiding the design process for a
development project.

13.2 SYSTEM ARCHITECTURE

Description
In order for a design to be coherent and for the design process to be efficient, it is neces-
sary for certain broad design principles to be established in advance. This agreed-upon set
of underlying principles is the System Architecture. Restated with a slightly different
emphasis, the System Architecture is the set of global, projectwide design decisions.

A System Architecture can be broad, encompassing many aspects of design, or it can be
narrow. Any design statement can be considered to be architectural if it is agreed that it is
to have general applicability. The "obvious" areas of architectural interest are the fol-
lowing.

• Structure, the way in which the software is to be layered or partitioned
• The key communication patterns between components of this structure
• Communication (interprocess communication for example)
• Distribution
• Persistence
• Security
• Error Handling
• Recovery
• Debugging
• The use or reuse of specific, existing hardware and software configurations.

Within these and other areas, architectural statements may be strong, imposing a well-
defined structure on designs, or they may be weak, insisting on only a minimal structure.

A System Architecture may prescribe new structures, or may insist that the application
must use particular, existing class libraries or frameworks.

A distinction exists between the problem domain explored during analysis and the sol-
ution domain defined during design. The solution domain can often be subdivided usefully
into the following subdomains.

• Application subdomain
• Application support subdomain
• Utility subdomains

The application subdomain consists principally of (design versions of) those classes identi-
fied during design. The application support subdomain consists of application-specific
classes that the application classes will need in order to deliver their functionality. The
utility subdomain consists of those support classes that are application-independent. A
number of utility subdomains might be defined according to subject matter such as col-
lections, communications, and the like. Within the context of a banking application, an
example of an application subdomain class is Account; an example of an application
support subdomain class is CreditStrategy; an example of a utility subdomain class is
!Sequence.

258 DESIGN WORK PRODUCTS 	 13.2 SYSTEM ARCHITECTURE 259

The definition of the application, the application support, and the utility subdomains,
and the mapping of problem domain classes onto classes in these subdomains is what
design, as a whole, is all about. It is the global design decisions of the System Architecture
that provide a framework within which this mapping can take place in a coherent and con-
sistent manner. The architect must balance the need to guide designers with the need to
keep the actual design separate from the statements of the principles that underlie the
design, the System Architecture. In practice this usually means doing the following.

• Identifying the utility subdomain class libraries.
• Identifying the broad structures and communication patterns of the application support

subdomain.
• Providing guidelines to help designers map the problem domain classes into the sol-

ution domain.

As discussed below, it is in response to the various kinds of Nonfunctional Requirements
that these decisions are made.

Purpose
If the process of design takes place in the absence of a strong System Architecture, design
decisions will tend to be ad hoc and unrelated. Furthermore, all design decisions must be
made from scratch, which is very time consuming. Successful projects tend to be charac-
terized by System Architectures that are simple, strong, coherent and that have been
enforced throughout the project.

As the design process proceeds, more and more people gradually become involved.
Initially only the architect works on the design. At a certain point individuals and then
teams begin to work in parallel. The System Architecture serves to capture those global
design decisions that have to be made centrally by the architect before parallel work
begins. After this point, making global design decisions is much more difficult and much
less efficient.

A good technique for driving the design process as a whole is scenario-driven design,
see Section 18.7, which uses bundles of scenarios as the requirements for each cycle of an
iterative and incremental development schedule. A potential problem of the technique,
however, is that it is so requirements-driven that software developed in this way may be
brittle; changes in the requirements might be difficult to implement. The solution to this
problem is to perform scenario-driven development within the context of a System Archi-
tecture driven not only by project-specific Nonfunctional Requirements, but also Nonfunc-
tional Requirements related to good software engineering principles, such as modularity,
anticipating changes, and reuse. The need to balance scenario-driven design in this way is
another factor motivating the development of a strong System Architecture.

Participants

A System Architecture is usually the work of one person. Committees lack the focus to
develop the required simplicity and coherence. The project architect is responsible for the
System Architecture and for ensuring that its principles are followed.

Timing
System Architecture definition is usually the first activity to be performed in the design
phase. All other design work may be thought of as mapping the analysis model onto the
System Architecture.

Even in the context of an iterative and incremental development process, it usually pays
to develop the bulk of a System Architecture very early. Architectural decisions can and
should be tested in development increments, of course, and if necessary adjusted in the
light of experience, but right from the beginning of design there must be an architectural
vision of how the whole system will work. If this is not done, the necessary rework may
be too expensive. Iterative rework is to be expected, but it should be as localized as pos-
sible. Reworking a System Architecture, or imposing one after the design and implementa-
tion is well advanced, will require the kinds of large-scale changes which most projects
will not be able to afford. The most likely results of such an attempt will be a weak
System Architecture and a complex design lacking coherence.

Having said that a System Architecture must be defined early, the implementation of the
architectural ideas can happily be spread over a number of development increments, in a
risk-driven manner of course. Initial increments might, for example, ignore persistence and
distribution, although parallel, early prototyping activity might test proposed resolutions to
persistence and distribution issues.

Technique
In the way that the functional requirements (best expressed as a use case model and a set
of scenarios) drive the analysis phase, the Nonfunctional Requirements drive the design
phase. It is the constraints of the Nonfunctional Requirements that force design decisions.
As the System Architecture consists of those design decisions that must be made globally,
architectural design is driven by those Nonfunctional Requirements that have a global
impact. Selecting a System Architecture, therefore, uses the following iterative process,
however formally or informally.

I. List Nonfunctional Requirements that have a global impact

2. Make whichever design decisions must be taken at a global level to meet these Non-
functional Requirements

3. Assess the effect of these decisions by transforming a representative sample of OIDs in
the light of this candidate System Architecture

4. Iterate

260 DESIGN WORK PRODUCTS

Note that the Nonfunctional Requirements addressed by a System Architecture must
include not only those that appear explicitly in the requirements document. These require-
ments capture constraints related to performance, availability, persistence, distribution,
security, et cetera. In addition to these external constraints, a System Architecture must
also address two further categories of Nonfunctional Requirements: software engineering
requirements and internal requirements. A System Architecture must address the Nonfunc-
tional Requirements that stem from the need to perform good software engineering. These
include requirements related to modularity, anticipating changes, and simplifying future
reuse of the software. Reuse will not happen unless it is planned and designed to happen.
Nonfunctional Requirements such as these are often not surfaced during requirements gath-
ering which, by definition, focuses on the external system constraints. If not, then they
should be made explicit as part of the architectural design activity. A System Architecture
must also address such internal Nonfunctional Requirements as error recovery, naming
conventions, messaging, data integrity, heterogeneous environments, multiplatform depend-
encies, multiple vendors, wrappering, languages, tools, hardware configurations and
dependencies, et cetera. These Nonfunctional Requirements too will typically not be sur-
faced during requirements gathering. In short, all design topics for which global solutions
are required should be addressed by the System Architecture.

Strengths

A System Architecture makes explicit the underlying principles of the design. By doing
this, the principles can be applied uniformly, and their appropriateness checked. Factoring
out design decisions and making them globally prevents the development team reinventing
the wheel and ensures a degree of application consistency.

Weaknesses

Developing a strong System Architecture is challenging. It consumes scarce resources
when the architect is probably under pressure to allow the project developers to start to do
something.

Notation

A System Architecture takes the form of free format text augmented by design and/or code
structures and diagrams of hardware and software configurations. To enhance the
traceability of the architectural decisions, it helps to pair (or reference) the Nonfunctional
Requirements with the corresponding architectural decision. Other than that, you should
organize the System Architecture (grouping the decisions) by category, such as persistence,
error handling, recovery, and so forth.

Traceability

This work product has the following traceability:

13.2 SYSTEM ARCHITECTURE 261

Impacted by:
	 Impacts:

• Nonfunctional Requirements (p. 106)
	• APIs (p. 265)

• Prioritized Requirements (p. 111)
	 • Target Environment (p. 272)

• Reuse Plan (p. 158)
	 • Subsystems (p. 274)

• Project Dependencies (p. 173)
	 • Design Object Model (p. 281)

• Issues (p. 176)
	 • Design Scenarios (p. 293)

• Design Guidelines (p. 253)
	 • Design OIDs (p. 298)

• Target Environment (p. 272)
	 • Design State Models (p. 306)

• Subsystems (p. 274)
	 • Design Class Description (p. 311)

• Rejected Design Alternatives (p. 316)
• User Support Materials (p. 341)

Advice and Guidance

• The temptation exists to define very generic, abstract System Architectures that will
solve whole categories of problem. It is good for a System Architecture to be generic
but it is more important that it supports and facilitates actual application development.
The simplest way of keeping a System Architecture with its feet on the ground is to
insist that it is always related to a particular application and not developed in a
vacuum.

• Only explicit architectural statements can be policed.

• If the System Architecture does not address a particular design issue, the architect
must accept that no uniform resolution to that issue will necessarily be adopted by the
design teams.

• The stronger a System Architecture, the greater the independence of design teams.

• Remember to address the requirement to anticipate changes. Likely modifications or
additions to both functional or Nonfunctional Requirements should be considered.
Addressing these requirements for change in the System Architecture is a matter of
achieving decouplings of some form or another. Use [Gamma95] as a source of
decoupling techniques.

• Include statements of the design trade-offs that have been assumed in the System
Architecture. These will help people understand the basis of the System Architecture,
assist developers design and implement consistently with the architectural trade-offs,
and enable the trade-offs to be reviewed at a later date.

• Developers need not remain idle or unassigned while a System Architecture is being
developed. There is considerable work to be done setting up the Development Envi-
ronment and performing prototyping or basic implementation work. Consider using a
depth-first development strategy (see Section 17.1) to get developers up to speed with
the development techniques, tools, and domains, in parallel with further development
of the System Architecture.

13.2 SYSTEM ARCHITECTURE 263 262 DESIGN WORK PRODUCTS

• A System Architecture is often developed iteratively together with a Subsystem Model
as these are closely related.

Verification

• Check for completeness by developing a list of topics and issues relevant to System
Architecture, such as the one at the beginning of this section. Check the System
Architecture work product against each item listed.

• Check that anticipated changes to the design are addressed in the System Architecture.

• Check that all design decisions that require global coordination across the project are
included in the System Architecture work product.

• For each architectural statement, can a framework (reusable subsystem) or a compo-
nent of a framework be used to enforce it automatically?

• Check that the System Architecture is driven by the requirements of an application and
that it has not been designed "in a vacuum."

• Check that all design decisions that involve risk are documented appropriately in the
Risk Management Plan, see Section 10.7, and that adequate, timely prototyping activity
has been scheduled to check the decisions.

• Check that the System Architecture has used existing components and technologies
where this is feasible and appropriate.

Example(s)
The following example relates to the image processing system whose Subsystem Model is
shown in outline in Figure 13-7. The Nonfunctional Requirement from which each archi-
tectural statement is derived appears first in italics. This is done here to show the depend-
encies between System Architecture and Nonfunctional Requirements. Traceability back to
Nonfunctional Requirements as explicitly and at such a fine granularity as this may not
always be done. Flat lists of architectural statements and diagrams under headings such as
Structure, Error Handling, Reuse, et cetera, are frequently used.

Table 13 -1 (Page 1 of 2). Example of System Architecture.

Nonfunctional Requirement: Utilize existing C functions to perform basic image processing operations.
Derived architectural decision: The basic image processing functions are implemented by a component
consisting solely of the legacy C code. An interfacing subsystem invokes the legacy functions. This

involves extracting images from the image database, placing them in memory in the format expected by the

legacy functions, interpreting their return values, returning images to the image database, and the like.

Nonfunctional Requirement: Use familiar, off-the-shelf technology to distribute images between image proc-
essing nodes, at least in early development cycles.
Derived architectural decision: Store images one per file and distribute images using NFS.

Table 13 -1 (Page 2 of 2). Example of System Architecture.

Nonfunctional Requirement: Reuse as much as possible of this application in similar applications that also
exploit image processing technology.
Derived architectural decision: There is an image processing System Architecture that is independent of the

specifics of the application itself. The image processing System Architecture provides a distributed image

database, and access to image processing functions.

Nonfunctional Requirement: Enable the basic image processing functions to be switched on the fly.
Derived architectural decision: The legacy image processing functions are encapsulated within a subsystem
that metamodels the interface to these functions to enable interfaces to new functions to be created dynam-
ically.

Nonfunctional Requirement: Anticipate new kinds of images. The algorithms to manipulate these new
images must be added on the fly.
Derived architectural decision: The singleton and abstract factory design patterns [Garruna95) are used to
create families of objects related to particular kinds of images. A singleton registry of concrete image facto-

ries is maintained. New image code is provided in the form of a DLL that contains the new concrete image

factory class and the classes related to the new image that the new factory instantiates. On being loaded, the

DLL instantiates a singleton concrete factory and registers it. Image classes are instantiated by means of the

appropriate factory obtained from the registry.

Nonfunctional Requirement: The image processing System Architecture should provide test-bed facilities to
enable experimentation with different database access algorithms.
Derived architectural decision: The strategy design pattern [Gamma951 is used to define different database
access strategies and to associate them dynamically with image objects.

Nonfunctional Requirement: Employ uniform error handling mechanism.
Derived architectural decision: Use C++ exception handling throughout to flag exceptional conditions.

Legacy image processing functions currently employ a standard set of return codes. All application-specific

exception classes are to be derived from a common class that encapsulates a return code. Legacy code

wrappers must check return codes and throw exceptions as appropriate.

Conditionally include code to check all method preconditions identified during design. Preconditions should

be coded as protected methods of the invoked class. Preconditions of subclass methods should invoke super-
class method preconditions before performing any subclass-specific checking. Do not encode postconditions
or invariants.

Nonfunctional Requirement: Extensible architecture.
Derived architectural decision: The subsystems will be allocated to the hardware as shown in Figure 13-3.

PS/2
90

RS 232C

;Immo

Sorting workstation
SSs: UI, IP, ID, C, IF

Image processing and
sorter server
SSs: IP, ID, C, IF, ST Sorter

Sorting workstation
SSs: UI, IP, ID, C, IF

Image processing server
SSs: IP, ID, C, IF

PS/2
90

Sorting workstation
PS/2 SSs: UI, IP, ID, C, IF
90

MO
.1110111111 	.

.r4.7..:7717.1
.-.-.-.-.-.-

Image processing server
SSs: IP, ID, C, IF

Image processing (IP)

Image
database (ID)

Interface (IF)

Communications (C)
Legacy
functions

13.3 APPLICATION PROGRAMMING INTERFACES (APIS) 265 264 DESIGN WORK PRODUCTS

Figure 13-3. Example Architecture Diagram Showing Hardware and Software Configura-
tions.

The software structure of an image processing server is as shown in Figure 13-4.

Figure 13-4. Example Architecture Diagram Showing Software Layers.

References

[Booch94] discusses Architecture.

Importance

Essential for ensuring that the design process does not become ad hoc.

13.3 APPLICATION PROGRAMMING INTERFACES (APIS)

Description
The term "API" actually stands for Application Programming Interface, but more accu-
rately it refers to an Architected Program Interface. The point of this pun is to emphasize
that APIs need not be interfaces to end-user applications, and that an API needs to be
designed. An API work product documents an internal or external API provided by the
system.

In object-oriented terms, an API is simply a set of visible classes and their interfaces.
It also includes associated global types, data, and functions but these, hopefully, are kept to
a minimum if they cannot be eliminated entirely. The classes that appear in an API are a
subset of those contained in the subsystem to which the API is an interface. An API can,
therefore, be considered to be a particular view or filter of subsystem classes.

As described previously in Section 2.4, a workbook can describe either a whole system
or a subsystem. API work products, therefore, relate either to a whole system or to a
particular subsystem depending on the workbook of which they form a part. The Sub-
system Model, see Section 13.5, defines subsystems and their interdependencies in terms of

266 DESIGN WORK PRODUCTS 	 1 13.3 APPLICATION PROGRAMMING INTERFACES (APIS) 267

contracts that are coherent collections of responsibilities. It is subsystem APIs that imple
ment contracts. This mapping of contracts onto APIs is specified in the Subsystem Model.

Purpose
A system or subsystem API is defined to enable the system or subsystem to be used
without the need to understand all its internal details.

Participants
Each API, if it is not prescribed completely by the system requirements, has an owner who
is responsible for its integrity. In accordance with the workbook approach, the API owner
is responsible for documenting it into this work product. The API owner is likely to be a
designer or developer.

Timing
APIs are usually defined shortly after subsystem partitioning, as the APIs often provide
access to individual subsystems. The need for a particular API usually becomes apparent
during the construction of the Use Case Model but its details can only be provided consid-
erably later.

Technique
In the sense that an API is a filtered view of subsystem classes, at least part of the doc-
umentation of an API should be obtainable by using the filtering and documentation facili-
ties of a design tool or class browser.

An API cannot be developed entirely independently of the classes that support that API.
The need for a particular API often arises from a particular Use Case that Scenarios elabo-
rate into a collection of related system behaviors. The triggers for these Scenarios are
implemented by calls to the methods that form the API.

If it is a subsystem being described, as opposed to a system, then Use Cases may not
have been defined, although there is no reason why they should not have been, particularly
if the subsystem is intended to be reused. If Use Cases do not exist then the driver of an
API is the set of Scenarios for that subsystem, or a clustering of those Scenarios into con-
tracts. If Scenarios do not exist either, then an API is driven directly by the contracts that
define the interdependencies between subsystems.

Strengths
Precise documentation of APIs enables design work to be done in parallel. Subsystems
depend on each other and if subsystem interfaces are not defined, no autonomous sub-
system work is possible, since the internals of each subsystem will have to be developed
simultaneously. Subsystem interfaces modularize a solution.

Weaknesses
None.

Notation
In addition to bare-bones type signatures, such as what C++ header files provide, API doc-
umentation should include references and information to permit the API to be understood
independently of the system design. The degree of independence will depend, of course,
on the intended audience for the documentation: It might be appropriate for API documen-
tation to assume knowledge of the system, or it might not. If the API documentation is to
he completely stand-alone, and if it is complex, then an object model and perhaps a set of
OlDs should be provided to enable the reader to understand the semantics of the interface.
Sample client code is often a good way of illustrating usage while hiding the internal
details that OIDs would expose. If the audience for the API documentation might be
expected to customize the interface, customization OIDs and/or code should also be
included.

The structure of a document describing an API might take the following form:

Chapter 1: Purpose of API
Chapter 2: API structure
Chapter 3: Class interfaces
Chapter 4: Usage scenarios

The motivating Use Case should be used to guide the content of the introductory chapter.
The API structure chapter might contain an Object Model together with a textual walk-
through of the model. See the example below for a suggested format for documenting
class interfaces. Each usage scenario should contain a description of the scenario, state-
ments of assumptions and outcomes, and an OID and/or sample code.

Traceability
This work product has the following traceability:

Impacted by: 	 Impacts:
• Nonfunctional Requirements (p. 106)

	
• Source Code (p. 334)

• Issues (p. 176) 	 • User Support Materials (p. 341)
• Design Guidelines (p. 253)

	
• Test Cases (p. 346)

• System Architecture (p. 257)

and deletion only occur at the correct time (and not, for example, when a DbSession object
is copied), copy and assignment operations are not part of the DbSession public interface.

Public methods

Static methods:

ApplicationlYlanagerInstance Get the DbSession initiated by the application manager

New methods:

OpenFile 	 Open an existing database file

NewFile 	 Create a new database file

OpenBinarySegmentFile 	Open an existing binary segment database file

NewBinarySegmentFile 	Create a new binary segment database file

OpenVoiceSegmentFile 	Open an existing voice segment database file

NewVoiceSegmentFile 	Create a new voice segment database file

GetHandle 	 Get the database server handle for this session

GetPath 	 Get the path used by the database server as the database
file directory

Inherited, overridden, or instantiated methods:

None

Special methods:

Constructor
	

Create a DbSession

Destructor 	 Delete a DbSession

Descriptions of new methods

Appl icationManagerInstance

Purpose 	Get the DbSession instance that represents the database session initiated by the
application manager. If the instance does not yet exist, the method will con-
struct it.

Format 	static DbSessi on& Appl icati onManagerInstance(const Gsi Name
gsiName)

Parameters

gsiName The NetBIOS name of the GSI for which the session is being used.

Notes 	The method wraps the vmsfopen function.

OpenFile

268 DESIGN WORK PRODUCTS 	 13.3 APPLICATION PROGRAMMING INTERFACES (APIS) 269

Advice and Guidance

• APIs should be defined in development increments as early as possible.

• Consider using the facade design pattern [Gamma95] to encapsulate the interface or to
provide alternative, simplified interfaces.

• Exploit the capabilities of your toolset to generate as much as possible of the API
documentation automatically.

• A minimal API document obviously lists just the type declarations relevant to client
programmers. The degree of additional documentation: usage scenarios, method
descriptions, and the like, should be scaled according to the intended audience and
usage of the API.

Verification

• Check API for conformance to Coding Guidelines.

• Check the documentation of APIs intended for publication for conformance with
appropriate publication guidelines.

• Depending on the intended audience for the API and its complexity, check that doc-
umentation includes Scenarios and sample code showing how the API may be used.

• Check API for appropriate levels of completeness and extensibility.

• Check API for unnecessary exposure of internal data representations.

Example(s)
Here is an example of some documentation that was written to describe a simple C++ data-
base server API. The document as a whole followed the structure outlined earlier. The
excerpt that follows is from a section documenting the DbSession class interface. Note that
this documentation is intended for writers of client code, not customization code. It is for
this reason that only the public class interface is described. Note also that the documenta-
tion is intended for object technology novices. For this reason the names and short
descriptions of inherited methods are included in the description of each class interface.
This would not normally be done, but it was felt that this audience would expect to find all
methods relevant to a particular class documented there.

Definition

A DbSession is an object representing a database session. FileProxies for database files
are created by DbSession methods; the contents of the files are then accessed by means of
FileProxy methods without further direct reference to the DbSession.

DbSessions know the FileProxies that are associated with them, and deletion of a
DbSession object causes deletion of its FileProxies. To ensure that FileProxy construction

270 DESIGN WORK PRODUCTS
13.3 APPLICATION PROGRAMMING INTERFACES (APIS) 271

Purpose 	Open a database file and return a reference to a proxy for it.

Format

virtual FileProxy& OpenFile(
const FileName fileName,
const ObSession::AccessMode accessMode = ObSession::READ_ONLY -

Parameters

fileName 	The name of the file to be opened.
accessMode The access mode of the new file proxy.

Notes

NewFile

Purpose

Format

Create a new database file and return a reference to a proxy for it. The
underlying semantics of the method are those of CreateDA in the existing
API.

virtual FileProxy& NewFile(
const FileName fileName,
const int keyLength,
const int recordLength,
const int degree = 32)

Parameters

fileName
	

The name of the file to be created.
keyLength
	

The length of the key. Possible values are 1 through 49.

recordLength The length of the record (both key and data).
degree
	

Parameter influencing database index creation algorithm;
default 32. Use the default unless otherwise instructed.

Notes
	

The new file proxy is read-write.

Constructor

Purpose Create a DbSession object.

Format

DbSession(
const ClientName clientName,
const GsiName gsiName,
const PVOID ioArea = 0,
const int ioAreaLength = 0,
const int timeout = 0,
const int sessionCount = 3,
const IBoolean dllServer = False,
const int adapter = 255)

Parameters

clientName
	

The NetBIOS client name.
gsiName
	

The NetBIOS name of the GSI with which the session is being
opened.

ioArea
	

A pointer to the area to be used for GSI requests and responses;
default 0. If the pointer is zero (0), the API allocates the storage,
but in that case the storage will be overwritten by each GSI
request via this session.

ioAreaLength The length of the user-supplied ioArea.
timeout
	

The time allowed, in seconds, for a response from the LAN;
default 0. The maximum value is 127. A value of zero (0) spec-
ifies that no timeout is to be used.

sessionCount Only relevant if a real network is being used. The number of
network sessions opened for the process; default 3. Only the
sessionCount parameter for the first session (of any kind) created
for each process is used.

dllServer
	

Whether or not the call is made from a DT/2 DLL server; default
False.

adapter
	

The LAN adapter number as defined to OS/2 system configura-
tion; default 255. Possible values are 0 through 3 (LAN) or 255
(local). If an adapter has not been installed, use value of 255,
which means that all operations take place locally.

Exception codes 	As for OpnSesDAE.

Notes

Supporting declarations

enum AccessMode
READ_ONLY, READ_WRITE)

References
None.

Traceability
This work product has the following traceability:

Impacted by:
• Nonfunctional Requirements (p. 106)
• Issues (p. 176)
• Design Guidelines (p. 253)
• System Architecture (p. 257)

Impacts:
• System Architecture (p. 257)
• Coding Guidelines (p. 322)
• Physical Packaging Plan (p. 326)
• Development Environment (p. 330)
• User Support Materials (p. 341)

13.4 TARGET ENVIRONMENT 273 272 DESIGN WORK PRODUCTS

Importance
API work products are optional but may be essential if your project has numerous Applica-
tion Programming Interfaces or may be required by your customer. APIs work products
are important for allowing a system or subsystem to be used without the need for a com-
plete understanding of that system or subsystem.

Weaknesses
None.

Notation
The Target Environment is usually documented as free format text with diagrams as appro-
priate.

13.4 TARGET ENVIRONMENT

Description
The target environment is the environment in which the application will operate. The spec-
ification of the Target Environment usually comes from the Nonfunctional Requirements
and it has a strong influence on the System Architecture. It should specify hardware plat-
form, operating system, and the runtime environment. In a distributed or a client/server
system, a Target Environment may describe more than one physical system.

Purpose
It is critical that the environment in which the application will operate is clearly specified.
The purpose of this documentation is to ensure that both the end user and system architect
share a common understanding of the that operating environment. A change of the Target
Environment may result in a selection of a different System Architecture, therefore, its
documentation is important.

Participants
The specification of the target environment may come from a customer requirement or a
decision by system architects. The architect of the project or project planner should docu-
ment the Target Environment of the application.

Timing
The information concerning the Target Environment is collected and documented at
requirements gathering time. At times, this information may be elaborated during design.

Technique
Any customer or user input to the choice of Target Environment should be obtained and
validated like any other Nonfunctional Requirements. If the selection of Target Environ-
ment is made by system architects, this specification should be sent to the customer to
verify their agreement with the selection.

Strengths
The strength of this work product is to document clearly the operating environment of the
system or application.

Advice and Guidance
It is important that the environment for the application is clearly specified. All the known
information on the environment should be recorded in this work product, namely, hardware
platforms, operating systems, network protocol, language system runtime requirements, and
so forth.

Verification

• Check if the target environment specification is complete with respect to all opera-
tional dependencies.

• If more than one system is involved, check to make sure all target environments are
specified.

Example(s)
The following are examples of Target Environment specifications.

• The target environment is RISC System/6000 running AIX version 3.2.

• The target environment is ES/9000 running CICS/ESA version 3 and LE/370 version I release 2 under

MVS/ESA SP version 5.1.

• The target environment for the client is IBM PC running OS/2 WARP and the server is RISC

System/6000 running AIX version 3.2.

Figure 13-5. Examples of Target Environment.

274 DESIGN WORK PRODUCTS 13.5 SUBSYSTEM MODEL 275

References
None.

Importance
The Target Environment is essential since it has a major impact on the System Architec-
ture.

13.5 SUBSYSTEM MODEL

Description
A Subsystem Model is a partitioning of a system into subsystems, and a delegation of
system responsibilities to the subsystems. The term "subsystem" is used in this book to
refer to any large design component. A database management system can, therefore, be a
subsystem, as can a user interface component or an application framework. Subsystems,
because they are large structures at the design level, must take into account the System
Architecture.

This definition of the term "subsystem" is similar to that used by Booch [Booch94].
OMT [Rumbaugh9la] uses the term differently: a logical grouping of classes. This is
more of an analysis concept than design, and we prefer to distinguish the two kinds of
partitioning. Both analysis and design need a means of clustering, but the goals of analysis
and design clustering are not the same, and hence analysis and design cluster divisions may
not coincide. We use the term "subsystem" solely for design clustering in order to avoid
confusion.

Our definition also differs from what Shlaer and Mellor call "domains" [Shlaer88]
which are horizontal partitions each consisting of all the classes of a system in a particular
Subject Area. Shlaer and Mellor domains are similar to the "layers" of Booch. Domains
are used in a very definite manner by Shlaer and Mellor.

Another design concept that is not necessarily identical to that of the subsystem is the
unit of work allocated to a team of developers. There is no reason why units of work need
necessarily be aligned with subsystems, although pragmatic constraints may insist that this
is the case in particular projects.

A subsystem is not necessarily a design for a particular physical component. The
design of physical components will probably be expressed in terms of subsystems, but not
all subsystems represent physical components. Some subsystems may contain nested sub-
systems.

A Subsystem Model identifies existing subsystems that are to be reused as well as those
that need to be constructed.

Purpose
The principal reason why a system is subdivided into subsystems is that the system is too
complex or too large to understand or to be worked on as a whole; it needs to be parti-
tioned into smaller units to be manageable.

This rationale has two implications. Firstly, each subsystem must be understandable in
isolation. Otherwise, no understanding would be gained by partitioning the system. This
means that each subsystem must have its own Object Model, its own Scenarios, and its
own OIDs. This does not mean, for example, that a class cannot appear in more than one
subsystem's Object Model, but the ownership of classes by subsystems must be clear. Sec-
ondly, the public subsystem interfaces must be clearly and fully described. This is done so
that the developers of one subsystem need not know about the internal structure of other
subsystems to use them. If this were not the case, the benefits of partitioning the system
would be much reduced.

Another important reason for constructing a system from subsystems is reuse. It may
be possible to reuse existing components or to identify problem-independent functionality
that can be "harvested" for subsequent reuse. In either case, there is a need to structure the
system into large, isolated, design components.

Participants
The architect is responsible for the definition of the subsystems. The project manager must
also be involved, as the subsystem partitioning may affect the way in which work can be
assigned to teams and the dependencies between the teams.

Timing
Subsystem partitioning is usually done iteratively together with the development of an
Architecture, as a result of addressing Nonfunctional Requirements related to defining
physical boundaries, achieving modularity, reusing existing components, and designing for
further reuse. Both the System Architecture and the Subsystem Model are revised iter-
atively as design proceeds.

A large system may, however, be partitioned into subsystems at an earlier stage, before
analysis, in order to address logically separate aspects of the system independently. Some-
times, parts of previous System Architectures and Subsystem Models can be reused for
new systems.

Technique
How to partition a system into subsystems depends on when the partitioning is performed.
If it is decided to partition before analysis then a clear idea of how the system can be
cleaved into subsystems must already exist; otherwise, such an early partitioning would not
be attempted. These lines of cleavage may be those of an existing application that is being
re-engineered, or they may be based on the boundaries of existing systems that are being
integrated. If the system is completely new, then an early partitioning may stem from a

276 DESIGN WORK PRODUCTS
	 13.5 SUBSYSTEM MODEL 277

domain analysis, see Section 18.1, which has surfaced a clear separation of concerns in the
domain.

If a subsystem partitioning is performed as an initial design step, then it will be based
on knowledge gained during analysis, an awareness of the components available for reuse,
and physical boundaries. The analysis model might naturally have generated some clus-
terings of classes that are obvious candidates for encapsulation as subsystems. Physical
packaging requirements may reinforce this initial partitioning, or they may impose addi-
tional demands of their own. If a project is distributed then the system partitioning must to
a certain extent correspond to geography.

If a system is partitioned into subsystems only after an initial Design Object Model and
Design OIDs exist, then the partitioning can be performed by clustering the classes of the
(system) Object Model and splitting the (system) OIDs into separate OIDs for each of the
newly created subsystems. When splitting off a subsystem OID in this way it is often
appropriate to represent other subsystems by Facades (in the sense of the Facade design
pattern of [Gamma95]). A Facade is an object that encapsulates a whole subsystem. In
this way the use of subsystem interfaces is emphasized, and the internals of one subsystem
hidden from others. The messages sent to a Facade form the interface to that subsystem.
Facades are useful when constructing subsystem OIDs irrespective of when subsystem par-
titioning is performed.

Whenever the partitioning is performed, some heuristic for clustering must be used; a
rule of thumb is that subsystem partitioning should minimize the dependencies between
subsystems. Obviously, the clustering must also take into account physical boundaries,
reused and reusable components, and architectural principles.

In addition to identifying subsystems, a Subsystem Model must also document the way
in which subsystems depend on each other. Individual methods or responsibilities are,
however, usually too fine-grain to be used as the basis for documenting relationships
between subsystems. It is necessary to cluster the responsibilities of a subsystem into con-
tracts and to use these to show the links between subsystems. A contract is a coherent
collection of related responsibilities. (This is the definition of a contract used in
[Wirfs-Brock90].) A subsystem is dependent on a contract of another subsystem, if it
employs the responsibilities of that contract to deliver its functionality. It is these
subsystem-contract connections that are shown on the subsystem diagram described below.

Each subsystem that is identified is, in principle, treated as a system in its own right.
As described earlier in Section 2.4, Workbook Structure, a separate logical workbook is
devoted to each subsystem. By giving each its own workbook, the structure exists to
manage, gather requirements for, analyze, develop, and test each subsystem independently.
Of course, subsystems will not always be developed quite so autonomously or formally,
although deriving separate requirements and analysis work products for certain subsystems
will greatly assist the understandability and future reuse of these subsystems. If require-
ments gathering for a subsystem is performed, then a subsystem Use Case Model will be
produced. There is a correspondence between a subsystem Use Case Model and contracts
in the Subsystem Model of the enclosing system. The contracts presented by a subsystem

are the reasons why the subsystem is needed in the Subsystem Model; the subsystem Use
Case Model captures the requirements on the subsystem. The subsystem Use Case Model
must, therefore, support the subsystem contracts that are implemented by subsystem APIs.

Strengths
The Subsystem Model is an extremely important design document. It straddles the earlier,
systemwide design and the later per-subsystem design. To a certain extent it summarizes
the System Architecture of the application. When design teams communicate, it is at the
subsystem level of abstraction; therefore, it is very important that the subsystem level of
design is well documented to satisfy the varied goals of the subsystem partitioning process.

A Subsystem Model provides a basis for identifying reusable or harvestable design

components.

Weaknesses

None.

Notation
Logically, each subsystem has its own workbook similar to that used for the system as a
whole. Physically, the subsystem workbooks may be parts of the system workbook or they
may be separate, as appropriate to the development team size and structure. If the subsys-
tems are in turn broken down into subsubsystems, the latter, too, have their own subsys-
tems.

The work products of the individual subsystems, including the APIs that define the sub-
system interfaces, their object models, their code, and the like, belong, therefore, to the
subsystem workbooks. What is important in the parent system workbook is to indicate
which subsystems exist and how they are interrelated. All other information is delegated
to the subsystem workbooks.

The following template may be used for each subsystem identified in the Subsystem
Model:

Subsystem name
Description
Workbook
Contracts

The Workbook slot is used to identify the workbook in which the subsystem is docu-
mented. All further documentation of the subsystems is delegated to the subsystem
workbooks.

Contract) Contract2

Subsystem) Subsystem3
Contract)

Subsystem2
Contract3

278 DESIGN WORK PRODUCTS

Contract name
Description
API
Notes

The API slot is used to identify .the subsystem API that implements the contract. All doc-
umentation of the API is delegated to the relevant API work product of the subsystem
workbook. In addition to the use of the above templates, a summary diagram showing the
subsystems and the contractual dependencies between subsystems is frequently helpful.
The form of a subsystem diagram is shown in Figure 13-6.

Figure 13-6. The Form of a Subsystem Diagram.

Each box of the subsystem diagram represents a subsystem. The arrows connecting the
subsystems represent dependencies between subsystems with the arrows pointing towards
the server subsystems. The names on the arrows are those of the contracts of the server
subsystem being depended upon by the client subsystem.

Traceability
This work product has the following traceability:

Impacted by: 	 Impacts:
• Nonfunctional Requirements (p. 106)

	 • System Architecture (p. 257)
• Reuse Plan (p. 158)

	
• Physical Packaging Plan (p. 326)

• Project Dependencies (p. 173)
• Issues (p. 176)
• Design Guidelines (p. 253)
• System Architecture (p. 257)
• Design Object Model (p. 281)

13.5 SUBSYSTEM MODEL 279

Note: The Subsystem Model also impacts lower level subsystem work products, most
notably Use Case Models and APIs.

Advice and Guidance

• The subsystem partitioning is likely to change from time to time. This is inevitable as
experience is gained of system responsibilities.

• Reduce dependencies between subsystems as far as possible.

• Make subsystems problem-independent, if possible, to increase the chance of the sub-
system being reused.

• The (logically) multiple subsystem Object Models will almost certainly be represented
as divisions within a single model maintained by a design tool.

• After a subsystem partitioning, 01Ds may need to be reworked to reassign responsibil-
ities to optimize subsystem decoupling.

Verification

• Check that all subsystem APIs are, or will be, defined in time to enable them to be
used by the developers of other subsystems.

• Check the subsystem partitioning for optimal decoupling of subsystems. (This is not
necessarily the same as maximal decoupling.)

• Check the frequency and size of intersubsystem communications.

• Check the subsystem partitioning for reuse opportunities; both the reuse of existing
components, and the future reuse of new work products.

• Check that the boundary of the system to be built is explicitly represented in the Sub-
system Model diagram.

Example(s)
Figure 13-7 shows a subsystem diagram for an image processing architecture. An impor-
tant design goal for this System Architecture was to develop subsystems that were reusable
in several image processing applications. The Image functions subsystem consist of many,
large legacy functions written in a non-00 language that are to be reused without change.
To enable this, the Image processing subsystem is responsible for extracting the images
from the image database, placing them in memory as expected by the legacy functions,
invoking the legacy functions, and interpreting their return values.

User
interface

Generic
	 function
Image 	invocation

functions 4.

Image

prooessing

Image
processing

Image
maintenance

I

Image
database

Image
maintenance

a

NeIBIOS

Communications

Subsystem name
Description
Workbook
Contracts

Image database
A distributed image database
IPA_ID
Image maintenance

Table 13-2. Example of Subsystem Description.

13.6 DESIGN OBJECT MODEL 281

Figure 13-7. An Example of a Subsystem Diagram.

The description of the image database subsystem might be as follows:

The description of this contract may be as follows:

Table 13-3. Example of Contract Description.

Contract name
Description
API

Notes

Image maintenance
An API for maintaining a distributed image database.

IM

1. All image processing operations are implemented by subclasses of the Image

abstract class.

2. By default, images are stored in the local node.

3. Dynamic load balancing may result in images being moved, but that is func-

tionally transparent.

4. Images may be accessed from any node, regardless of where the image is

stored.

5. A mapping from C++ pointers to unique system image IDs is maintained
within the subsystem, but is not exposed.

References

• [Booch94] describes subsystems.

• [Wirfs-Brock90] describes contracts.

Importance
The Subsystem Model is optional in small and medium sized projects but essential in large
projects. Developing a Subsystem Model provides a means for partitioning a system into
more manageable units.

13.6 DESIGN OBJECT MODEL

Description
The Design Object Model is a structural representation of the software objects (classes),
that comprise the implementation of a system or application. A Static Model is comprised
of design object classes and their attributes, responsibilities, operations, and interrelation-
ships, expressed as association, aggregation, and inheritance links. The object model is a
key object-oriented design work product.

280 DESIGN WORK PRODUCTS

Purpose
An Object Model is the fundamental way to document the static aspects of an object-
oriented solution to a problem. The focus of the Object Model during design is the struc-
ture of the software system as opposed to the structure of the problem domain during
analysis (Section 11.3, Analysis Object Model).

The objects in object-oriented design are called "design objects" (vs. "problem-domain
objects" in object-oriented analysis). Classes of problem-domain objects can be mapped to
one or more classes of the corresponding design objects, depending on the underlying

282 DESIGN WORK PRODUCTS
	

13.6 DESIGN OBJECT MODEL 283

System Architecture. For example, class Folder may be mapped to two classes Folder and
•olderView in design (see examples on page 291). The architectural mechanism here is

the Model-View-Controller framework for a system with graphical user interfaces. In this
case, the real-world Folder object becomes two objects in the solution-domain: The Folder

data and behavior is part of the "Model," but its graphical representation and on-screen
behavior is part of the "View" domain.

Many new classes are invented at this phase, as architectural and design decisions are
applied. This is one of the most creative phases of the object-oriented development life
cycle. Programmers should have a very clear knowledge of how to proceed with imple-
mentation of the system when all the design work products are defined.

Participants
The Design Object Model is created by architects, designers and developers.

Timing
The Design Object Model is primarily developed during the design phase, but it will need
to be maintained during the implementation phase as design and implementation decisions
are worked out.

Technique
The best way to develop a Design Object Model is to start with the Analysis Object Model
and expand it into a design model. The steps to doing this are:

I. Start with a copy of the Analysis Object Model.

2. Add new classes from the solution domain, for example, view and utility classes (iden-
tified while developing Design Object Interaction Diagrams).

3. Validate and assign responsibilities from Design OIDs and Design State Models in
terms of:

• attributes (for structural aspects)
• methods or operations (for behavioral aspects)

4. For every class and association in the model, consider the operations that can result in
an instance being created or deleted [D'Souza95].

5. Optimize the object model for performance and reuse. Introduce new associations or
modify existing ones to optimize access based on Nonfunctional Requirements (e.g.,
fast look-up). Consider making associations that were thought to be permanent fea-
tures of the class into temporary links between objects that are either passed as argu-
ments in methods or created as temporary objects within a method body.

6. Eliminate or collapse structures representing unnecessary information, for example,
those not substantiated by Design OIDs.

7. Add metaclass if your implementation language is Smalltalk or SOM. A metaclass is
a class whose instances are themselves classes [Booch94]. Metaclasses enable classes
to be manipulated as objects in their own right.

8. Transform generalization (or inheritance) structures to delegation when appropriate in
order to decouple elements of the design. If a subclass does not pass the substitution
(Is-A) test, change Is-A to Uses or Has.

9. Determine which classes will be persistent (for example, based on some startup refer-
ence or update Design 01D).

10. Specify the accessibility of operations:

• Public: any class can invoke the operation
• Protected: only subclasses can invoke the operation
• Private: no other class can invoke the operation

If your implementation language has no support for Private or Protected use
Coding Guidelines to enforce them, for example, Protected could be expressed in
SOM by using the pri vate IDL brackets and the pri vate emitter switch.

Specify the implementation details of associations:

• Directionality (cf. using in Booch [Booch94]). Remember that during analysis
associations were bidirectional.

• Name, visibility, and mutability of the attribute implementing the association.

12. Determine the implementation of the "many" ends in associations:

• A collection class as an attribute in the "from" object
• A custom class (usually a subclass of a collection class or an aggregate including

a collection class object) as an attribute in the "from" object
• A reference to an association class that contains one or more attributed references

to other objects.
• No implementation (if the link will not be used in that direction).

I 3. Determine ownership (Who creates or instantiates objects of a class? Who deletes
them?)

• Determine which aggregations (in particular) represent lifetime encapsulation.
That is, the lifetime of the aggregate completely encloses the lifetime of the com-
ponent (cf. server binding in [Coleman94]). Ownership usually implies lifetime
encapsulation.

14. Establish the kind of reference (cf. physi cal containment in [Booch94]) to be used
by the attributes implementing associations and aggregations:

• By reference: contains a pointer or a reference
• By value: contains an object (applicable only for aggregations at the design level

of abstraction. During analysis, reference/value distinctions are usually ignored)

Dependency

	0..1 Class

	H Class

Exact One

Many

Class-1

Inheritance

Association

Class Numerically
	 Specified

	0'

Aggregation

Class-4

	►
Class-2

Class-3

284 DESIGN WORK PRODUCTS 13.6 DESIGN OBJECT MODEL 285

• By key: contains a key that can be converted into a reference by some means (for
example, a "name resolution mechanism").

15. Determine scope of associations:

• Operation Scope (dynamic reference): when an object A gets a reference to an
object B through a method parameter or by a local variable of a method

• Class Scope (persistent reference): reference from object A to object B needs to
persist between method calls

16. Determine mutability: The mutability of a reference indicates whether it can be reas-
signed after initialization [Coleman94]. The const adornment can be used to indicate
immutability. An attribute can be declared as mutable, that is, the value of the attri-
bute can be changed after initialization, for objects declared as constant, when the
const adornment applies to the entire object.

17. Determine placement of class operations and class attributes (those that do not apply to
specific objects, i.e., instances of the class). In many cases they become attributes and
operations of a collection class. For example, the extension of a class, namely, the set
of all instances, could be maintained in a class attribute (static data member in C++)
that is a collection class.

18. Determine special or advanced properties of classes and operations (for example, C++'s
template, virtual, inline, const, friend, et cetera). Advanced properties are normally
implementation language dependent.

19. Determine the types of all attributes.

Strengths
The Design Object Model is a key deliverable for capturing and communicating solution
domain understanding to the development team and other interested parties. Its ability to
be simple or richly adorned, capturing all static design information, allows it to be
extremely useful throughout the development life cycle. Its clear intuitive notation makes
it a favorite work product of all analysts, designers, and developers.

Weaknesses

• A Design Object Model only shows the static relationships.

• It needs to be maintained over time. Neglect of the Design Object Model often stems
from the (incorrect) assumption that program Source Code supersedes the design doc-
umentation.

Notation
The Design Object Model notation enhances the Analysis Object Model notation (Section
11.3), with the emphasis on architecture and design class description. The enhancement
includes:

Directionality
Associations should show the direction(s) of reference between the objects.
Association classes and n-ary associations should be transformed to show how
they will be implemented (e.g., by containment of a collection class of refer-
ences, or by reference to a directory of associations).

Class adornments
Whether a class is abstract or parameterized could be shown in the Design
Object Model.

Attribute and accessibility adornments
The accessibility of attributes and methods, such as whether they are public,
private, or protected, should be shown explicitly in the Design Object Model.

Aggregation and association adornments
Whether associations are "by reference" (owner or not) or "by value" should
be shown explicitly.

Visibility dependency
Argument dependency and temporary variable dependency need to be repres-
ented in Design Object Diagram, for example, by a dotted line with an arrow
head. A class has an argument dependency on another class if one of its
methods refers to the other class when defining its formal parameters. On the
other hand, a class has a temporary variable dependency on an other class, if it
instantiates the class as a local temporary variable (See Figure 13-8).

Figure 13-8. Design Object Model Notation.

Traceability
This work product has the following traceability:

Impacted by:
• Nonfunctional Requirements (p. 106)
• Issues (p. 176)
• Analysis Object Model (p. 192)
• Screen Flows (p. 237)
• Screen Layouts (p. 242)
• Design Guidelines (p. 253)
• System Architecture (p. 257)
• Design 01Ds (p. 298)

Impacts:
• Subsystems (p. 274)
• Design 01Ds (p. 298)
• Design State Models (p. 306)
• Design Class Description (p. 311)
• Glossary (p. 355)

13.6 DESIGN OBJECT MODEL 287 .1 286 DESIGN WORK PRODUCTS

that are error-prone and difficult to understand and modify. 	When designing
inheritance structures, a number of process guidelines should be considered:

– Verify the class hierarchy has structural and behavioral conformance. Type-safe
use of inheritance considers the conformance of client-server object interactions.
Structural conformance concerns the client's expectations of the supplier's proper-
ties and relationships with other classes. Behavioral conformance concerns the
client's expectation of the supplier's behavior. When accessing properties or navi-
gating relationships or invoking behavior, the client should not need to know if it
is dealing with a supplier that is an instance of a class or one of its subclasses.

– Use abstract classes for interface reuse—to enforce common interfaces across sub-
classes.

r
Ells

Advice and Guidance

If you are using an object-oriented CASE tool, copy the relevant part of the Analysis
Object Model into a new file (keep separate versions of the Analysis Object Model
and the Design Object Model).

Design Object Model diagrams can become complicated and cluttered. We recom-
mend layering the diagram to reduce clutter and having separate views that focus on
particular topics, for example, one with associations but no attributes or operations,
and another that focuses on class attributes and operations.

Not all class dependencies should be depicted as direct associations. An object can be
referenced by another if it is passed as an argument to an operation of the other class.
When this happens, it is better to model it as a visibility dependency between these two
classes.

There is no "association class" in design. Association classes should be converted into
normal classes (perhaps derived from or containing a collection class) having direct
associations with the other classes.

Some languages, including C++, permit subclasses to hide inherited services. This is
not considered good style. In an inheritance hierarchy a subclass should support all
the services provided by its superclass, so that it can be used anywhere the superclass
is used. This is known as the substitutability principle", i.e. that objects of the sub-
class are substitutable for objects of the superclass.

• Used properly, inheritance is a key means to achieve object-oriented designs that have
well-formed abstractions and whose class structures are reusable and extensible. The
misuse of inheritance, however, can lead to designs that are brittle and applications

11 The concept of substitutability also covers the semantic relationships between services, i.e. "require no more,
promise no less." See Chapter 10 "Proper Inheritance" in C++ FAQs[Cline95J .

– Use structural composition and operational delegation instead of structural sub-
classing and operational inheritance if the only reason for inheritance was
"sharing" of code. Factor-out classes into more atomic behaviors so that large
hierarchies become "forests" of trees.

– Consider replacing inheritance with aggregation and states (an object Has-A state
that determines its behavior) when objects are expected to change types during
their life cycle (see "State design pattern" in [Gamma95]).

– Limit the depth of inheritance hierarchies to a maximum of 4 to 5 levels. Deep
inheritance hierarchies are a conceptual burden, cause maintenance problems, and
can make it extremely difficult to reuse or extend a design.

– Design the Inheritance Hierarchy consistently with Design Patterns. Many design
patterns exploit abstract superclasses and inheritance-based relationships, for
example Adapter, Bridge, Builder, Composite, Iterator, Mediator, Proxy and
Strategy. The underlying principles are often collaborations between superclass
and subclass methods using so-called "template" and "hook" methods [Pree95].

– Document the intent of Inheritance. If inheritance is used for code reuse—to
"borrow" methods from superclasses—then class hierarchies quickly loose
semantic cohesion. Document cases where inheritance is not behaviorally or
structurally conforming and how the design would have to change to preserve con-
formance.

• Document your design decisions (including rejected ones).

• Look for design pattern opportunities. The chosen architecture template may already
advocate the use of certain design patterns but many others will come from the dis-
covery of how to use patterns in innovative ways. For example, looking for recurring
patterns of interaction among analysis objects often suggests design patterns that will
structure the solution.

288 DESIGN WORK PRODUCTS
	

13.6 DESIGN OBJECT MODEL 289

– Use design patterns to insulate the design of the subsystem. When considering
collaborations with other design levels (subsystems) do not bring components from
other levels into your design directly. Adopt a design pattern that allows you to
access the other level yet protects your system's design against changes to that
other level, for example: facades, adapters, proxies, and mediators.

– Apply design patterns that ease the reuse of an asset. Do not constrain the design
session by imposing asset interfaces that seem either wrong, inadequate, or unna-
tural for the current system; the Adapter pattern helps you to maintain design ele-
gance in the face of unnatural asset interfaces.

– Apply design patterns that protect the reuser against changes to the reused compo-
nent. If the component is a major concept in the model, widely used, and is likely
to change, then apply the Bridge pattern. The cost of changing components that
reference the asset component is likely to be greater than that of applying the
Bridge pattern. If the new component needs only a subset of the capabilities of
the existing one, introduce a new component using the Adapter pattern
[Gamma95].

• The following questions can help you to decide on visibility and ownership for aggre-
gations:

– Is the identity of the contained object used outside of the containing object?

– What is the cardinality of the containment relationship?

– Are there other containing objects that contain the same component?

– Should the contained object know its containing object?

Is the lifetime of the components bounded by the containing object or not?

• External Agents are normally out of scope in design (although as part of the problem
domain their presence in the analysis model is justifiable).

• Use a "managed pointer" whenever it is not obvious who and when will delete the
objects referenced (for example one object is referenced from entries in two different
collections).

• Attributes implementing superclass associations should be declared as Protected., or
as Private with Protected accessor operations.

• Use a Reuse-based Approach. Further structuring of the solution arises from require-
ments that the design presents to itself—for example, objects that coordinate or
mediate the activities of other objects and objects that organize queues and manage
events.

– Generate Requirements During Design. As the design proceeds new requirements
emerge for the design itself. These should be formulated as design specifications
and used to guide the search for reusable assets and candidate design patterns.

– Use Frameworks. A framework stipulates how specific application subclasses
should behave. Abstract classes and deferred methods require subclasses to fulfill
expectations of 'template' methods. Other methods and classes of the framework
should be left well alone.

– Use standard utility classes where possible. Many of the productivity and quality
benefits of object-orientation stem from the reuse of libraries and frameworks.
We should always approach the design task by being knowledgeable about what
already exists and that should shape the way we solve problems.

• Once the object model stabilizes and there is confidence in the completeness of the
requirements, you should inspect the classes to look for opportunities to refactor the
design.

– Consider removing classes that are leaves or orphans of the inheritance structure,
that is, those that are not instantiated nor inherited from. It can be the case that
these classes are poor abstractions that should be reformed either by creating a
more general concept, introducing a missing superclass or by reallocating their
behavior.

– Consider merging classes that have related responsibilities. Small classes should
be inspected as candidates for features that have a common generalization. By
being combined they might offer a more useful abstraction.

– Consider splitting those classes that have too many attributes or methods. Large
classes often exhibit a bias towards a procedural rather than behavioral decompos-
ition of the system. Factor out common behavior and attributes to a superclass.
Look for disjoint subsets of coupling between attributes and methods as an
obvious way to split the class. Refactor on the basis of behavioral consistency
with other parts of the system. Inspect behavior within the class and consider
design patterns that can restructure the class.

Verification

See the checklist for an Analysis Object Model, Section 11.3, which is also appropriate
here (with the obvious exception of "check for design artifacts").

• Check that Object Model documentation indicates where, how, and why design pat-
terns have been used, where this is appropriate.

• Check the intent of design patterns that are used.

• Check that internal representations of classes may be changed independently of other
classes, except where explicit dependencies exist. That is, check that knowledge of
internal representations is localized as much as possible.

• For all inheritance links, check that public inheritance always implies substitutability,
i.e., that objects of the subclass are substitutable for objects of the superclass; that

290 DESIGN WORK PRODUCTS 	 13.6 DESIGN OBJECT MODEL 291

superclass assertions are honored by redefined methods and that deep inheritance hier-
archies are designed correctly, particularly regarding flexibility and the advisability of
avoiding downcasts.

• Check that there is no intensive communications around one class. If one class domi-
nates the communication pattern, it may have too many responsibilities and knows too
much about too many parts of the system. This could become a fragile part of the
system: If any of the parts it knows about changes, it may have to change. If it is a
large and complex component, then the chances of introducing an error or propagating
changes is higher.

• Check that there are no unnecessary intensive communications between classes. Two
classes communicating with each other intensively evidently need to know a lot about
each other. Perhaps they should be one component or there is a third abstraction
waiting to be found.

• Check that there is no redundant or duplicated behavior. Are there classes with the
same behaviors? Are there behaviors that can be merged? Are there behaviors that
could be removed either by moving the behavior to other methods or by elimination
altogether?

• For each class, verify that names are unique and descriptive and, where necessary, a
stereotype has been given and overrideability has been specified. Verify that attributes
and operations are functionally coupled—there are no disjoint cut sets that could
suggest splitting of the class into new classes. Check how instances are created and
destroyed.

• For all operations, verify that operation names are descriptive and expressive of their
purpose and, where relevant, an overrideability attribute has been defined; that oper-
ations are conceptually the same across classes that have the same names; that the
types of all arguments and any return results are defined and that the constraints
relating to referential integrity, attribute values, preconditions, and postconditions of
operations are implemented.

• For all attributes, check that their names are descriptive; that there are no attributes
that represent the same thing; that the types of all attributes are defined, either explic-
itly, as for C++, or using a signature-style for Smalltalk and that the attribute repres-
ents a value-based property and is not an object reference that is implied by an
association/aggregation or that represents a missing association/aggregation.

• For all relationships, verify that the relationship is named descriptively, that multi-
plicity and directionality of references has been specified, and that the relationship is
always true. Check that associations do not reference too specific an object; that they
do not warrant becoming classes in their own right; and that they should not be
modeled as aggregations.

• For all aggregations, review visibility and ownership. Is the identity of the contained
object used outside of the containing object? If so, then verify that existence con-
straints are properly observed outside of the containing object. Are there other con-
taining objects that contain the same component? If so, are multiple owners
responsible for controlling the existence of the contained object? Are these owners
members of the same class? If so, then indicate that the aggregation itself has a multi-
plicity of "many" by placing a "dot" next to the aggregation diamond. Should the
contained object know its containing object? If so, then indicate that visibility is
bidirectional.

Example(s)

The example shows a snapshot of the Object Model at the design level for the Library
system example previously introduced in Figure 13-9. By comparing the same Object
Model at the analysis level (Figure 11-7), it can be found that many view classes and
directed associations have been added to this model. On the other hand, User class has
been removed, since it is not within the system scope. By incorporating directed associ-
ations, the Object Model at the design level reflects the principle, derived from the
Observer pattern (cf. Model-View-Controller mechanism) that "only view objects know
model objects, but not vice versa."

The key part of the model-view used in the example is the Observer design pattern
I Gamma95]. This pattern helps determine how to map the classes defined in analysis to
those in design. In the example here, only part of that pattern is shown with the assump-
tion that a certain superclass will handle the notification.

UbraryView

LibraryftemView

rwird:—o

Library
Represents 	OW 	

Account

c•PabletY0

Capability

chockabroehold)

FolderView
oP•n0
(•N•)
reiscda•CIO

DocumentView
oPen0
dispisy0
reisciN•90

Libraryltem

292 DESIGN WORK PRODUCTS

Figure 13-9. Example of a Design Object Model.

Associations representing conceptual links are dropped in the Object Model at the
design level. The analysis association between classes Capability and Securi ty repre-
sent a conceptual link as is shown in Figure 11-7. It is replaced in the design by an
association of operation scope. This can be documented in the definition part of the class
specification at the design level as a "Class Visibility Dependency" clause. At run time,
objects of Capabi 1 i ty can be passed to objects of Securi ty for security checking, through
a method parameter. There is an argument dependency from class Securi ty to class
Capabi 1 i ty. In other words, Capability is visible to Securi ty. The argument depend-
ency is captured in the OIDs (see Figure 13-12) and can be added to the Design Class
Description, it is not normally shown in the object model. The designers of the Library
application have decided to explicitly show in the object model the other two argument
dependencies: Li braryVi ew to Li brary I tem and Capability to Threshold. Account
and Securi ty also have views; however, they are not shown in this diagram because they
belong to another subsystem.

13.7 DESIGN SCENARIOS 293

References

• How to build a Design Object Model is documented in Object-Oriented Modeling and

Design[Rumbaugh9la] and in various papers by J. Rumbaugh.

• Object visibility and class adornments are well documented in Object-Oriented Anal-
ysis and Design with Applications by G. Booch [Booch94].

• A good classification of visibility relationships can be found in Object-Oriented Devel-
opment: The Fusion Method by D. Coleman, et al. [Coleman94].

• Design patterns are described in Design Patterns: Elements of Reusable Object-

Oriented Software by E. Gamma, et al. [Gamma95].

• Proper inheritance is discussed in C++ FAQs by M. Cline and G. Lomow [Cline95].

Importance
The Design Object Model is absolutely essential during design. It is a fundamental way to
document the static aspects of a system.

13.7 DESIGN SCENARIOS

Description
Analysis Scenarios define required systems behaviors at an abstract level; Design Scenarios
define systems behaviors at a concrete level. In particular, they refer to design rather than
analysis objects in describing their behavior, assumptions, and outcomes, and they include
information about how to trigger the scenarios. In all other respects they are like Analysis
Scenarios (see Section 11.4).

Design Scenarios can be used to define either systems behaviors or subsystems behav-
iors depending on whether they are used in the workbooks of systems or of subsystems.

A Design Scenario specifies a Design Object Interaction Diagram (OID) in the sense
that it states formally what a Design OID must do, and how the behavior of the Design
OID is triggered.

Purpose
Many projects require a complete set of functional specifications that define the externally-
visible behaviors of a system—the behaviors and not just the interfaces that trigger those
behaviors. Design Scenarios fill that role. If the Design Scenarios are part of a subsystem
workbook then they will, of course, provide a functional specification of that subsystem.

If OIDs are used as a vehicle for discussing design alternatives, documenting design
decisions, and validating Object Models, then the assumptions and outcomes of these OlDs
must be defined precisely. Design Scenarios define the assumptions and outcomes of
Design OlDs.

1 t

294 DESIGN WORK PRODUCTS

The approach to design advocated in this book is to transform the analysis models
taking design considerations into account in an incremental manner. One way to do that is
to take the Analysis OIDs, transform them incrementally and then transform their corre-
sponding Analysis Scenarios (in order to create Design Scenarios that capture the design-
level assumptions and outcomes of the new Design OIDs). An alternative is to take the
Analysis Scenarios, transform them incrementally, and only then transform their corre-
sponding Analysis OIDs, before performing internal design by continuing to transform the
new Design OIDs. The former approach focuses on the development of mechanisms to

drive design; the latter approach focuses on the development of interfaces to drive design.

Both approaches are valid. Both have a requirement for Design Scenarios.

Participants
Design Scenarios are written by designers. If the Design Scenarios are part of a subsystem
workbook then they will be written by the designers responsible for that subsystem.

Timing
Design Scenarios are written after the System Architecture and the Subsystem Model have
been defined.

If Design OIDs are the key vehicle for design, then Design Scenarios will be written
immediately after the Design OIDs as a way of capturing their assumptions and outcomes.
An alternative is to write the Design Scenarios first, modify (or construct) the Design OIDs
next, and then to proceed with design by continuing to transform the Design OIDs. A
Design Scenario is the external abstractions of a system behavior, whereas a Design OID
captures the internal details. The Design OID needs a Design Scenario to establish its
function, and starting and ending states, but Design OIDs often discover missing assump-
tions and outcomes that need to be added to the Design Scenarios.

In any case, the Design Scenarios, like all other design work products, will have to be
revisited whenever design issues force design rework.

Technique
Design OIDs are the key vehicle for performing design. If Design OIDs are written before
Design Scenarios, then when a Design OID is produced, its corresponding Design Scenario
is then created or updated. The new Design Scenario takes into account the previous
version of the Design Scenario (or the corresponding Analysis Scenario if no Design Sce-
nario previously existed), and the design issues that the Design OID was forced to address.
Writing the Design Scenario involves reflecting these design issues in the description of the
system behavior that the Design Scenario represents. This might, for example, involve
replacing an abstractly expressed outcome by one that specifies the result of the scenario
on newly-introduced design objects that the Design OID has just surfaced.

If Design Scenarios are written before Design OIDs, the change is that instead of
reflecting a design decision that has been made while the Design OID was written, the
design decision must be made now. Making that decision involves deciding how the

13.7 DESIGN SCENARIOS 295

Design Scenario's specification of system behavior has to change in order to accommodate
the design issue under consideration. This might, for example, involve introducing new
design objects to set up the scenario. This will involve (at least) adding or changing the
assumptions of the Design Scenario to refer to the new objects.

A Design Scenario states the way in which the system behavior specified by the Design
Scenario and depicted in the Design OID is to be triggered. A Design Scenario is usually
triggered by a method call or a user action. In the case of a user action, user interfacing
standards, styles, et cetera. obviously have to be taken into account. See Section 12.0,
User Interface Model Work Products for further details. In the case of a method call, the
first object shown in the OID is usually the one whose method is called to trigger the
behavior. Only this object's class and method declaration are described as the Design Sce-
nario trigger; not the object that invokes the method.

Strengths

Just as Analysis Scenarios are a very good way to formalize the functional requirements
imposed on a system, so do Design Scenarios provide a functional specification of the
system (or subsystem). The functional specification includes details that are omitted in the
more abstract functional requirements. Documenting behaviors in this way supports the
use of OIDs as a design vehicle. It enumerates all the variations that Design OIDs must
deal with and establishes the starting and ending states for each OID. Precise subsystem
functional specifications facilitate the parallel and independent development of subsystems.
The enumeration of Design Scenarios provides another concrete metric for use in project
estimation and tracking:

Weaknesses

Writing Design Scenarios is a lot of work. The temptation will exist to use only Design
OIDs as a vehicle for design. Worse, you may be tempted to skip both Design Scenarios
and Design OIDs due to the work involved. Without a formal language of design,
however, it is difficult to control the process of building or maintaining large systems or
components.

Notation

Similar to Analysis Scenarios (see Section 11.4) except that the scenario trigger must addi-
tionally be described. The following template may be used:

Table 13-4 (Page 1 of 2). Example of a Design Scenario Notation Template.

Scenario name
Trigger
Assumptions

Outcomes

296 DESIGN WORK PRODUCTS
	

13.7 DESIGN SCENARIOS 297

Table 13 -4 (Page 2 of 2). Example of a Design Scenario Notation Template.

Notes

The trigger is either a method declaration or a description or a user action. User actions
can be described by free-format text, perhaps including a reference to a User Interface
Model work product.

Traceability
This work product has the following traceability:

Impacted by:
	 Impacts:

• Nonfunctional Requirements (p. 106)
	 • Design OIDs (p. 298)

• Issues (p. 176)
	 • Design State Models (p. 306)

• Analysis Scenarios (p. 203)
	 • Glossary (p. 355)

• Design Guidelines (p. 253)
• System Architecture (p. 257)

Advice and Guidance
Design Scenarios differ from Analysis Scenarios in that their assumptions and outcomes
are specified in terms of starting and ending states of design objects versus analysis
objects, that is, objects and states from the Design Object Model (DOM) vs. the Analysis
Object Model (AOM). Often however, scenarios can be carried over from analysis to
design when the referenced objects and states are carried over from AOM to DOM. In this
case, Design OIDs can be started from Analysis Scenarios and OIDs. If and when new
assumptions or outcomes are discovered during Design OID development, the Design Sce-
narios can be explicitly documented.

So, although Design Scenarios can be documented before starting on Design OIDs,
developers often find it more efficient to discover and record them while developing the
Design OIDs.

Care should be taken to distinguish between discoveries affecting simply the design
versus those that truly affect the analysis work products. For example, if it is "discovered"
that there is a "requirement" that the system must interface with some external software
system, it should be questioned to determine whether it is a functional or a nonfunctional
requirement.

• If it is determined that the requirement was functional and contractual, for instance
"send the transaction and its completion status to the XYZ Audit System," then that
should be recognized as an Actor affected by the system and be recorded in the Use
Case Model, Analysis Scenarios, Analysis Object Model, State Models, and Class
Descriptions.

• If, however, it is determined that the "requirement" was nonfunctional, for instance
"use the internal transaction journalizer from the previous system," then that should be
recognized as a design decision and result in Design Scenarios whose collaborations or
outcomes reflect that design.

In the latter case, the analysis work products are not affected, because the function of the
system, the nature of the problem, was not affected.

Verification

• Check that the Design Scenarios cover all anticipated changes to requirements. This
might mean reworking the Analysis Scenarios but it is most easily checked by refer-
ence to the Design Scenarios.

• Check that all assumptions and outcomes refer to design objects, their states, and their
attributes, and not to the analysis model.

• Check the completeness of Design Scenarios by checking how the opposite assump-
tions are dealt with (play "what if' games).

• Whenever an object state is mentioned in a Design Scenario assumption, check
whether the other possible states of the object are adequately addressed by Design Sce-
narios.

Example(s)
This example refers to the image processing subsystem shown in Figure 13-7. One of the
scenarios discovered at design time for this subsystem is that of Invoke basic image proc-
essing function. This Scenario is purely internal to the image processing architecture. In
particular it is architecture-specific. The public interfaces to image processing applications
do not know about the basic image processing functions. For both these reasons, the sce-
nario cannot appear in the list of Analysis Scenarios: It is a subsystem scenario identified
at design time as a result of projecting a system scenario onto the Image processing sub-
system. Note that this scenario is used by all system scenarios that require usage of the
built-in image processing functions.

Table 13 -5 (Page 1 of 2). Example of a Design Scenario.

Scenario name
	

Invoke basic image processing function
Trigger
	

The scenario is triggered by a request to invoke a particular basic image
processing function on the local node.

ISequence<IfResult> Image::perform(
IfParms legacyfunctionParameters)

Assumptions 	 • The specified image processing function is implemented locally.
• The images on which the function is to operate arc currently stored

in the image database, but not necessarily all locally.

298 DESIGN WORK PRODUCTS 13.8 DESIGN OBJECT INTERACTION DIAGRAMS 299

Table 13 -S (Page 2 of 2). Example of a Design Scenario.

Outcomes
	 • The image processing function is invoked.

• The result images (if any) are stored in the image database.

• The return values (if any) are returned to the caller. These may

include references to the ids of any result images.

Notes
	

The images specified as parameters to the function must be retrieved

from the image database.

References

• [Jacobson92] has extensive discussion on Use Cases.

• [Spivey88] defines behavior in terms of assumptions and outcomes.

Importance
Design Scenarios are essential for creating Design Object Interaction Diagrams. Some-
times, Design Scenarios are created during Design OID construction as new assumptions
and outcomes are discovered relating to design artifacts while working from Analysis OIDs
or Scenarios. If you don't create Design Scenarios explicitly, you will have to create them
before completing Design OIDs.

13.8 DESIGN OBJECT INTERACTION DIAGRAMS

Description
A Design Object Interaction Diagram (OLD), used for dynamic modeling in the object-
oriented design, is a graphical representation of object collaborations in a Design Scenario
either derived from analysis or for design only, in terms of design objects and their inter-
actions.

It is the result of transforming the corresponding Analysis Object Interaction Diagram,
if one exists. The driving force behind the transformation is the System Architecture.

One major difference between a Design OID and its analysis equivalent (see Section
11.5) is its emphasis on those design classes intended for implementation. Some of these
are directly derived from problem domain classes found in analysis, and others are invented
or reused in design to provide control, interface, communication, distribution, and storage
function.

The analysis-to-design transformation, of which writing Design OIDs is a vital part, is
architecture-driven. For example, if a system has a client/server architecture, some analysis
objects will be mapped into the design ones on the client side, some on the server side, and
some mapped on both sides.

Purpose
The flexibility and the extensibility of a system depend on an adequate allocation of identi-
fied behaviors in terms of coupling and cohesion. A good allocation of behaviors lever-
ages the reusability and interchangeability of objects. The strength of Design OIDs are
their intuitive expressiveness for representing the end-to-end dynamic control and informa-
tion flows among objects, under one specific System Architecture.

Modeling with Design OIDs is an effective driver of the development process. It is the
main vehicle for allocating responsibilities to objects, discovering problems, holding design
discussions, and considering design alternatives.

The dynamics of a System Architecture can be expressed well using Design OIDs.
Knowledge of how objects interact is vital to the definition of an Architecture.

Dynamic modeling with Design OIDs is one of the most important steps. It directly
impacts most implementation work products. Any design Issue should be resolved at the
Design OID level.

Design OIDs are a means to:

• Decide and graphically depict the design objects' behaviors and responsibilities.
• Discover, present, and understand the function to be accomplished by each object.
• Visualize the distribution of system responsibilities among objects.
• Realize the conversion of classes of the Analysis Object Model into those of the

Design Object Model.
• Identify, apply, and present patterns for structuring the design.

The following consequences could result from failing to conducting the Design OLD mod-
eling:

• Inconsistent use of design principles, design mechanisms, and the reuse of design pat-
terns.

• Failure to discover opportunities for component and framework reuse.
• Inadequate identification of trade-offs between reusability, modifiability, and effi-

ciency.
• Failure to preform commonality and variability analysis across subsystems.
• Incomplete refactoring the design for better resilience to change.
• Incomplete and erroneous specification of classes to be implemented.
• Potential miscommunication and misunderstanding among development team members.

Participants

Developing Design OlDs is the task of system architects, designers, and developers, led by
a system architect. It is very important to have key programmers participate in this step,
since they understand well the system constraints, environment, and language limitations.
These factors must be reflected in the Design OlDs.

13.8 DESIGN OBJECT INTERACTION DIAGRAMS 301 300 DESIGN WORK PRODUCTS

Timing
Design OIDs should be developed as soon as a primitive Design Object Model exists, and
the system boundary and Architecture is defined in the design phase. The Design OIDs
might be used as a vehicle to drive the development of the system structure. Both the
Analysis Object Model and Analysis OIDs provide the basis for those at the design level.
When a primitive Design Object Model is ready, it is time to develop the Design OIDs for
the system objects. In the Design OID modeling process, more design objects are usually
created.

In an iterative and incremental process, design modeling, especially Design OID mod-
eling, should be carried out in each development cycle. Even in the implementation,
Design OIDs are often referenced or modified for new design or architecture ideas.

Technique
The Design OIDs are developed by transforming those at the analysis level while consid-
ering the underlying Architecture, frameworks, design patterns, and system constraints.
Usually, the contents of Design OIDs are more detailed, since they serve as part of the
specification for subsequent coding. When an Architecture is in place, Design OIDs are
used to assign responsibilities to design classes. For example, if the Model-View-
Controller architecture is used, an analysis class is transformed into two design classes, a
view class and a model class. The former captures the knowledge of end-user interface,
and the latter possesses the business logic. When a persistent layer is used for a multilayer
architecture, an analysis class can be transformed into another two design classes: a per-
sistent class and a model class. The former is used only for handling the database inter-
face. Developing a Design OID involves the following:

• Start with Use Cases, Analysis and Design Scenarios, and Analysis OIDs. Identify
their corresponding Design OIDs and related design classes.

• Find the object responsibilities identified in the Analysis Object Model. Its corre-
sponding design object may take over some of the responsibilities with additional ones
from the System Architecture.

• Analyze the interactions of design objects. Examine the responsibilities for dependen-
cies. For example, if an object is responsible for a specific action, but does not
possess all the knowledge needed to accomplish that action, it must collaborate with
objects defined in other classes that do possess the knowledge. Any two objects that
have direct collaboration should have a directional association or a visibility depend-
ency between their corresponding classes defined in the Design Object Model.

• Identify collaborations by asking the following question for each responsibility of
every class: Are the class's objects capable of fulfilling this responsibility itself? If
not, what does it need? From which other class can it acquire what it needs? Each
responsibility that you decided to share between classes also represents a collaboration

between their objects. Check what other objects need the result or information, and
make sure that each object that needs the result collaborates with the one getting it.

• Make sure the parameters are well defined for messages including method return
values, so that data flow and storage is explicitly documented.

• Add threading and control information, defined in the notation subsection, into your
Design OID to show when, where, and how an object behavior is performed or waits
for a response.

Strengths
Strengths of Design OIDs are their intuitiveness and expressiveness for representing
dynamic interactions between objects, and System Architecture. It is a powerful and effec-
tive tool to enable developers discussing design Issues in depth before and during imple-
mentation.

Weaknesses

Limitations of Design OIDs are similar to those at the analysis level. A Design OID can
only specify the execution of a system for one Scenario. A system can consist of hundreds
of Scenarios under different assumptions. The amount of work required to create OIDs for
each Design Scenario is daunting. Even if all Design OIDs are written, their number tends
to defeat their objective of providing a clear understanding of system dynamics. The sol-
ution to this problem is to focus on Design OIDs that are effective in the sense that they
impact either the System Architecture or system key function. Avoid those Design OIDs
which do not contribute to the system understanding or design.

Notation
Design OID notation is mostly the same as the analysis counterpart (See Notation in
Section 11.5, "Analysis Object Interaction Diagrams" on page 208).

The additional notation in Design OIDs is architectural, and includes:

• Focus-of-control
• Multitasking
• Process and subsystem boundary.

A focus-of-control shows whether an object is active. It is either in the state of execution,
or in the blocking state waiting for a returning message. It is represented by a long rec-
tangle box on the concerned object line time. In a complex system, process and subsystem
boundaries as well as multithreading execution can be explicitly represented in the Design
OIDs. The Design OID can demonstrate which process and which subsystem an object is
in, how many threads the object has at one time point, and what activity one thread is
engaged in. One notation format is shown in Figure 13-10.

Process/Subsystem
View Boundary 	 Business Logic

Objectl:legt2;
	

°Noma:
anal 	Class2
	

Ciess3
0146014:
Clese4

Server

Object5:
Class5

message .' 0

Condition]

ret

magmata°

[condition] mamma°

ramdition) message30

meesege4(peremeters

(Actixity.

return()

retu parameters)

14 (Aotivftyl) : description of doing something by object% when the Messege8 wives.

302 DESIGN WORK PRODUCTS 	
13.8 DESIGN OBJECT INTERACTION DIAGRAMS 303

Traceability
This work product has the following traceability:

Impacted by: 	 Impacts:
• Nonfunctional Requirements (p. 106) 	 • Design Object Model (p. 281)
• Issues (p. 176)
	

• Design State Models (p. 306)
• Analysis OlDs (p. 208)

	
• Design Class Description (p. 311)

• Screen Flows (p. 237)
• Screen Layouts (p. 242)
• Design Guidelines (p. 253)
• System Architecture (p. 257)
• Design Object Model (p. 281)
• Design Scenarios (p. 293)
• Design State Models (p. 306)

Advice and Guidance

• Consistency should be maintained between the Design Object Model and Design OIDs.
If object A sends a message to object B in a Design OID, either A's class has an
association (including aggregation) directed to B's class, or there is an argument or
typing dependency from A's class to B's class. The latter happens when B is passed to
A through method parameters. Both cases should be reflected in the object model.
Also, class attributeS and operations referenced in the Design OIDs should appear in
the Design Object Model.

• Due to the fact that a system may involve hundreds of Scenarios, it is suggested that
only the major Scenarios are documents and developed into Design OIDs. Frequently,
exceptional conditions are documented as notes at the bottom of each Design OID.

• The System Architecture impacts Design OIDs and should be expressed explicitly.

• Distribute responsibilities evenly among design objects.

• Avoid overly passive objects and overly active objects. The design may fall back to
structured System Architectures.

• Determine the frequency of interobject message exchanges to identify any possible
system bottleneck, to find ways to improve system performance.

• Check that every message arrow is named and has specified the required parameters.

• Check that the Scenario assumption/start-state is used/needed and that the expected
outcome occurs.

• The integration test cases should be the direct result from the Design OID, while the
system test cases should closely follow the Design Scenarios.

Figure 13-10. Format of a Design Object Interaction Diagram.

304 DESIGN WORK PRODUCTS
	 13.8 DESIGN OBJECT INTERACTION DIAGRAMS 305

Verification

See the checklist for Analysis 01Ds, Section 11.5, which is also appropriate here.

• Check that all navigations from object to object implied by a Design OID are in prac-
tice made possible by the appropriate attributes, parameters, and operations.

• Check that the frequency of interprocess communications is acceptable.

• Check the adequacy of all message parameter lists.

• Check whether the System Architecture is represented in Design OlDs.

Example(s)
We use the same example presented in the Analysis Object Interaction Diagram section,
and the Design Scenario is derived from the one used in the corresponding Analysis OID
(Section 11.5).

This example is about a library system in which users can access its library items. A
user has an account associated with each library that has a unique level security capability.
Each library item's security object will check whether the user is permitted to access the
current library item.

• Design Scenario: A user wants to access a library item.

• Trigger: The scenario is triggered by the current user who clicks the mouse on the view icon of the

library item to be accessed.

• Assumption: The user has already logged into the library system and his or her identity is established

within the library.

• Outcome: A library item is permitted to be viewed if the user passes the security checking for this

library item.

• Description: When a library item gets a request from a user for access, it first finds the account infor-

mation from the library and passes the user's information to its own security object to check whether the

user is permitted access. If the user has the proper authorization, the item will display its own content.

Otherwise, request is rejected.

Figure 13-11. Example of a Design Object Interaction Scenario.

The Design OID example for this Scenario (Figure 13-12) shows a 2-tier System
Architecture that separates the view classes from business-logic or model classes, so that
view classes take care of presentation only. The messages are passed one way from view
classes to the business-logic classes. In other words, the dependency is unidirectional, as is
also shown in its corresponding Design Object model.

WOW

Userl:
	

LibraryltornViow1: • Litwarytteml:
User
	

LibraryllomVlow 	Lthratyftem

OPerIO

return(Capability1)

Figure 13-12. Example of a Design Object Interaction Diagram.

Comparing this Design OID (Figure 13-12) with the Analysis OID in Figure 11-11,
one can find that this one is specified with much more design detail and extra design deci-
sions. These design decisions reflect the Model-View-Controller architecture with sepa-
rated concerns. In this architecture, the view objects are responsible for presenting the
graphics and passing information from users to the model objects. The model objects are
those possessing the business logic. One part of the business logic presented here is how
to verify a user's security for the tasks she or he is allowed to perform.

References
Jacobson et al [Jacobson92] were the first group employing Use Cases and Object Inter-
action Diagrams (OID) in object-oriented dynamic modeling. Rumbaugh's OMT
[Rumbaugh95b] and Booch's method [Booch94] have very similar work products. For
example, OMT has OID-like constructs, called "Event Trace Diagrams" that are used for
analysis. We define both Analysis OID and Design OIDs to be a far more expressive work
product, by separating the notation for problem abstraction (Analysis OID) from the one

Business Logic

Ubrary1: Libroryltinnt's Socurity1 	Capobility1: 	Acct1:
Litcary Security 	 Capabity Account

roturn(answor)

[answer TI Displog)

1411 g
[snow 	1,14.ctispAog()

return°

	0-C•PabirrtYCho*Q.
GotAacto

rotum(Ao4

Cepabilitv()

Verity(C.spability1)

rotum(Brower

Cliock(Throeholdt .

 roturn(anowor)

306 DESIGN WORK PRODUCTS
	

13.9 DESIGN STATE MODELS 307

for solution representation (Design OID), and adding concepts such as conditions, loops,
message synchronization, and process boundaries. We also notice that the Unified Mod-
eling Language [Booch96] begins to address issues related to conditions, processes, and
message synchronization.

Importance
Dynamic modeling with Design OIDs is essential to specify the system object behaviors
and it should be one of the major activities of the design phase. It is the key step to
identify and specify methods for each class.

For one Scenario, several alternative Design OIDs may be produced. Each of these
represents a different design solution. Modeling with Design OIDs forces solutions to be
complete and brings to the surface Issues that must be resolved during system design. It is
difficult to do object-oriented design without this form of system dynamics.

13.9 DESIGN STATE MODELS

Description
A Design State Model is a representation of the dynamic object behaviors for design
classes. The Design State Model can use the same notation as one in the Analysis State
Model (see Section 11.6), even if their contexts are different.

It should be emphasized that only a few key classes with strong state-dependent object
behaviors need to be described by the State Model. 'Dynamic modeling with Design
Object Interaction Diagrams (OIDs) is sufficient to express most object interaction and
behavior.

For classes with complex states, design state modeling is the place to identify whether
the State design pattern [Gamma95] can be used.

Purpose
A State Model can show the specification of object behaviors related to each class based
on State Diagrams, Tables, or Matrixes. It is easy to understand the life cycle for one
object through this mechanism. A State Model provides a convenient, visual means of
understanding the life cycle of an object.

Design OIDs often provide clues for building a Design State Model. When a message
is sent from one object to another, two things happen. First, the message-sending object
will take an action in its particular state to accomplish this message sending. Second, an
event is formed and arrives at the message-receiving object. This prompts the receiving
object to perform some action and potentially change its state.

Participants
At the design level, State Models should be defined by system architects and designers. It
is very important to have some key programmers participate this activity, to ensure that the
design can be efficiently implemented. Architects should help verify whether the specifica-
tion meets the requirements described in the State Models at the analysis level.

Timing
Design State Modeling is usually performed iteratively together with the development of a
Design Object Model and Design OIDs.

Technique
During design and implementation phases, it may be necessary to develop State Models for
certain classes whose dynamic behavior needs to be better understood. The difference
between building a State Model for analysis vs. for design is that the design model can be
impacted by System Architecture, frameworks, environment, and system constraints. The
key objective here is to specify how to accomplish the responsibilities assigned to the
object.

Strengths
The strength of State Models is their capability to describe the life cycles and state-
dependent behavior of design objects clearly and efficiently. It is also a centralized place
to model the behavior for one object.

Weaknesses
State models can be very trivial for some classes, and it is tedious to develop a state
diagram for every class. A State Model describes a single class but not interactions
between classes and their states. Thus State Models should be built selectively.

Notation
A State Model at the design level uses the same notation as an Analysis State Model
(Section 11.6).

Traceability
This work product has the following traceability:

308 DESIGN WORK PRODUCTS 13.9 DESIGN STATE MODELS 309

Impacted by:
	

Impacts:
• Nonfunctional Requirements (p. 106)

	
• Design OIDs (p. 298)

• Issues (p. 176)
	

• Design Class Description (p. 311)
• Analysis State Models (p. 219) 	 • Glossary (p. 355)
• Screen Flows (p. 237)
• Screen Layouts (p. 242)
• Design Guidelines (p. 253)
• System Architecture (p. 257)
• Design Object Model (p. 281)
• Design Scenarios (p. 293)
• Design OIDs (p. 298)

Advice and Guidance

It is wise to present the State Models in such detail that the tough design decisions can be
easily discussed. Often, developers hesitate to make design decisions until the coding
phase. This is a hidden danger to a project, since if a wrong decision is made by a partic-
ular programmer without being fully discussed at the design level, the system might not be
built in its best form.

• Classes whose state dependencies have been explored in an Analysis State Model do
not necessarily need to have their dynamics explored further in a Design State Model.
Design State Models may be written either for newly introduced design classes or for
already identified analysis classes as considered appropriate. The criterion is whether
the writing of a Design State Model would add significantly to system understanding.

• Once a Design State Model is stable, ensure that it is consistent with the other design
work products, in particular, the Design OIDs, the Design Object Model, and the
Design Class Descriptions. How this will be done will be dependent on the way it is
decided to implement the state-dependent behavior of the target class. In general,
there are two ways: directly or by using the State design pattern (see [Gamma95)).

• If a Design State Model is to be implemented using the State design pattern, the fol-
lowing must be done:

— Classes representing each of the states must be identified and defined. Each of
these state classes will implement the services and data relevant to their substate;
all services inapplicable to the state are also provided, but their implementation
suggests that an exceptional situation has arisen. Default exceptional implementa-
tions can be inherited from a common state superclass. The common state super-
class can also define any non-state-changing services that are common to all
states.

— All the services of all the states are part of the interface of the target class, and
these are delegated to the current state. The target class has an attribute that
maintains the current state.

— State-changing logic is provided either by the target class or by the state classes,
as considered appropriate. Do not create new state objects on each state change;
reuse existing state objects where possible, both for efficiency and to implement
state-specific data that must persist from state to state. If no state-specific data are
required, then state objects may be instantiated using the Singleton design pattern.

Implementations with state patterns expand the number of classes implemented
slightly, but they separate concerns of different states and avoid repetitive code that
tests state variables. A key advantage of the state pattern is that adding a new state or
changing the details of an existing state, becomes a local and simple change.

• If a Design State Model is to be implemented directly, then all services and state vari-
ables are implemented directly by the target class. Each service must, if it is state-
dependent, test the state variables and act accordingly. State transitions that are ruled
out by the Design State Model are excluded by service preconditions, which must be
identified and implemented for each service.

Verification

See the checklist for Analysis State Models, Section "Verification" on page 222, which is
also appropriate here.

• Check for black holes: A group of states which, once entered, cannot be exited (as a
group). Note that not all black holes suggest modeling errors.

• Check the state transition table. Even if the table is not explicitly produced, check
each possible combination of states for a possible transition.

• Check for the absence of race conditions.

• Check semantics of absent transitions. An absent transition denotes a behavior that
should not happen. Check that this prohibition is enforced. Absent transitions corre-
spond to method preconditions; they should be documented as such.

• Check that each State Model contains initial and final states.

• Check that every noninitial state has at least one incoming transition.

• Check that every nonfinal state has at least one outgoing transition.

• Check that every transition is labeled with the event that triggers it.

• Check the events of all outgoing transitions from each node for completeness: Is
another event possible in these circumstances?

• Check that every state is named.

• Check that the State Model identifies the class to which it refers.

• Check the consistency between Design OIDs and their related objects' State Models.
If there is a message received by an object in a Design OID, the message should be

310 DESIGN WORK PRODUCTS

interpreted as an event occurring in that object's State Model. The object should expe-
rience a state change.

Example(s)

The TCP connection can be modeled using Design State Model. A TCP connection has
three states, closed, listen, and established. With different events coming to different
states, the connection reacts differently. The state diagram for a TCP connection is shown
in Figure 13-13.

	

closed 	
close

passiveOpen 	
close

activeOpen
	 listen

send

disconnected
established

transmit

Figure 13-13. Example of Design State Model.

References

Sally Shlaer and Steve Mellor [Shlaer92) discuss using state modeling techniques for
system analysis and design. Other references for this section are the same as those in the
Analysis State Model (see Section 11.6).

13.10 DESIGN CLASS DESCRIPTIONS 	311

Importance
Design State Models are optional but extremely useful for understanding the life cycle of
objects with much state-dependent behavior.

13.10 DESIGN CLASS DESCRIPTIONS

Description
Design Class Descriptions are containers of all the information known about a class at the
design level. Comments written about Analysis Class Descriptions in Section 11.7 are
valid here too, and will not be repeated. Two points should be noted, however, when
comparing analysis and Design Class Descriptions.

• They are different work products, although the Design Class Description will refer to
its analysis counterpart if one exists. This is because the definition of the design class
may be slightly different from that of the analysis class. For example, an analysis
class may have been split into several design classes, perhaps to separate the model
and view aspects of the class.

• The main audience for Design Class Descriptions is an implementation team. This
must be borne in mind when planning the Design Class Description format.

Design Class Descriptions are likely to be generated automatically by the toolset respon-
sible for maintaining the object model, the state models, et cetera.

Purpose
Design Class Descriptions are needed for the same reasons as Analysis Class Descriptions
(See Section 11.7) and also serve the vital purpose of providing the starting point for class
implementation work.

Participants
The designer who owns a class has the responsibility to maintain its Design Class
Description.

Timing
Design Class Descriptions are opened as soon as the need for that design class is identified.
The Class Description then serves as a repository for class oriented summary information
as the design modeling activity proceeds.

144

312 DESIGN WORK PRODUCTS

Technique
As soon as the need for a particular class has been identified in a modeling session, a class
description is opened for the class. It is a reasonable assumption that most of the analysis
classes will become design classes, so an initial design activity might be the creation of
Design Class Descriptions from Analysis Class Descriptions. The updating of class
descriptions should be one of the activities performed after each design modeling session.
Class Descriptions, Glossary entries (see Section 16.1), and the Design Object Model
should be integrated, with a tool taking care of consistency and eliminating redundancy.

Use the Design Class Descriptions as a place to document any class or method design
decisions that cannot be expressed more succinctly using one of the other design work
products. Class invariants fall into this category, as do informal implementation notes on
class design.

Strengths
Design Class Descriptions are vital starting points for the implementation of the classes.
They organize all known information about each class and often record information that
fits nowhere else.

Weaknesses
There is a danger that Class Descriptions may overlap in a redundant manner with other
work products such as the Object Model and State Models. Redundancy may lead to
inconsistency and a waste of resources. The solution is to ensure that the Class
Descriptions are integrated into the chosen toolset so that information need to be entered
and maintained only once. This should be considered to be an important criterion for tool
selection.

Notation
Design Class Descriptions drive low-level design activity in the subsequent implementation
phase. The format of the descriptions must, therefore, be appropriate to support that
activity. Design Class Descriptions are necessarily sensitive to the target programming
language. The class description template should, therefore, be tailored to that language.
The following template is specific to C++; a Smalltalk template would differ only slightly.

A suitable Design Class Description template might be the following. There is no need
for a "Name" slot in the template as each class description is expected to be an individual
work product in its own right. All work products inherit the common work product attri-
butes (defined in Section 8.1), including an identifying name.

Table 13-6 (Page 1 of 2). Example of a Design Class Description Template.

Description
States

13.10 DESIGN CLASS DESCRIPTIONS 313

Table 13 -6 (Page 2 of 2). Example of a Design Class Description Template.

Relationships
2. 	

Public members 	 I. 	
2. 	

Protected members 	 I. 	
2. 	

Private members 	 I. 	
2. 	

Notes
2. 	

Class invariants, if they are used, can be documented in an additional "Invariant" slot in
the template.

At the design level it is assumed that defined operations will specify concrete types for
parameters and results. Depending on the development method, the division of the design,
the implementation phases, et cetera, it may be considered useful or necessary to provide
pseudo-code for each operation. "Notes" can also include any free-format notes, hints, or
implementation instructions.

Depending on tool support, the Design Class Descriptions should either include all
design information relevant to a particular class, or the detailed information should be
easily accessible from the class descriptions.

Traceability

This work product has the following traceability:

Impacted by: 	 Impacts:
• Issues (p. 176) 	 • Source Code (p. 334)
• Analysis Class Descriptions (p. 227)
• Design Guidelines (p. 253)
• System Architecture (p. 257)
• Design Object Model (p. 281)
• Design OlDs (p. 298)
• Design State Models (p. 306)

Advice and Guidance

• Use Design Class Descriptions as a place to hold method specifications or pseudo-code
if appropriate.

• The degree of detail to be entered in Design Class Descriptions is dependent on the
development process used. In general, however, the Design Class Descriptions should
define the various interfaces of the classes, and provide enough information to allow

314 DESIGN WORK PRODUCTS 	 13.10 DESIGN CLASS DESCRIPTIONS 315

the class to be coded autonomously. Design Class Descriptions should be uniform in
their level of detail.

• If provided automatically by tool support, do not copy information, for example associ-
ations, from other design work products into the Design Class Descriptions.

• A class should be defined independently of its subclasses. The subclass relationships
are, however, included in the Design, Class Descriptions in order to complete the
picture of the class. Once again, good tool support is assumed in order to ensure that
this transfer of information from the Design Object Model to the Design Class
Descriptions is automatic.

• Tool support should include the visualization of inheritance class structures.

Verification

See the checklist for Analysis Class Descriptions, Section 11.7, which is also appropriate
here.

• Check that each Design Class Description is an adequate basis for coding the class.
• Check that each Class Description is consistent with the agreed coding guidelines.
• Check that all methods are defined in adequate detail.
• Check that all attributes, parameters, and returns have types.
• Check that all key attributes and relations have been identified in the class

descriptions.
• Check that all n-way associations have been (or will be) implemented by a collection

class of the appropriate type.

Example(s)

The following example is for a system that was developed in C++.

Table 13-7 (Page 1 of 3). Example Showing Design Class Descriptions.

Name
BankAccount

Description
An agreement between a bank and a customer that enables the customer to deposit funds in the bank
and, within certain limits, to withdraw funds.

States
• Active
• Withdrawn (substate of Active)
• InCredit (substate of Active)
• Suspended
• Open
• Closed (no account is ever destroyed)

Relationships
• Subclasses: CheckingAccount. SavingAccount
• Association: ownedBy(Customer)

Public members

Table 13 -7 (Page 2 of 3). Example Showing Design Class Descriptions.

Several other public member functions, like constructors. destructor. uninteresting accessor functions, and
others have been omitted here.

• virtual bool isCreditWorthy(Amount creditAmount) const

Check if this account can be granted a credit of the amount specified. Returns true if the account is
creditworthy.

• virtual TransactionResult modifyOverdraftLimit(Amount overDraftAmount)
Modify the limit by which this account can be overdrawn. If the amount specified is positive, the limit
is increased. If the amount specified is negative, the limit is decreased. The new limit cannot become

negative, it will be zero in this case. Returns OK, if the overdraft limit was modified successfully,
otherwise a TransactionResult that indicates the reason for failure.

• virtual TransactionResult replaceCustomerDetails(CustomerDetails* customerDetails)
Replace the details that are kept for the customer owning this account with the details specified. Returns

OK, if the customer details were replaced successfully, otherwise a TransactionResult that indicates the
reason for failure. The customer details are passed as pointer to also allow objects of concrete sub-
classes to be passed in without object slicing. Account is adopting the new customerDetails object and
will delete it on its own destruction or if it is replaced again.

• virtual const CustomerDetails& queryCustomerDetails() const
Return the details that are kept for the customer owning this account. • The customer details are returned
by reference to also allow objects of concrete subclasses to be returned without object slicing.

• virtual TransactionResult
addGuarantee(BankAccount& guarantor, Amount guaranteedAmount)
Add to this account the guarantee provided by the specified account. This additional guarantor will
provide a guarantee up to the amount specified. Returns OK, if the guarantee was added successfully,

otherwise a TransactionResult indicates the reason for failure.

• virtual TransactionResult removeGuarantee(BankAccount& guarantor)
Remove the guarantee provided for this account by the account specified. Returns OK, if the guarantee
was removed successfully, otherwise a TransactionResult indicates the reason for failure.

• virtual TransactionResult addSignatory(const Customer& additionalSignatory)
Add to this account the customer specified as additional person with the rights to sign. Returns OK, if

the signatory was added successfully, otherwise a TransactionResult indicates the reason for failure.

• virtual TransactionResult removeSignatory(const Customer& additionalSignatory)

Remove the authorization to sign for this account for signatory specified. Returns OK, if the guarantee
was removed successfully, otherwise a TransactionResult indicates the reason for failure.

• virtual TransactionResult close() = 0;
Close this account. Returns OK, if the account was closed successfully, otherwise a TransactionResult
indicates the reason for failure. This is an abstract member function that needs to be overridden by the
derived concrete classes, because closing an account must involve different actions depending on the
concrete account type (checking, saving, et cetera).

• virtual State state() const;
Return the state of the account.

Protected members

316 DESIGN WORK PRODUCTS 13.11 REJECTED DESIGN ALTERNATIVES 317

Table 13-7 (Page 3 of 3). Example Showing Design Class Descriptions.

Most other set/get accessor functions for private attributes have been omitted here ...

• virtual void state(State newState)

Set the state of the account.

Private members
• AccountCode accountCodc

• Name name

• Address address

• Date creationDate

• AccountBalance currentBalance

• CreditArrangement overdraftFacilities

Notes
• BankAccount is an abstract base class.

References
See [Wirfs-Brock90], [Rumbaugh91 a], and [Booch94] for examples of Class Description
formats.

Importance
Design Class Descriptions are essential as a starting point for class implementations.

13.11 REJECTED DESIGN ALTERNATIVES

Description
Rejected Design Alternatives are those design decisions that were considered but, for one
reason or another, were rejected. The mainstream design work products document the
decisions that were taken; this work product documents those that were not taken.

Purpose
Documenting the Rejected Design Alternatives is very important, because without them a
design is disconnected from its history and from the effort that was required to construct
the design. The practical implication of not documenting rejected alternatives is that this
information will be lost, either because the members of the design team have changed, or
because the details of the issues have simply been forgotten. This matters because design
decisions need to be reviewed from time to time. Perhaps the pattern of communication
between objects, as shown in Object Interaction Diagrams (OIDs) for example, has become
unbalanced, and a design review has suggested that alternatives be considered. Perhaps the
project requirements have changed, a not uncommon occurrence, and design trade-offs
have to be evaluated anew. Sometimes the need to review a design decision arises
informally: A designer wants to be convinced that a decision is correct. In all these cases,
if the history of a design decision has been lost, the various alternatives must be rediscov-
ered and reevaluated. This duplication of effort is, of course, an undesirable overhead.

The effort required to consider design alternatives seriously affects the success of an
iterative and incremental development process. If considering alternatives, and hence
switching to alternatives, is too expensive then design decisions will tend to carry them-
selves along by their own momentum: "We don't know why a decision was made but it
would be too time-consuming to find out." This is not intended to imply that actually
making a design switch is trivial or cheap, but that without access to the history of a
design decision the switch frequently won't even be considered.

Documenting design alternatives also improves communications between members of
design teams. Questions of why something is the way it is can often be answered by a
referral to the documented alternatives.

This problem of documenting design decisions can be tackled in one of two ways: one
positive and one negative. The positive approach is to capture each design decision that is
made and to document it together with its alternatives and their trade-offs. Desirable
though this approach is in theory, it is, in practice, very difficult, because design decisions
are being made continuously during the design process. What should be documented?
How many design decisions does a single OID embody? Many: Design is a matter of
continual decision-making, sometimes major, frequently minor.

The negative approach is to capture design alternatives that were rejected for some
reason: to state them and to explain why they were rejected. In practice this turns out to
he more feasible than a positive documentation approach. The process of design generally
flows forward, but occasionally there are problems. Progress halts when alternatives are
considered, weighed, and a decision made, perhaps after constructing some prototypes to
evaluate the alternatives. This is the time to document what has happened: The facts are
recorded as a set of Rejected Design Alternatives. By recording only negative decisions,
there is an automatic filtering of the mass of minor decisions that were "obvious" and that
would simply clutter the workbook and reduce progress if they were documented. The
minor decisions are not recorded because they did not result in any serious consideration of
alternatives. If positive decisions are recorded, it is in practice difficult to perform this
filtering.

The reason why remembering the history of design decisions is more important than
remembering that of analysis decisions is that analysis decisions are usually made in order
to capture domain knowledge, or for reasons of modeling "goodness." When performing
analysis, we deliberately ignore factors of efficiency, System Architecture, the Target Envi-
ronment, et cetera. Analysis decisions are, therefore, much less exposed than design deci-
sions to reconsideration. The exception is the case of a requirements change or a change
in domain understanding, but in these cases the reworking of the analysis will reflect the
new requirements, and alternative ways of modeling the old requirements will be of sec-
ondary importance. This is not to say that recording rejected analysis decisions is not
sometimes useful, but it is not as vital as it is for design.

13.11 REJECTED DESIGN ALTERNATIVES 319 318 DESIGN WORK PRODUCTS

Participants
The team leaders, designers and architects who own the design work products are respon-
sible for recording and documenting the alternatives that were considered and that were
ultimately rejected.

Timing
Rejected Design Alternatives are documented as the design proceeds, as soon as practically
possible after the design decision has been made. Design details are often highly complex
and the facts will be forgotten if designers are told to document rejected alternatives only
after the design has been completed.

Technique
The common work product structure, see Section 8.1, includes an Issues attribute. The
raising of an issue often triggers the consideration of design alternatives. At some point
the issue will be resolved by the taking of a decision and the rejection of alternatives. The
rejected alternatives are then documented and cross-references made between the relevant
work products, the Rejected Alternatives, and the issues that generated them. Not all
rejected decisions stem from matters raised as explicit Issues however.

Strengths
Recording Rejected Design Alternatives enables a design team to backtrack without the
overhead of rediscovering and reevaluating design alternatives.

Weaknesses
Recording Rejected Design Alternatives imposes an overhead on the project that must be
recognized and budgeted. This work is an investment in future rework and will not pay in
the very short term. It can be thought of as a form of reuse: reuse of design decisions.
The benefits of any form of reuse are often difficult to quantify and sometimes difficult to
justify.

Notation
The format in which Rejected Design Alternatives can be documented is very similar to
that of design patterns [Gamma95].

Table 13-8. Example of a Rejected Design Alternative Template.

Description
Context
Assumptions
Alternatives 	 I. 	

2. 	
Considerations

Decision

The design alternatives documented in the above template can be described using either
text or OIDs.

Traceability

This work product has the following traceability:

Impacted by: 	 Impacts:
• Issues (p. 176) 	 • Historical Work Products (p. 359)
• System Architecture (p. 257)

Advice and Guidance

• Record Rejected Design Alternatives as soon as possible.

• Include or refer to rejected Scenarios, OIDs, Object Models, et cetera. if these are
relevant.

• The documentation should focus on enabling another designer in the future to return to
this design decision and to reevaluate the alternatives, possibly with a different set of
assumptions.

• A work product design review should briefly review the rejected alternatives that relate
to the accepted design.

• The documentation should be relatively self-contained. References to other work pro-
ducts are fine, but the Issue, its context, and its assumptions should be understandable
by someone reading this documentation alone.

Verification

• Review documented decisions to check that they are still reasonable.

Example(s)
In an application to configure distributed computer systems in a centralized manner, the
following design issue arose:

Description 	Representation of collected configuration data.

Context
	

Actual configuration data can be collected from the target nodes, and defined configura-

tion data can be specified by a user. The actual and defined configuration object models

have a common structure, as both represent the various alternative ways in which this
operating system can be configured. The question is whether the same object model

should be used for both actual and defined cases or whether two separate object models

should be used.

Assumptions 	I. While there are operations that are common to both actual and defined data, there are
operations that are only applicable to one. For example, it is only valid to check

defined data (against actual nodes), and it is only valid to validate actual data (for

consistency).

2. There is an import method that turns valid actual data into defined data.

Alternatives 	1. Represent actual and defined configuration data using two separate object models.

This permits each of these object models to be as simple as possible, with only those

alternatives and operations that are valid.
2. Represent actual and defined configuration data using the same object model. Where

necessary, configuration objects use the state pattern to distinguish between the two
kinds of representation. The subclasses of the state objects have interfaces that

permit only operations appropriate to that state. The state pattern can also be used to
distinguish between validated and unvalidated actual data.

Consider-
ations

Decision

I. The first alternative involves simpler structures and fewer classes.
2. The replication of structure implicit in the first alternative will make the design less

modular and more difficult to maintain.

3. The use of the state pattern in the second alternative enables the design to deal with
other issues (distinction between validated and unvalidated data) by means of the

same mechanism.

The second alternative was selected.

320 DESIGN WORK PRODUCTS

Table 13-9. Example of Rejected Design Alternative.

References
The format for design patterns that also works for Rejected Design Alternatives can be
found, along with a complete discussion of design patterns in [Gamma95].

Importance
Recording Rejected Design Alternatives is optional, but we recommend that it be done as it
makes revisiting of design decisions much easier.

14.0 Implementation Work Products

The purpose of the implementation phase is to construct the deliverable components of the
product based on the plans detailed in the design work products. For software products,
the most obvious deliverables are the executable form of the software (a.k.a. binaries) and
the User Support Materials (a.k.a. documentation). But it is not a simple task to transform
design work products into those deliverables. Since the final step in producing software
and documentation is an automated one (e.g., compilation, formatting), we need to focus on
the development of the intermediate work products that lead up to that step.

The implementation section of the project workbook consists of the following work
products:

• Coding Guidelines

• Physical Packaging Plan

• Development Environment

• Source Code

• User Support Materials

These work products all "inherit" the common work product attributes described in
Section 8.1 and have specialized attributes of their own. The work products and their
specialized content are defined and commented on in the following sections, but let's
briefly describe them here.

Before dispatching scores of programmers to generate millions of lines of code whose
quality affects your company's health and whose maintenance defines your future liability,
it is a good idea to have some Coding Guidelines. The nature and value of these guide-
lines is best understood by veteran programmers who have endeavored to extend or main-
tain someone else's source code.

Since source code files, libraries, and executables are organized and managed in the
Development Environment for ease of development and testing rather than for ease of
installation and use by a product user, a plan is needed that shows how all the deliverable
components will be collected and packaged for delivery and installation. This is known as
the Physical Packaging Plan.

The collection of tools, processes, conventions, and organizational infrastructure that a
programming shop needs to establish to carry out the implementation of software defines a
very complex "environment." A significant part of that involves setting up and running the
configuration management and version control system. The Development Environment is
often called "that well-oiled machine" because it is big, important, and requires a lot of
care to set up and keep running. The Development Environment work product attempts to
define that environment.

321

2

Evaluating a Software
Architecture

Marry your architecture in haste and you can repent in leisure.
—Barry Boehm

from a keynote address: And Very Few Lead Bullets Either

How can you be sure whether the architecture chosen for your software is the
right one? How can you be sure that it won't lead to calamity but instead will
pave the way through a smooth development and successful product?

It's not an easy question, and a lot rides on the outcome. The foundation
for any software system is its architecture. The architecture will allow or pre-
clude just about all of a system's quality attributes. Modifiability, performance,
security, availability, reliability—all of these are precast once the architecture
is laid down. No amount of tuning or clever implementation tricks will wring
any of these qualities out of a poorly architected system.

To put it bluntly, an architecture is a bet, a wager on the success of a system.
Wouldn't it be nice to know in advance if you've placed your bet on a winner,
as opposed to waiting until the system is mostly completed before knowing
whether it will meet its requirements or not? If you're buying a system or pay-
ing for its development, wouldn't you like to have some assurance that it's
started off down the right path? If you're the architect yourself, wouldn't you
like to have a good way to validate your intuitions and experience, so that you
can sleep at night knowing that the trust placed in your design is well founded?

Until recently, there were almost no methods of general utility to validate a
software architecture. If performed at all, the approaches were spotty, ad hoc,
and not repeatable. Because of that, they weren't particularly trustworthy. We
can do better than that.

19

What's Architectural?

Sooner or later everyone asks the question: "What's architectural?" Some peo-
ple ask out of intellectual curiosity, but people who are evaluating architec
tures have a pressing need to underStand what information is in and out of their
realm of concern. Maybe you didn't ask the question exactly that way. Perhaps
you asked it in one of the following ways:

• What is the difference between an architecture and a high-level
design?

• Are details such as priorities of processes architectural?

• Why should implementation Considerations such as buffer overflows
be treated as architectural?

• Are interfaces to components part of the architecture?

• If I have class diagnims, do I need anything else?

• Is architecture concerned with run-time behavior or static structure?

• Is the operating system part of the architecture? Is the programming
language?

• If I'm constrained to use a particular commercial product, is that archi
, tectural? If I'm free to choose from a wide range of commercial prod-

ucts, is that architectural?

Let's think about this in two ways.
First, consider the definition of architecture that we quoted in Chapter I

of this book. Paraphrasing: A software architecture concerns the gross organi-
zation of a system described in terms of its components, their externally visi-
ble properties, and the relationships among them. True enough, but it finis to
explicitly address the notion of context. If the scope of my concern is confined
to a subsystem within a system that is part of a system of systems, then what I
consider to be architectural will be different than what the architect of the sys-
tem of systems considers to be architectural. Therefore, context influences
what's architectural.

Second, let's ask, what is not architectural? It has been said that algo-
rithms are not architectural; data structures are not architectural; details of data
flow are not architectural. Well again these statements are only partially true.
Some properties of algorithms, such as their complexity, might have a dra-
matic effect on performance. Some properties of data structures, such as

20 	Evaluating a Software Architecture
	 Evuuluating Software Architecture 	21

This is a guidebook of software architecture evaluation. It is built around a
suite of three methods, all developed at the Software Engineering Institute, that
can be applied to any software-intensive system:

• ATAM: Architecture Tradeoff Analysis Method

• SAAM: Software Architecture Analysis Method
• ARID: Active Reviews for Intermediate Designs

The methods as a group have a solid pedigree, having been applied for
years on dozens of projects of all sizes and in a wide variety of domains. With
these methods, the time has come to include software architecture evaluation as
a standard step of any development paradigm. Evaluations represent a wise
risk-mitigation effort and are relatively inexpensive. They pay for themselves
in terms of costly errors and sleepless nights avoided.

Whereas the previous chapter introduced the concept of software architec-
ture, this chapter lays the conceptual groundwork for architectural evaluation.
It defines what we mean by software architecture and explains the kinds of
properties for which an architecture can (and cannot) be evaluated.

First, let's restate what it is we're evaluating:

The software architecture of a program or computing system is the
structure or structures of the system, which comprise software compo-
nents, the externally visible properties of those components, and the
relationships among them. [Bass 98]

By "externally visible" properties, we are referring to those assumptions
other components can make of a component, such as its provided services, per-
formance characteristics, fault handling, shared resource usage, and so on. The
intent of this definition is that a software architecture must abstract some infor-
mation about the system (otherwise there is no point looking at the architec-
ture—we are simply viewing the entire system) and yet provide enough
information to be a basis for analysis, decision making, and hence risk reduc-
tion (see the sidebar What's Architectural?).

The architecture defines the components (such as modules, objects, pro-
cesses, subsystems, compilation units, and so forth) and the relevant relations
(such as calls, sends-data-to, synchronizes-with, uses, depends-on, instantiates,
and many more) among them. The architecture is the result of early design
decisions that are necessary before a group of people can collaboratively build
a software system. The larger or more distributed the group, the more vital the
architecture is (and the group doesn't have to be very large before the architec-
ture is vital).

One of the insights about architecture from Chapter 1 that you must fully
embrace before you can understand architecture evaluation is this:

Architectures allow or preclude nearly all of the system's quality
attributes.

This leads to the most fundamental truth about architecture evaluation: If
architectural decisions determine a system's quality attributes, then it is possi-
ble to evaluate architectural decisions with respect to their impact on those
attributes.

22 	Evaluating a Software Architecture
	

2.1 Why Evaluate an Architecture? 	23

whether they need to support concurrent access, directly impact performance
and reliability. Some of the details of data flow, such as how components
depend on specific message types or which components are allowed access to
which data types, impact modifiability and security, respectively.

So is there a principle that we can use in determining what is architec-
tural? Let's appeal to what architecture is used for to formulate our principle.
Our criterion for something to be architectural is this: It must be a component,
or a relationship between components, or a property (of components or rela-
tionships) that needs to be externally visible in order to reason about the ability
of the system to meet its quality requirements or to support decomposition of
the system into independently implementable pieces. Here are some corollar-
ies of this - principle:

• Architecture describes what is in your system. When you have deter-
mined your context, you have determined a boundary that describes
what is in and what is out of your system (which might be someone
else's subsystem). Architecture describes the part that is in.

• An architecture is an abstract depiction of your system. The informa-
tion in an architecture is the mostabstract and yet meaningful depic-
tion of that aspeCt of the system. Given your architectural
specification, there should not be a need for a more abstract descrip-
tion. That is not to say that all aspects of architecture are abstract, nor
is it to say that there is an abstraction threshold that needs to be
exceeded before a piece of design information can be considered
architectural. You shouldn't worry if your architecture encroaches on
what others might consider to be a more detailed design.

• What's architectural should be critical for reasoning about critical
requirements. The architecture bridges the gap between requirements
and the rest of the design. If you feel that some information is critical
for reasoning about how your system will meet its requirements then it
is architectural. You, as the architect, are the best judge. On the other
hand, if you can eliminate some details and still compose a forceful
argument through models, simulation, walk-throughs, and so on about
how your architecture will satisfy key requirements then those details
do not belong. However, if you put too much detail into your architec-
ture then it might not satisfy the next principle.

• An architectural specification needs to be graspable. The whole point
of a gross-level system depiction is that you can understand it and rea-
son about it. Too much detail will defeat this purpose.

• An architecture is constraining. It imposes requirements on all lower-
level design specifications. I like to distinguish between when a deci-
sion is made and when it is realized. For example, I might determine a

process prioritization strategy, a component redundancy strategy, or a
set of encapsulation rules when designing an architecture; but I might not
actually make priority assignments, determine the algorithm for a redun-
dant calculation, or specify the details of an interface until much later.

In a nutshell:

To be architectural is to be the most abstract depiction of the system that
enables reasoning about critical requirements and constrains all subse-
quent refinements.

If it sounds like finding all those aspects of your system that are architec-
tural is difficult, that is true. It is unlikely that you will discover everything that
is architectural up front, nor should you try. An architectural specification will
evolve over time as you continually apply these principles in determining
what's architectural.

—MHK

2.1 Why Evaluate an Architecture?

The earlier you find a problem in a software project, the better off you are. The
cost to fix an error found during requirements or early design phases is orders
of magnitudes less to correct than the same error found during testing. Archi-
tecture is the product of the early design phase, and its effect on the system and
the project is profound.

An unsuitable architecture will precipitate disaster on a project. Perfor-
mance goals will not be met. Security goals will fall by the wayside. The cus-
tomer will grow impatient because the right functionality is not available, and
the system is too hard to change to add it. Schedules and budgets will be blown
out of the water as the team scrambles to back-fit and hack their way through
the problems. Months or years later, changes that could have been anticipated
and planned for will be rejected because they are too costly. Plagues and pesti-
lence cannot be too far behind.

Architecture also determines the structure of the project: configuration
control libraries, schedules and budgets, performance goals, team structure,
documentation organization, and testing and maintenance activities all are
organized around the architecture. If it changes midstream because of some
deficiency discovered late, the entire project can be thrown into chaos. It is
much better to change the architecture before it has been frozen into existence
by the establishment of downstream artifacts based on it.

24 	Evaluating a Software Architecture
	

2.2 When Can an Architecture Be Evaluated? 	25

Architecture evaluation is a cheap way to avoid disaster. The methods in
this book are meant to be applied while the architecture is a paper specification
(of course, they can be applied later as well), and so they involve running a
series of simple thought experiments. They each require assembling relevant
stakeholders for a structured session of brainstorming, presentation, and analy-
sis. All told, the average architecture evaluation adds no more than a few days
to the project schedule.

To put it another way, if you were building a house, you wouldn't think of
proceeding without carefully looking at the blueprints before construction
began. You would happily spend the small amount of extra time because you
know it's much better to discover a missing bedroom while the architecture is
just a blueprint, rather than on moving day.

2.2 When Can an Architecture Be Evaluated?

The classical application of architecture evaluation occurs when the architec-
ture has been specified but before implementation has begun. Users of iterative
or incremental life-cycle models can evaluate the architectural decisions made
during the most recent cycle. However, one of the appealing aspects of archi-
tecture evaluation is that it can be applied at any stage of an architecture's life-
time, and there are two useful variations from the classical: early and late.

Early. Evaluation need not wait until an architecture is fully specified. It can
be used at any stage in the architecture creation process to examine those archi-
tectural decisions already made and choose among architectural options that
are pending. That is, it is equally adept at evaluating architectural decisions
that have already been made and those that are being considered.

Of course, the completeness and fidelity of the evaluation will be a direct
function of the completeness and fidelity of the architectural description
brought to the table by the architect. And in practice, the expense and logistical
burden of convening a full-blown evaluation is seldom undertaken when
unwarranted by the state of the architecture. It is just not going to be very
rewarding to assemble a dozen or two stakeholders and analysts to evaluate the
architect's early back-of-the-napkin sketches, even though such sketches will
in fact reveal a number of significant architecture paths chosen and paths not
taken.

Some organizations recommend what they call a discovery review, which
is a very early mini-evaluation whose purpose is as much to iron out and prior-
itize troublesome requirements as analyzing whatever "proto-architecture"

may have been crafted by that point. For a discovery review, the stakeholder
group is smaller but must include people empowered to make requirements
decisions. The purpose of this meeting is to raise any concerns that the archi-
tect may have about the feasibility of any architecture to meet the combined
quality and behavioral requirements that are being levied while there is still
time to relax the most troubling or least important ones. The output of a discov-
ery review is a much stronger set of requirements and an initial approach to sat-
isfying them. That approach, when fleshed out, can be the subject of a full
evaluation later.

We do not cover discovery reviews in detail because they are a straightfor-
ward variation of an architecture evaluation. If you hold a discovery review,
make sure to

• Hold it before the requirements are frozen and when the architect has a
good idea about how to approach the problem

• Include in the stakeholder group someone empowered to make require-
ments decisions

• Include a prioritized set of requirements in the output, in case there is no
apparent way to meet all of them

Finally, in a discovery review, remember the words of the gifted aircraft
designer Willy Messerschmitt, himself no stranger to the burden of require-
ments, who said:

You can have any combination of features the Air Ministry desires, so
long as you do not also require that the resulting airplane fly.

Late. The second variation takes place when not only the architecture is
nailed down but the implementation is complete as well. This case occurs when
an organization inherits some sort of legacy system. Perhaps it has been pur-
chased on the open market, or perhaps it is being excavated from the organiza-
tion's own archives. The techniques for evaluating a legacy architecture are the
same as those for one that is newborn. An evaluation is a useful thing to do
because it will help the new owners understand the legacy system, and let them
know whether the system can be counted on to meet its quality and behavioral
requirements.

In general, when can an architectural evaluation be held? As soon as there
is enough of an architecture to justify it. Different organizations may measure
that justification differently, but a good rule of thumb is this: Hold an evalua-
tion when development teams start to make decisions that depend on the archi-
tecture and the cost of undoing those decisions would outweigh the cost of
holding an evaluation.

26 	Evaluating a Software Architecture
	 2.4 What Result Does an Architecture Evaluation Produce? 	27

2.3 Who's Involved?

There are two groups of people involved in an architecture evaluation.

1. Evaluation team. These are the people who will conduct the evaluation
and perform the analysis. The team members and their precise roles will
be defined later, but for now simply realize that they represent one of the
classes of participants.

2. Stakeholders. Stakeholders are people who have a vested interest in the
architecture and the system that will be built from it. The three evaluation
methods in this book all use stakeholders to articulate the specific require-
ments that are levied on the architecture, above and beyond the require-
ments that state what functionality the system is supposed to exhibit.
Some, but not all, of the stakeholders will be members of the development
team: coders, integrators, testers, maintainers, and so forth.

A special kind of stakeholder is a project decision maker. These are
people who are interested in the outcome of the evaluation and have the
power to make decisions that affect the future of the project. They include
the architect, the designers of components, and the project's management.
Management will have to make decisions about how to respond to the
issues raised by the evaluation. In some settings (particularly government
acquisitions), the customer or sponsor may be a project decision maker as
well.

Whereas an arbitrary stakeholder says what he or she wants to be true
about the architecture, a decision maker has the power to expend resources
to make it true. So a project manager might say (as a stakeholder), "I
would like the architecture to be reusable on a related project that I'm
managing," but as a decision maker he or she might say, "I see that the
changes you've identified as necessary to reuse this architecture on my
other project are too expensive, and I won't pay for them." Another differ-
ence is that a project decision maker has the power to speak authoritatively
for the project, and some of the steps of the ATAM method, for example,
ask them to do precisely that. A garden-variety stakeholder, on the other
hand, can only hope to influence (but not control) the project. For more on
stakeholders, see the sidebar Stakeholders on page 63 in Chapter 3.

The client for an architecture evaluation will usually be a project decision
maker, with a vested interest in the outcome of the evaluation and holding
some power over the project.

Sometimes the evaluation team is drawn from the project staff, in which
case they are also stakeholders. This is not recommended because they will
lack the objectivity to view the architecture in a dispassionate way.

2.4 What Result Does an Architecture
Evaluation Produce?

In concrete terms, an architecture evaluation produces a report, the form and
content of which vary according to the method used. Primarily, though, an
architecture evaluation produces information. In particular, it produces answers
to two kinds of questions.

1. Is this architecture suitable for the system for which it was designed?

2. Which of two or more competing architectures is the most suitable one for
the system at hand?

Suitability for a given task, then, is what we seek to investigate. We say
that an architecture is suitable if it meets two criteria.

1. The system that results from it will meet its quality goals. That is, the sys-
tem will run predictably and fast enough to meet its performance (timing)
requirements. It will be modifiable in planned ways. It will meet its secu-
rity constraints. It will provide the required behavioral function. Not every
quality property of a system is a direct result of its architecture, but many
are, and for those that are, the architecture is suitable if it provides the
blueprint for building a system that achieves those properties.

2. The system can be built using the resources at hand: the staff, the budget,
the legacy software (if any), and the time allotted before delivery. That is,
the architecture is buildable.

This concept of suitability will set the stage for all of the material that fol-
lows. It has a couple of important implications. First, suitability is only relevant
in the context of specific (and specifically articulated) goals for the architecture
and the system it spawns. An architecture designed with high-speed perfor-
mance as the primary design goal might lead to a system that runs like the wind
but requires hordes of programmers working for months to make any kind of
modification to it. If modifiability were more important than performance for
that system, then that architecture would be unsuitable for that system (but
might be just the ticket for another one).

In Alice in Wonderland, Alice encounters the Cheshire Cat and asks for
directions. The cat responds that it depends upon where she wishes to go. Alice
says she doesn't know, whereupon the cat tells her it doesn't matter which way
she walks. So

If the sponsor of a system cannot tell you what any of the quality goals
are for the system, then any architecture will do.

An overarching part of an architecture evaluation is to capture and priori-
tize specific goals that the architecture must meet in order to be considered

28 	Evaluating a Software Architecture 2.4 What Result Does an Architecture Evaluation Produce? 	29

Why Should I Believe You?

Frequently when we embark on an evaluation we are outsiders. We have been
called in by a project leader or a manager or a customer to evaluate a project.
Perhaps this is seen as an audit, or perhaps it is just part of an attempt to
improve an organization's software engineering practice. Whatever the reason,
unless the evaluation is part of a long-term relationship, we typically don't
personally know the architect, or we don't know the major stakeholders.

Sometimes this distance is not a problem—the stakeholders are receptive and.
enthusiastic, eager to learn and to improve their architecture. But on other occa-
sions we meet with resistance and perhaps even fear. The major players sit there
with their arms folded across their chests, clearly annoyed that they have been
taken away from their real work, that of architecting, to pursue this silly manage-
ment-directed evaluation. At other times the stakeholders are friendly and even
receptive, but they are skeptical. After all, they are the experts in their domains and
they have been working in the area, and maybe even on this system, for years.

In either case their attitudes, whether friendly or unfriendly, indicate a
substantial amount of skepticism over the prospect that the evaluation can
actually help. They are in effect saying, "What could a bunch of outsiders pos-
sibly have to tell us about our system that we don't already know?" You will
probably have to face this kind of opposition or resistance at some point in
your tenure as an architecture evaluator.

There are two things that you need to know and do to counteract this
opposition. First of all, you need to counteract the fear. So keep calm. If you
are friendly and let them know that the point of the meeting is to learn about
and improve the architecture (rather than pointing a finger of blame) then you
will find that resistance melts away quickly. Most people actually enjoy the..
evaluation process and see the benefits very quickly. Second, you need to
counteract the skepticism. Of course they are the experts in the domain. You
know this and they know this, and you should acknowledge this up front. But
you are the architecture and quality attribute expert. No matter what the domain,
architectural approaches for dealing with and analyzing quality attributes
don't vary much. There are relatively few ways to approach performance or
availability or security on an architectural level. As an experienced evaluator
(and with the help of the insight from the quality attribute communities) you
have seen these before, and they don't change much from domain to domain.

Furthermore, as an outsider you bring a "fresh set of eyes," and this alone
can often bring new insights into a project. Finally, you are following a pro-
cess that has been refined over dozens of evaluations covering dozens of dif-
ferent domains. It has been refined to make use of the expertise of many
people, to elicit, document, and cross-check quality attribute requirements and
architectural information. This alone will bring benefit to your project—we
have seen it over and over again. The process works!.

—RK

suitable. In a perfect world, these would all be captured in a requirements doc-
ument, but this notion fails for two reasons: (1) Complete and up-to-date
requirements documents don't always exist, and (2) requirements documents
express the requirements for a system. There are additional requirements levied
on an architecture besides just enabling the system's requirements to be met.
(Buildability is an example.)

The second implication of evaluating for suitability is that the answer that
comes out of the evaluation is not going to be the sort of scalar result you may
be used to when evaluating other kinds of software artifacts. Unlike code met-
rics, for example, in which the answer might be 7.2 and anything over 6.5 is
deemed unacceptable, an architecture evaluation is going to produce a more
thoughtful result.

We are not interested in precisely characterizing any quality attribute
(using measures such as mean time to failure or end-to-end average latency).
That would be pointless at an early stage of design because the actual parameters
that determine these values (such as the actual execution time of a component)
are often implementation dependent. What we are interested in doing—in the
spirit of a risk-mitigation activity—is learning where an attribute of interest is
affected by architectural design decisions, so that we can reason carefully about
those decisions, model them more completely in subsequent analyses, and devote
more of our design, analysis, and prototyping energies to such decisions.

An architectural evaluation will tell you that the architecture has been
found suitable with respect to one set of goals and problematic with respect to
another set of goals. Sometimes the goals will be in conflict with each other, or
at the very least, some goals will be more important than other ones. And so the
manager of the project will have a decision to make if the architecture evalu-
ates well in some areas and not so well in others. Can the manager live with the
areas of weakness? Can the architecture be strengthened in those areas? Or is it
time for a wholesale restart? The evaluation will help reveal where an architec-
ture is weak, but weighing the cost against benefit to the project of strengthen-
ing the architecture is solely a function of project context and is in the realm of
management. So

An architecture evaluation doesn't tell you "yes" or "no," "good" or
"bad," or "6.75 out of 10." It tells you where you are at risk.

Architecture evaluation can be applied to a single architecture or to a
group of competing architectures. In the latter case, it can reveal the strengths
and weaknesses of each one. Of course, you can bet that no architecture will
evaluate better than all others in all areas. Instead, one will outperform others
in some areas but underperform in other areas. The evaluation will first identify
what the areas of interest are and then highlight the strengths and weaknesses
of each architecture in those areas. Management must decide which (if any) of

30 	Evaluating a Software Architecture
	 2.5 For What Qualities Can We Evaluate an Architecture? 	31

the competing architectures should be selected or improved or whether none of
the candidates is acceptable and a new architecture should be designed.'

2.5 For What Qualities Can We Evaluate an
Architecture?

In this section, we say more precisely what suitability means. It isn't quite true
that we can tell from looking at an architecture whether the ensuing system
will meet all of its quality goals. For one thing, an implementation might
diverge from the architectural plan in ways that subvert the quality plans. But
for another, architecture does not strictly determine all of a system's qualities.

Usability is a good example. Usability is the measure of a user's ability to
utilize a system effectively. Usability is an important quality goal for many sys-
tems, but usability is largely a function of the user interface. In modern systems
design, particular aspects of the user interface tend to be encapsulated within
small areas of the architecture. Getting data to and from the user interface and
making it flow around the system so that the necessary work is done to support
the user is certainly an architectural issue, as is the ability to change the user
interface should that be required. However, many aspects of the user inter-
face—whether the user sees red or blue backgrounds, a radio button or a dialog
box—are by and large not architectural since those decisions are generally con-
fined to a limited area of the system.

But other quality attributes lie squarely in the realm of architecture. For
instance, the ATAM concentrates on evaluating an architecture for suitability in
terms of imbuing a system with the following quality attributes. (Definitions
are based on Bass et al. [Bass 98])

• Performance: Performance refers to the responsiveness of the system—the
time required to respond to stimuli (events) or the number of events pro-
cessed in some interval of time. Performance qualities are often expressed
by the number of transactions per unit time or by the amount of time it
takes to complete a transaction with the system. Performance measures are
often cited using benchmarks, which are specific transaction sets or work-
load conditions under which the performance is measured.

• Reliability: Reliability is the ability of the system to keep operating over
time. Reliability is usually measured by mean time to failure.

1. This is the last time we will address evaluating more than one architecture at a time since the

methods we describe are carried out in the same fashion for either case.

• Availability: Availability is the proportion of time the system is up and
running. It is measured by the length of time between failures as well as
how quickly the system is able to resume operation in the event of failure.

• Security: Security is a measure of the system's ability to resist unautho-
rized attempts at usage and denial of service while still providing its ser-
vices to legitimate users. Security is categorized in terms of the types of
threats that might be made to the system.

• Modifiability: Modifiability is the ability to make changes to a system
quickly and cost effectively. It is measured by using specific changes as
benchmarks and recording how expensive those changes are to make.

• Portability: Portability is the ability of the system to run under different
computing environments. These environments can be hardware, software,
or a combination of the two. A system is portable to the extent that all of
the assumptions about any particular computing environment are confined
to one component (or at worst, a small number of easily changed compo-
nents). If porting to a new system requires change, then portability is sim-
ply a special kind of modifiability.

• Functionality: Functionality is the ability of the system to do the work for
which it was intended. Performing a task requires that many or most of the
system's components work in a coordinated manner to complete the job.

• Variability: Variability is how well the architecture can be expanded or
modified to produce new architectures that differ in specific, preplanned
ways. Variability mechanisms may be run-time (such as negotiating on the
fly protocols), compile-time (such as setting compilation parameters to
bind certain variables), build-time (such as including or excluding various
components or choosing different versions of a component), or code-time
mechanisms (such as coding a device driver for a new device). Variability
is important when the architecture is going to serve as the foundation for a
whole family of related products, as in a product line.

• Subsetability: This is the ability to support the production of a subset of
the system. While this may seem like an odd property of an architecture, it
is actually one of the most useful and most overlooked. Subsetability can
spell the difference between being able to deliver nothing when schedules
slip versus being able to deliver a substantial part of the product. Subset-
ability also enables incremental development, a powerful development
paradigm in which a minimal system is made to run early on and functions
are added to it over time until the whole system is ready. Subsetability is a
special kind of variability, mentioned above.

• Conceptual integrity: Conceptual integrity is the underlying theme or
vision that unifies the design of the system at all levels. The architecture
should do similar things in similar ways. Conceptual integrity is exempli-
fied in an architecture that exhibits consistency, has a small number of data

32 	Evaluating a Software Architecture
	

2.6 Why Are Quality Attributes Too Vague for Analysis? 	33

and control mechanisms, and uses a small number of patterns throughout
to get the job done.

By contrast, the SAAM concentrates on modifiability in its various forms
(such as portability, subsetability, and variability) and functionality. The ARID
method provides insights about the suitability of a portion of the architecture to
be used by developers to complete their tasks.

If some other quality than the ones mentioned above is important to you,
the methods still apply. The ATAM, for example, is structured in steps, some of
which are dependent upon the quality being investigated, and others of which
are not. Early steps of the ATAM allow you to define new quality attributes by
explicitly describing the properties of interest. The ATAM can easily accom-
modate new quality-dependent analysis. When we introduce the method, you'll
see where to do this. For now, though, the qualities in the list above form the
basis for the methods' capabilities, and they also cover most of what people
tend to be concerned about when evaluating an architecture.

2.6 Why Are Quality Attributes Too Vague for
Analysis?

Quality attributes form the basis for architectural evaluation, but simply nam-
ing the attributes by themselves is not a sufficient basis on which to judge an
architecture for suitability. Often, requirements statements like the following
are written:

• "The system shall be robust."
• "The system shall be highly modifiable."

• "The system shall be secure from unauthorized break-in."

• "The system shall exhibit acceptable performance."

Without elaboration, each of these statements is subject to interpretation
and misunderstanding. What you might think of as robust, your customer
might consider barely adequate—or vice versa. Perhaps the system can easily
adopt a new database but cannot adapt to a new operating system. Is that sys-
tem maintainable or not'? Perhaps the system uses passwords for security,
which prevents a whole class of unauthorized users from breaking in, but has
no virus protection mechanisms. Is that system secure from intrusion or not?

The point here is that quality attributes are not absolute quantities; they
exist in the context of specific goals. In particular:

•

• A system is modifiable (or not) with respect to a specific kind of change.
• A system is secure (or not) with respect to a specific kind of threat.
• A system is reliable (or not) with respect to a specific kind of fault occurrence.
• A system performs well (or not) with respect to specific performance criteria.
• A system is suitable (or not) for a product line with respect to a specific set

or range of envisioned products in the product line (that is, with respect to
a specific product line scope).

• An architecture is buildable (or not) with respect to specific time and bud-
get constraints.

If this doesn't seem reasonable, consider that no system can ever be, for
example, completely reliable under all circumstances. (Think power failure,
tornado, or disgruntled system operator with a sledgehammer.) Given that, it is
incumbent upon the architect to understand under exactly what circumstances
the system should be reliable in order to be deemed acceptable.

In a perfect world, the quality requirements for a system would be com-
pletely and unambiguously specified in a requirements document. Most of us
do not live in such a world. Requirements documents are not written, or are
written poorly, or are not finished when it is time to begin the architecture.
Also, architectures have goals of their own that are not enumerated in a
requirements document for the system: They must be built using resources at
hand, they should exhibit conceptual integrity, and so on. And so the first job of
an architecture evaluation is to elicit the specific quality goals against which
the architecture will be judged.

If all of these goals are specifically, unambiguously articulated, that's
wonderful. Otherwise, we ask the stakeholders to help us write them down dur-
ing an evaluation. The mechanism we use is the scenario. A scenario is a short
statement describing an interaction of one of the stakeholders with the system.
A user would describe using the system to perform some task; these scenarios
would very much resemble use cases in object-oriented parlance. A mainte-
nance stakeholder would describe making a change to the system, such as
upgrading the operating system in a particular way or adding a specific new
function. A developer's scenario might involve using the architecture to build
the system or predict its performance. A customer's scenario might describe
the architecture reused for a second product in a product line or might assert
that the system is buildable given certain resources.

Each scenario, then, is associated with a particular stakeholder (although
different stakeholders might well be interested in the same scenario). Each sce-
nario also addresses a particular quality, but in specific terms. Scenarios are
discussed more fully in Chapter 3.

34 	Evaluating a Software Architecture
	

2.7 What Are the Outputs of an Architecture Evaluation? 	35

2.7 What Are the Outputs of an Architecture
Evaluation?

2.7.1 Outputs from the ATAM, the SAAM, and ARID •

An architecture evaluation results in information and insights about the archi-
tecture. The ATAM, the SAAM, and the ARID method all produce the outputs
described below.

Prioritized Statement of Quality Attribute Requirements

An architecture evaluation can proceed only if the criteria for suitability are
known. Thus, elicitation of quality attribute requirements against which the
architecture is evaluated constitutes a major portion of the work. But no archi-
tecture can meet an unbounded list of quality attributes, and so the methods use
a consensus-based prioritization. Having a prioritized statement of the quality
attributes serves as an excellent documentation record to accompany any archi-
tecture and guide it through its evolution. All three methods produce this in the
form of a set of quality attribute scenarios.

Mapping of Approaches to Quality Attributes

The answers to the analysis questions produce a mapping that shows how the
architectural approaches achieve (or fail to achieve) the desired quality
attributes. This mapping makes a splendid rationale for the architecture. Ratio-
nale is something that every architect should record, and most wish they had
time to construct. The mapping of approaches to attributes can constitute the
bulk of such a description.

Risks and Nonrisks

Risks are potentially problematic architectural decisions. Nonrisks are good
decisions that rely on assumptions that are frequently implicit in the architec-
ture. Both should be understood and explicitly recorded. 2

Documenting of risks and nonrisks consists of

• An architectural decision (or a decision that has not been made)

• A specific quality attribute response that is being addressed by that deci-
sion along with the consequences of the predicted level of the response

2. Risks can also emerge from other, nonarchitectural sources. For example, having a manage-
ment structure that is misaligned with the architectural structure might present an organiza-
tional risk. Insufficient communication between the stakeholder groups and the architect is a
common kind of management risk.

• A rationale for the positive or negative effect that decision has on meeting
the quality attribute requirement

An example of a risk is

The rules for writing business logic modules in the second tier of your
three-tier client-server style are not clearly articulated (a decision that has
not been made). This could result in replication of functionality, thereby
compromising modifiability of the third tier (a quality attribute response
and its consequences). Unarticulated rules for writing the business logic
can result in unintended and undesired coupling of components (rationale
for the negative effect).

An.example of a nonrisk is

Assuming message arrival rates of once per second, a processing time of
less than 30 milliseconds, and the existence of one higher priority process
(the architectural decisions), a one-second soft deadline seems reasonable
(the quality attribute response and its consequences) since the arrival rate
is bounded and the preemptive effects of higher priority processes are
known and can be accommodated (the rationale).

For a nonrisk to remain a nonrisk the assumptions must not change (or at
least if they change, the designation of nonrisk will need to be rejustified). For
example, if the message arrival rate, the processing time, or the number of
higher priority processes changes in the example above, the designation of
nonrisk could change.

2.7.2 Outputs Only from the ATAM

In addition to the preceding information, the ATAM produces an additional set
of results described below.

Catalog of Architectural Approaches Used

Every architect adopts certain design strategies and approaches to solve the
problems at hand. Sometimes these approaches are well known and part of the
common knowledge of the field; sometimes they are unique and innovative to
the system being built. In either case, they are the key to understanding
whether the architecture will meet its goals and requirements. The ATAM
includes a step in which the approaches used are catalogued, and this catalog
can later serve as an introduction to the architecture for people who need to
familiarize themselves with it, such as future architects and maintainers for the
system.

2.8 What Are the Benefits and Costs of Performing an Architecture Evaluation? 	37 36 	Evaluating a Software Architecture

Approach- and Quality-Attribute-Specific Analysis Questions

The ATAM poses analysis questions that are based on the attributes being
sought and the approaches selected by the architect. As the architecture
evolves, these questions can be used in future mini-evaluations to make sure
that the evolution is not taking the architecture in the wrong direction.

Sensitivity Points and Tradeoff Points

We term key architectural decisions sensitivity points and tradeoff points. A
sensitivity point is a property of one or more components (and/or component
relationships) that is critical for achieving a particular quality attribute
response. For example:

• The level of confidentiality in a virtual private network might be sensitive
to the number of bits of encryption.

• The latency for processing an important message might be sensitive to the
priority of the lowest priority process involved in handling the message.

• The average number of person-days of effort it takes to maintain a system
might be sensitive to the degree of encapsulation of its communication
protocols and file formats.

Sensitivity points tell a designer or analyst where to focus attention when
trying to understand the achievement of a quality goal. They serve as yellow
flags: "Use caution when changing this property of the architecture." Particular
values of sensitivity points may become risks when realized in an architecture.
Consider the examples above. A particular value in the encryption level—say,
32-bit encryption—may present a risk in the architecture. Or having a very low
priority process in a pipeline that processes an important message may become
a risk in the architecture.

A tradeoff point is a property that affects more than one attribute and is a
sensitivity point for more than one attribute. For example, changing the level of
encryption could have a significant impact on both security and performance.
Increasing the level of encryption improves the predicted security but requires
more processing time. If the processing of a confidential message has a hard
real-time latency requirement then the level of encryption could be a tradeoff
point. Tradeoff points are the most critical decisions that one can make in an
architecture, which is why we focus on them so carefully.

Finally, it is not uncommon for an architect to answer an elicitation ques-
tion by saying, "We haven't made that decision yet." In this case you cannot
point to a component or property in the architecture and call it out as a sensitiv-
ity point because the component or property might not exist yet. However, it is
important to flag key decisions that have been made as well as key decisions
that have not yet been made.

2.8 What Are the Benefits and Costs of
Performing an Architecture Evaluation?

The main, and obvious, benefit of architecture evaluation is, of course, that it
uncovers problems that if left undiscovered would be orders of magnitude
more expensive to correct later. In short, architecture evaluation produces bet-
ter architectures. Even if the evaluation uncovers no problems that warrant
attention, it will increase everyone's level of confidence in the architecture.

But there are other benefits as well. Some of them are hard to measure, but
they all contribute to a successful project and a more mature organization. You
may not experience all of these on every evaluation, but the following is a list
of the benefits we've often observed.

Puts Stakeholders in the Same Room

An architecture evaluation is often the first time that many of the stakeholders
have ever met each other; sometimes it's the first time the architect has met
them. A group dynamic emerges in which stakeholders see each other as all
wanting the same thing: a successful system. Whereas before, their goals may
have been in conflict with each other (and in fact, still may be), now they are
able to explain their goals and motivations so that they begin to understand
each other. In this atmosphere, compromises can be brokered or innovative
solutions proposed in the face of greater understanding. It is almost always the
case that stakeholders trade phone numbers and e-mail addresses and open
channels of communication that last beyond the evaluation itself.

Forces an Articulation of Specific Quality Goals

The role of the stakeholders is to articulate the quality goals that the architec-
ture should meet in order to be deemed successful. These goals are often not
captured in any requirements document, or at least not Captured in an unambig-
uous fashion beyond vague platitudes about reliability and modifiability. Sce-
narios provide explicit quality benchmarks.

Results in the Prioritization of Conflicting Goals

Conflicts that might arise among the goals expressed by the different stake-
holders will be aired. Each method includes a step in which the goals are prior-
itized by the group. If the architect cannot satisfy all of the conflicting goals, he
or she will receive clear and explicit guidance about which ones are considered
most important. (Of course, project management can step in and veto or adjust
the group-derived priorities—perhaps they perceive some stakeholders and
their goals as "more equal" than others—but not unless the conflicting goals
are aired.)

38 	Evaluating a Software Architecture
	 2.8 What Are the Benefits and Costs of Performing an Architecture Evaluation? 	39

Forces a Clear Explication of the Architecture

The architect is compelled to make a group of people not privy to the architec-
ture's creation understand it, in detail, in an unambiguous way. Among other
things, this will serve as a dress rehearsal for explaining it to the other design-
ers, component developers, and testers. The project benefits by forcing this
explication early.

Improves the Quality of Architectural Documentation

Often, an evaluation will call for documentation that has not yet been prepared.
For example, an inquiry along performance lines will reveal the need for docu-
mentation that shows how the architecture handles the interaction of run-time
tasks or processes. If the evaluation requires it, then it's an odds-on bet that
somebody on the project team (in this case, the performance engineer) will
need it also. Again, the project benefits because it enters development better
prepared.

Uncovers Opportunities for Cross -Project Reuse

Stakeholders and the evaluation team come from outside the development
project, but often work on or are familiar with other projects within the same
parent organization. As such, both are in a good position either to spot compo-
nents that can be reused on other projects or to know of components (or other
assets) that already exist and perhaps could be imported into the current project.

Results in Improved Architecture Practices

Organizations that practice architecture evaluation as a standard part of their
development process report an improvement in the quality of the architectures
that are evaluated. As development organizations learn to anticipate the kinds
of questions that will be asked, the kinds of issues that will be raised, and the
kinds of documentation that will be required for evaluations, they naturally
preposition themselves to maximize their performance on the evaluations.
Architecture evaluations result in better architectures not only after the fact but
before the fact as well. Over time, an organization develops a culture that pro-
motes good architectural design.

Now, not all of these benefits may resonate with you. If your organization
is small, maybe all of the stakeholders know each other and talk regularly. Per-
haps your organization is very mature when it comes to working out the
requirements for a system, and by the time the finishing touches are put on the
architecture the requirements are no longer an issue because everyone is com-
pletely clear what they are. If so, congratulations. But many of the organiza-
tions in which we have carried out architecture evaluations are not quite so
sophisticated, and there have always been requirements issues that were raised
(and resolved) when the architecture was put on the table.

There are also benefits to future projects in the same organization. A criti-
cal part of the ATAM consists of probing the architecture using a set of quality-
specific analysis questions, and neither the method nor the list of questions is a
secret. The architect is perfectly free to arm her- or himself before the evalua-
tion by making sure that the architecture is up to snuff with respect to the rele-
vant questions. This is rather like scoring well on a test whose questions you've
already seen, but in this case it isn't cheating: it's professionalism.

The costs of architecture evaluation are all personnel costs and opportunity
costs related to those personnel participating in the evaluation instead of some-
thing else. They're easy enough to calculate. An example using the cost of an
ATAM-based evaluation is shown in Table 2.1. The left-most column names
the phases of the ATAM (which will be described in subsequent chapters). The
other columns split the cost among the participant groups. Similar tables can
easily be constructed for other methods.

Table 2.1 shows figures for what we would consider a medium-size evalu-
ation effort. While 70 person-days sounds like a substantial sum, in actuality it
may not be so daunting. For one reason, the calendar time added to the project
is minimal. The schedule should not be impacted by the preparation at all, nor
the follow-up. These activities can be carried out behind the scenes, as it were.
The middle phases consume actual project days, usually three or so. Second,
the project normally does not have to pay for all 70 staff days. Many of the

Table 2.1 Approximate Cost of a Medium-Size ATAM-Based Evaluation

Stakeholders

Project Decision
Participant Evaluation Team Makers (assume
Group (assume 5 architect, project Other Stakeholders
ATAM Phase members) manager, customer) (assume 8)

Phase 0:
Preparation

1 person-day by
team leader

1 person-day 0

Phase 1: 5 person -days 3 person-days 0
Initial
evaluation
(1 day)

Phase 2: 15 person-days 9 person-days + 16 person-days (most
Complete 2 person-days to stakeholders present
evaluation prepare only for 2 days)
(3 days)

Phase 3:
Follow-up

15 person-days 3 person-days to read
and respond to report

0

TOTAL 36 person-days 18 person-days 16 person-days

Participant
Group
ATAM Phase

Evaluation Team
(assume 4
members)

Project Decision
Makers (assume
architect, project
manager, customer)

Other Stakeholders
(assume the customer
validates the checklist)

Phase 1:
Initial
evaluation
(1 day)

4 person-days 3 person-days 0

Phase 2:
Complete
evaluation
(2 days)

8 person-days 6 person-days 2 person-days

Phase 0:
Preparation 	team leader

1 person-day 1 person-day by 0

40 	Evaluating a Software Architecture 2.9 For Further Reading 	41

stakeholders work for other cost centers, if not other organizations, than the
development group. Stakeholders by definition have a vested interest in the
system, and they are often more than willing to contribute their time to help
produce a quality product.

It is certainly easy to imagine larger and smaller efforts than the one char-
acterized by Table 2.1. As we will see, all of the methods are flexible, struc-
tured to iteratively spiral down into as much detail as the evaluators and
evaluation client feel is warranted. Cursory evaluations can be done in a day;
excruciatingly detailed evaluations could take weeks. However, the numbers in
Table 2.2 represent what we would call nominal applications of the ATAM. For
smaller projects, Table 2.2 shows how those numbers can be halved.

If your group evaluates many systems in the same domain or with the
same architectural goals, then there is another way that the cost of evaluation
can be reduced. Collect and record the scenarios used in each evaluation. Over
time, you will find that the scenario sets will begin to resemble each other.
After you have performed several of these almost-alike evaluations, you can
produce a "canonical" set of scenarios based on past experience. At this point,
the scenarios have in essence graduated to become a checklist, and you can dis-
pense with the bulk of the scenario-generation part of the exercise. This saves
about a day. Since scenario generation is the primary duty of the stakeholders, the
bulk of their time can also be done away with, lowering the cost still further.

Table 2.2 Approximate Cost of a Small ATAM-Based evaluation

Participant
Group
ATAM Phase

Evaluation team
(assume 2
members)

Stakeholders

Project Decision
Makers (assume
architect, project
manager)

Other Stakeholders
(assume 3)

Phase 0:
Preparation

1 person-day by
team leader

1 person-day 0

Phase 1: 2 person-days 2 person-days 0

Initial
evaluation
(1 day)

Phase 2: 4 person-days 4 person-days + 6 person-days

Complete
evaluation

2 person-days to
prepare

(2 days)

Phase 3:
Follow-up

8 person-days 2 person-days to read
and respond to report

0

TOTAL 15 person-days 11 person-days 6 person-days

Table 2.3 Approximate Cost of a Medium-Size Checklist-based ATAM-Based
Evaluation

Stakeholders

Phase 3:
Follow-up

12 person-days 	3 person-days to read 0
and respond to report

TOTAL 	25 person-days 	13 person-days 	2 person-days

(You still may want to have a few key stakeholders, including the customer, to
validate the applicability of your checklist to the new system.) The team size
can be reduced, since no one is needed to record scenarios. The architect's
preparation time should be minimal since the checklist will be publicly avail-
able even when he or she begins the architecture task.

Table 2.3 shows the cost of a medium-size checklist-based evaluation
using the ATAM, which comes in at about 4/7 of the cost of the scenario-based
evaluation of Table 2.1.

The next chapter will introduce the first of the three architecture evaluation
methods in this book: the Architecture Tradeoff Analysis Method.

2.9 For Further Reading

The For Further Reading list of Chapter 9 (Comparing Software Architecture
Evaluation Methods) lists good references on various architecture evaluation
methods.

42 	Evaluating a Software Architecture

Zhao has assembled a nice collection of literature resources dealing with

software architecture analysis [Zhao 99].
Once an architecture evaluation has identified changes that should be

made to an architecture, how do you prioritize them? Work is emerging to help
an architect or project manager assign quantitative cost and benefit information
to architectural decisions [Kaman 01].

3

2.10 Discussion Questions

1. How does your organization currently decide whether a proposed software
architecture should be adopted or not? How does it decide when a soft-
ware architecture has outlived its usefulness and should be discarded in
favor of another?

2. Make a business case, specific to your organization, that tells whether or
not conducting a software architecture evaluation. would pay off. Assume
the cost estimates given in this chapter if you like, or use your own.

3. Do you know of a case where a flawed software architecture led to the fail-
ure or delay of a software system or project? Discuss what caused the
problem and whether a software architecture evaluation might have pre-
vented the calamity.

4. Which quality attributes tend to be the most important to systems in your
organization? How are those attributes specified? How does the architect
know what they are, what they mean, and what precise levels of each are
required?

5. For each quality attribute discussed in this chapter—or for each that you
named in answer to the previous question—hypothesize three different
architectural decisions that would have an effect on that attribute. For
example, the decision to maintain a backup database would probably
increase a system's availability.

6. Choose three or four pairs of quality attributes. For each pair (think about
tradeoffs), hypothesize an architectural decision that would increase the
first quality attribute at the expense of the second. Now hypothesize a dif-
ferent architectural decision that would raise the second but lower the first.

The ATAM 	A Method for
Architecture Evaluation

There is also a rhythm and a pattern between the phenomena of
nature which is not apparent to the eye, but only to the eye of
analysis. .

--Richard Feynman
The Character of Physical Law

This chapter will present the first of three methods for architecture evaluation
that are the primary subject of this book. It is called the Architecture Tradeoff
Analysis Method (ATAM). The ATAM gets its name because it not only reveals
how well an architecture satisfies particular quality goals but it also provides
insight into how those quality goals interact with each other—how they trade
off against each other.

Having a structured method makes the analysis repeatable and helps
ensure that the right questions regarding an architecture will be asked early,
during the requirements and design stages when discovered problems can be
solved relatively cheaply. It guides users of the method—the stakeholders--to
look for conflicts and for resolutions to these conflicts in the software architecture.

The ATAM can also be used to analyze legacy systems. This need arises
when the legacy system needs to undergo major modifications, integration
with other systems, porting, or other significant upgrades. Assuming that an
accurate architecture of the legacy system is available (which frequently must
be acquired and verified using architecture extraction and conformance testing
methods), applying the ATAM results in increased understanding of the quality
attributes of the system.

The ATAM draws its inspiration and techniques from three areas: the notion
of architectural styles; the quality attribute analysis communities; and the Soft-
ware Architecture Analysis Method (SAAM), which was the predecessor to the

43

3.2 Detailed Description of the ATAM Steps 	45 44 	The ATAM—A Method for Architecture Evaluation

ATAM. Styles and quality attribute analysis are introduced in this chapter but
discussed more thoroughly in Chapter 5. The SAAM is presented in Chapter 7.

This chapter introduces the steps of the ATAM, then describes the steps in
more depth, and concludes by discussing how the steps are arranged in phases
carried out over time.

3.1 Summary of the ATAM Steps

The main part of the ATAM consists of nine steps. (Other parts of the ATAM,
including preparation before and follow-up after an evaluation, are detailed
later in this chapter.) The steps are separated into four groups:

• Presentation, which involves exchanging information through presentations

• Investigation and analysis, which involves assessing key quality attribute
requirements vis-à-vis architectural approaches

• Testing, which involves checking the results to date against the needs of all
relevant stakeholders

• Reporting, which involves presenting the results of the ATAM

Presen tation

1. Present the ATAM. The evaluation leader describes the evaluation
method to the assembled participants, tries to set their expectations, and
answers questions they may have.

2. Present the business drivers. A project spokesperson (ideally the project
manager or system customer) describes what business goals are motivating
the development effort and hence what will be the primary architectural
drivers (for example, high availability or time to market or high security).

3. Present the architecture. The architect describes the architecture, focus-
ing on how it addresses the business drivers.

Investigation and Analysis

4. Identify the architectural approaches. Architectural approaches are
identified by the architect but are not analyzed.

5. Generate the quality attribute utility tree. The quality attributes that
comprise system "utility" (performance, availability, security, modifiabil-
ity, usability, and so on) are elicited, specified down to the level of scenar-
ios, annotated with stimuli and responses, and prioritized.

6. Analyze the architectural approaches. Based upon the high-priority sce-
narios identified in Step 5, the architectural approaches that address those
scenarios are elicited and analyzed (for example, an architectural approach
aimed at meeting performance goals will be subjected to a performance
analysis). During this step architectural risks, nonrisks, sensitivity points,
and tradeoff points are identified.

Testing

7. Brainstorm and prioritize scenarios. A larger set of scenarios is elicited
from the entire group of stakeholders. This set of scenarios is prioritized
via a voting process involving all the stakeholders.

8. Analyze the architectural approaches. This step reiterates the activities
of Step 6 but uses the highly ranked scenarios from Step 7. Those scenarios
are considered to be test cases to confirm the analysis performed thus far.
This analysis may uncover additional architectural approaches, risks, non-
risks, sensitivity points, and tradeoff points, which are then documented.

Reporting

9. Present the results. Based upon the information collected during the
ATAM evaluation (approaches, scenarios, attribute-specific questions, the
utility tree, risks, nonrisks, sensitivity points, tradeoffs), the ATAM team
presents the findings to the assembled stakeholders.

Sometimes there must be dynamic modifications to the schedule to accommo-
date the availability of personnel or architectural information. Although the
steps are numbered, suggesting linearity, this is not a strict waterfall process.
There will be times when an analyst will return briefly to an earlier step, or will
jump forward to a later step, or will iterate among steps, as the need dictates.
The importance of the steps is to clearly delineate the activities involved in the
ATAM along with the output of these activities. The next section offers a
detailed description of the steps of the ATAM.

3.2 Detailed Description of the ATAM Steps

3.2.1 Step 1: Present the ATAM

The first step calls for the evaluation leader to present the ATAM to the assem-
bled stakeholders. This time is used to explain the process that everyone will be
following, allows time to answer questions, and sets the context and expecta-
tions for the remainder of the activities. In particular, the leader will describe

46 	The ATAM—A Method for Architecture Evaluation 	

3.2 Detailed Description of the ATAM Steps 	47

• The ATAM steps in brief

• The techniques that will be used for elicitation and analysis: utility tree
generation, architecture approach-based elicitation and analysis, and sce-
nario brainstorming and prioritization 	 •

• The outputs of the evaluation: the scenarios elicited and prioritized, the
questions used to understand and evaluate the architecture, a utility tree
describing and prioritizing the driving architectural requirements, a set of
identified architectural approaches, a set of risks and nonrisks discovered,
and a set of sensitivity points and tradeoffs discovered

A standard set of slides is used to aid in the presentation; the outline of
such a set is given in Figure 6.6.

3.2.2 Step 2: Present the Business Drivers

The evaluation's participants—the stakeholders as well as the evaluation team
members—need to understand the context for the system and the primary busi-
ness drivers motivating its development. In this step, a project decision maker
(ideally the project manager or the system's customer) presents a system over-
view from a business perspective. An outline for such a presentation is given in
Figure 3.1. The presentation should describe

• The system's most important functions

• Any relevant technical, managerial, economic, or political constraints

• The business goals and context as they relate to the project

• The major stakeholders

Business Context/Drivers Presentation (-12 slides; 45 minutes)

• Description of the business environment, history, market differentiators, driving
requirements, stakeholders, current need, and how the proposed system will
meet those needs/requirements (3-4 slides)

• Description of business constraints (e.g., time to market, customer demands,
standards, cost, etc.) (1-3 slides)

• Description of the technical constraints (e.g., commercial off-the-shelf [COTS]
products, interoperation with other systems, required hardware or software
platform, reuse of legacy code, etc.) (1-3 slides)

• Quality attributes requirements and from what business needs these are derived
(2-3 slides)

• Glossary (1 slide)

Figure 3.1 Example Template for the Business Case Presentation

• The architectural drivers (major quality attribute goals that shape the
architecture)

3.2.3 Step 3: Present the Architecture

In this step, the lead architect (or architecture team) makes a presentation
describing the architecture at an appropriate level of detail. What the "appro-
priate level" is depends on several factors: how much of the architecture has
been designed and documented, how much time is available, and the nature of
the behavioral and quality requirements. The architectural information pre-
sented will directly affect the analysis that is possible and the quality of this
analysis. Frequently the evaluation team will need to ask for additional archi-
tectural information before a more substantial analysis is possible.

In this presentation the architect should cover

• Technical constraints such as an operating system, hardware, or middle-
ware prescribed for use

• Other systems with which the system must interact
• Architectural approaches used to meet quality attribute requirements

Architectural views, as described in Chapter 1, are the primary vehicle that
the architect should use to present the architecture. Which views the architect
chooses to present will, of course, depend on what about the architecture is
important to convey. Functional, concurrency, code, and physical views are
useful in almost every evaluation, and the architect should be prepared to show
those. Other views should be presented in addition if they contain information
relevant to the architecture at hand, especially information relevant to achiev-
ing important quality attribute goals. As a rule of thumb, the architect should
present those views that he or she found most important to work on during the
creation of the architecture.

At this time the evaluation team begins its initial probing for and capturing
of architectural approaches as a prelude to Step 4.

An outline for the architecture presentation is shown in Figure 3.2. Provid-
ing a template like this to the architect well in advance of the ATAM meeting
helps ensure that he or she presents the right information and also helps to
ensure that the exercise stays on schedule.

3.2.4 Step 4: Identify the Architectural Approaches

The ATAM focuses on analyzing an architecture by understanding its architec-
tural approaches. In this step they are captured by the evaluation team but are
not analyzed. The team will ask the architect to explicitly name any identifiable
approaches used, but they will also capture any approaches they heard during
the architecture presentation in the previous step.

Architecture Presentatipn (-20 slides; 60 minutes)

• Driving architectural reqUirements, the measurable quantities associated with
these requirements, and any existing standards/models/approaches for meeting
these (2-3 slides) . ,

• High`-jevel architectural views (4-8 slides)
- Functional: functiOns, key system abstractions, and domain elements along with

their dependencies, data flow
- Code: the subsyStems, layers, and modules that describe the system's

decomposition of functionality, along with the objects, procedures, and functions
that populate these and the relations among them (e.g., procedure call, method
invocation, callback, containment)

- Concurrency: processes, threads along with the synchronization, data flow, and
events that connect them

- Physical: CPUs, storage, and external devices/sensors along with the networks
and communication devices that connect them

• Architectural approaches, styles, patterns, or mechanisms employed, including
what quality attributes they address and a description of how the approaches
address those attributes (3-6 slides)

• Use of commercial off-the-shelf (COTS) products and how they are chosen/integrated
(1-2 slides)

• Trace of 1-3 of the most important use case scenarios, including, if possible, the
run-time resources consumed for each scenario (1-3 slides)

• Trace of 1-3 of the most important growth scenarios, describing, if possible, the
change impact (estimated size/difficulty of the change) in terms of the changed
components, connectors, or interfaces (1-3 slides)

• Architectural issues/risks. with respect to meeting the driving architectural

requirements (2-3 slides)

• Glossary (1 slide)

Figure 3.2 Example Template for the Architecture Presentation

3.2 Detailed Description of the ATAM Steps 	49 48 	The ATAM—A Method for Architecture Evaluation

An architectural style includes a description of component types and their
topology, a description of the pattern of data and control interactions among
the components, and an informal description of the benefits and drawbacks of
using that style. Architectural styles are important since they differentiate
classes of designs by. offering experiential evidence of how each class has been
used along with qualitative reasoning to explain why each class has certain
properties and when to use it.

For example, Figure 3.3 shows the Concurrent Pipelines style. This style
consists of a set of pipelines, each of which consists of a sequence of pro-
cesses. Each input message is incrementally transformed by each process in the
appropriate sequence. Systems built like this have several benefits, many of
which result in enhanced modifiability.

• The system can be understood easily as a sequence of data transformations.
• Each element of the pipeline can be modified or replaced, in principle,

without affecting any of the other elements.
• Elements can be reused elsewhere.
• Evaluators can reason about this style in terms of its performance

implications.

A style can be thought of as a set of constraints on an architecture—con-
straints on component types and their interactions—and these constraints
define the set or family of architectures that satisfy them. By locating architec-
tural styles in an architecture, the evaluators can see what strategies the archi-
tect has used to respond to the system's driving quality attribute goals.

A specialization of an architectural style, called attribute-based architectural
styles (ABASs), is particularly useful in the ATAM. An ABAS is an architectural

• „:

The ATAM concentrates on identifying architectural approaches and archi-
tectural styles' because these represent the architecture's means of addressing
the highest priority quality attributes, that is, the means of ensuring that the
critical requirements are met in a predictable way. These architectural
approaches define the important structures of the system and describe the ways
in which the system can grow, respond to changes, withstand attacks, integrate
with other systems, and so forth.

1. As we mentioned in Chapter 1, we use the term approaches because not all architects are
familiar with the language of architectural styles and so may not be able to enumerate a set of
styles used in the architecture. But every architect makes architectural decisions, and the set of
these we call approaches. These can certainly be elicited from any conscientious architect.

1 1 1 1 1

KEY:

Queue
Input
	

Processor Process 	Data Flow

Figure 3.3 Concurrent Pipelines Style

Hardware
Failure

COTS Software
Failures

tIlity

— Availability

— Security

Data

Transaction
Throughput

— (M,L r nimize storage latency
on customer DB to 200 ms.

(H,M) Deliver video in real time

(M,M) Maximize average throughput
to the authentication server

— Modifiability
-- New Product

Categories
(L,H) Add CORBA middleware

— Change COTS —[in < 20 person-months

(H,L) Change Web user interface
in < 4 person-weeks

(L,H) tPraogec rr oetaert tact Sit '31 irneq<lesseconds [

	 (M,M) Restart after disk failure in < 5 minutes

(H,M) Network failure is detected and
recovered in < 1.5 minutes

Data
Confidentiality —

Data
Integrity

(L,H) Credit card transactions are
securo 99.999% of time

— (L,H) Customer database authorization
works 99.999% of time

50 	The ATAM—A Method for Architecture Evaluation
	

3.2 Detailed Description of the ATAM Steps 	51

style along with an explanation of how that style achieves certain quality
attributes. That explanation in an ABAS leads to attribute-specific questions
associated with the style. For example, a performance-oriented ABAS high-
lights architectural decisions in a style that is relevant to performance—how
processes are allocated to processors, where they share resources, how their
priorities are assigned, how they synchronize, and so forth. The derivative
questions probe important architectural decisions such as the priority of the
processes, estimates of their execution time, places where they synchronize,
queuing disciplines, and so forth: in other words, information that is relevant to
understanding the performance of this style. ABASs are discussed in Chapter 5.

3.2.5 Step 5: Generate the Quality Attribute Utility Tree

In this step the evaluation team works with the project decision makers (here,
the architecture team, manager, and customer representatives) to identify, pri-
oritize, and refine the system's most important quality attribute goals. This cm-
cial step guides the remainder of the analysis. Lacking this guidance, the
evaluators could spend precious time analyzing the architecture ad infinitum
without ever touching on issues that mattered to its sponsors. There must be a
way to focus the attention of all the stakeholders and the evaluation team on the
aspects of the architecture that are most critical to the system's success. This is
accomplished by building a utility tree.

The output of the utility tree–generation step is a prioritization of specific
quality attribute requirements, realized as scenarios. The utility tree serves to
make concrete the quality attribute requirements, forcing the architect and cus-
tomer representatives to define the relevant quality requirements precisely.

Utility trees provide a mechanism for directly and efficiently translating
the business drivers of a system into concrete quality attribute scenarios. For
example, in an e-commerce system two of the business drivers might be stated
as, "Security is central to the success of the system since ensuring the privacy
of our customers' data is of utmost importance," and "Modifiability is central
to the success of the system since we need to be able to respond quickly to a
rapidly evolving and very competitive marketplace." Before the evaluation
team can assess the architecture, these system goals must be made more spe-
cific and more concrete. Moreover, the team needs to understand the relative
importance of these goals versus other quality attribute goals, such as perfor-
mance, to determine where the team should focus its attention during the archi-
tecture evaluation. Utility trees help to prioritize and make concrete the quality
goals. An example of a utility tree is shown in Figure 3.4.

The utility tree shown in Figure 3.4 contains utility as the root node. This
is an expression of the overall "goodness" of the system. Quality attributes
form the second level of the utility tree. Typically the quality attributes of per-
formance, modifiability, availability, and security are the children of utility,

Figure 3.4 Sample Utility Tree

although participants are free to name their own quality attributes. Sometimes
different stakeholder groups use different names for the same ideas (for exam-
ple, some stakeholders prefer to speak of "maintainability"). Sometimes they
introduce quality attribute names that are meaningful in their own culture but
not widely used elsewhere. Whatever names the stakeholders introduce are
fine, as long as the stakeholders are able to explain what they mean through
refinement at the next levels.

Under each of these quality attributes are specific quality attribute refine-
ments. For example, in Figure 3.4 performance is decomposed into "data
latency" and "transaction throughput." This is a step toward refining the
attribute goals into quality attribute scenarios that are concrete enough for pri-
oritization and analysis. "Data latency" is then further refined into "minimize
storage latency on customer database" and "deliver video in real time" because
these are both kinds of data latency relevant to the system of the example.

These quality attribute scenarios (see the sidebar Scenarios) at the leaf
nodes are now specific enough to be prioritized relative to each other and
(equally important) analyzed. The prioritization may be on a 0 to 10 scale or
may use relative rankings such as High (H), Medium (M), and Low (L). (We
prefer the High/Medium/Low approach since we find that it works well for our
purposes and takes less time than trying to assign precise numbers to an impre-
cise quantity.)

3.2 Detailed Description of the ATAM Steps 	53 52 	The ATAM—A Method for Architecture Evaluation

Scenarios

Typically the first job of an architecture evaluation is to precisely elicit the spe-
cific quality goals against which the architecture will be judged. The mecha-
nism that we use for this elicitation is the scenario.

We use scenarios heavily in all three of our evaluation methods, and many
other software and system analysis methods use them as well. They have been
used for years in user interface engineering, requirements elicitation, perfor-
mance modeling, and safety inspections. Why do so many fields rely on such a
seemingly simple and innocuous device? The answer is threefold: they are
simple to create and understand, they are inexpensive (it doesn't take much
training to generate or work with them), and they are effective.

A scenario is a short statement describing an interaction of one of the
stakeholders with the system. A user would describe using the system to per-

form some task; his or her scenarios would very much resemble use cases in

object-oriented parlance. A maintainer would describe making a change to the
system, such as upgrading the operating system in a particular way or adding a
specific new function. A developer's scenario might focus on using the archi-

tecture to build the system or predict its performance. A product line manager's
scenario might describe how the architecture is to be reused for a second prod-

uct in a product line.
Scenarios provide a vehicle for taking vague development-time qualities

such as modifiability and turning them into something concrete: specific exam-
ples of current and future uses of a system. Scenarios are also useful in under
standing run-time qualities such as performance or availability. This is because
scenarios specify the kinds of operations over which performance needs to be
measured or the kinds of failures the system will have to withstand.

Structure of Scenarios
Scenarios tell a very brief story about an.interaction with the system from the
point of view of a stakeholder. We ask stakeholders in evaluation exercises to
phrase scenarios using a three-part format that helps keep the descriptions crisp
and to make sure that the scenario provides enough information to serve as the
basis for investigation. The three parts are stimulus, environment, and response.

The stimulus is the part of the scenario that explains or describes what the

•, stakeholder does to initiate the interaction with the system. A user may invoke
a function; a maintainer may make a change; a tester - may run a test; an opera-

tor may reconfigure the system in some way; and so. on.
The environment describes what's going on at the time of the stimulus.

What is the system's state? What unusual conditions are in effect? Is the sys-
tem heavily loaded? Is one of the processors down? Is one of the communica-
tiottchannels flooded? Any ambient condition that is relevant to understanding
the scenario should be described. By convention, if the environment is simply
"under.aormal cOnclitions," then it is omitted.

• •'" The • response tells ns'hOW the system—through • its architecture—shotild
respond to the stimulus. Is the function carried out? Is the test sticcessful?
Does the reconfiguration happen? How much effort did the maintenance
change require?

The response is often the key to understanding what quttlity attribute the
stakeholder whb.proposed the. scenario is concerned ttbout. If the response to a
user-invokes-a-function stimulus is simply that the function happens, then the
stakeholder is probably interested in the system's functionality. If the stake-
holder appends "with no error" or "within two seconds" to the end, that indi-
cates an interest in reliability and performance, respectively. By noticing the

• .-•• - quality attribute of interest, the evaluation leader can prod the stakehblder to
• clarify or refine the scenario if necessary. Perhaps the stakeholder is interested
in performance but left out a statement of the scenario's environment. The
leader could ask about the ambient workload on the system to see if that

':played a part in the stakeholder's interest. Or the leader could ask Whether the
stakeholder was interested in worst-case, average, or best-case performance.

Ideally, all scenarios are expressed in this stimulus–environment–
response forma In practice we don't usually achieve this .ideal. In the heat of

. i.',;•.brainstorming we don't always pause to insist that every scenario, be well
.:forined. That's why the template in Figure 3.5 includes a place for the stimu-

us, environment, and response to be captured: That way, we can spend time
structuring only those scenarios selected for analysis.

Types of Scenarios

In the ATAM we use three types of scenarios: use case scenarios (typical uses
of the existing system, used for information elicitation), growth scenarios
(anticipated changes to the system), and exploratory scenarios (extreme changes
that are expected to "stress" the system). These different types of scenarios are
used to probe a system from different angles, optimizing the chances of surfac-
ing architectural decisions at risk. Examples of each type of scenario follow.

Use Case Scenarios

Use case scenarios describe a user's intended interaction with the completed,
running system. For example:

1. The user wants to examine budgetary and actual data under different
fiscal years without reentering project data (usability).

2. A data exception occurs and the system notifies a defined list. of recip
ients by e-mail and displays the offending conditions in red on data
screens (reliability).

3. The user changes a graph layout from horizontal to vertical and the
graph is redrawn in one second (performance).

4. A remote user requests a database report via the Web during a peak
period and receives it within five seconds (performance). •

54 	The ATAM—A Method for Architecture Evaluation 3.2 Detailed Description of the ATAM Steps 	55

5. The caching system is switched to another processor when its proces-
sor fails, within one second of the failure (reliability).

6. There is a radical course adjustment before weapon release while approach-
ing the target that the software computes in 100 ms. (performance).

Notice that each of the above use case scenarios expresses a specific
stakeholder's desires. Also, the stimulus and the response associated with the
attribute are easily identifiable. For example, in scenario 6 above, "radical
course adjustment before weapon release while approaching the target," the
stimulus and latency goal of 100 ms. is called out as being the important

response measure. For scenarios to be well formed it must be clear what the
stimulus is, what the environmental conditions are, and what the measurable
or observable manifestation of the response is.

The quality attribute characterizations (which are discussed in Chapter 5)
suggest questions that can be helpful in refining scenarios. Again consider sce-
nario 6, which considers thse analysiS questions:

• Are data sampling rates increased during radical course adjustments?

• Are real-time deadlines shortened during radical course adjustments?

• Is more execution time required to calculate a weapon solution during
radical course adjustments?

Growth Scenarios

Growth scenarios represent typical anticipated changes to a system. Each sce-
nario also has attribute-related ramifications, many of which are for attributes
other than modifiability. For example, scenarios 1 and 4 below will have per-
formance consequences and scenario 5 might have performance, security, and

reliability implications.

1. Change the heads-up display to track several' targets simultaneously

without. affecting latency.

2. Add a new message type to the system's repertoire in less than a per-
son-week of work..

3. Add a collaborative planning capability with which two planners at dif-
ferent sites can collaborate on a plan in less than a person-year of work.

4. Double the maximum number of tracks to be handled by the system
and keep to 200 ms. the maximum latency of track data to the screen.

5. Migrate to an operating system in the same family, or to a new release
of the existing operating system with less than a person-year of work.

6. Add a new data server to reduce latency in use case scenario 5 to 2.5
seconds within one person-week.

7. Double the size of existing database tables while maintaining a one-

second average retrieval time:4-44-04v,

Exploratory Scenarios

Exploratory scenarios push the envelope and stress the system. The goal of these
scenarios is to expose the limits or boundary conditions of the current design,
exposing possibly implicit assumptions. Systems are seldom conceived and
designed to handle these kinds of modifications, but at some point in the future
these might be realistic requirements for change, so the stakeholders might
like to understand the ramifications of such changes. For example:

1. Add a new three-dimensional map feature and a virtual reality inter-
face for viewing the maps in less than five person,months of effort.

2. Change the underlying Unix platform to Macintosh.

3. Reuse the 25-year7old software on a new generation of the aircraft.
4. Reduce the time budget for displaying changed track data by a factor

of ten.

5. Improve the system's availability from 98% to 99.999%.

6. Make changes so that half of the servers can go down during normal
operation without affecting overall system availability.

7. Increase the number of bids processed hourly by a factor of ten while
keeping worst-case response time below ten seconds.

Each type of scenario—use case, growth, and exploratory—helps illumi-
nate a different aspect of the architecture, and together provide a three-
pronged strategy for evaluation. Because scenarios are easy to formulate and
understand, they are an excellent vehicle with which all stakeholders can com-
municate their architectural interests, and serve as the backbone for inazty-
evaluation methods . 	.

Participants prioritize the utility tree along two dimensions: (1) by the
importance of each scenario to the success of the system and (2) by the degree
of difficulty posed by the achievement of the scenario, in the estimation of the
architect. For example, "minimize storage latency on customer database" has
priorities (M,L), meaning that it is of medium importance to the success of the
system and the architect expects low difficulty to achieve, while "deliver video
in real time" has priorities (H,M), meaning that it is highly important to the
success of the system and the architect perceives the achievement of this sce-
nario to be of medium difficulty.

Clearly the scenarios marked (H,H) are the prime candidates for scrutiny
during the analysis steps of the ATAM. After those are handled, then either the
(M,H) or (H,M) scenarios are attacked, depending on the consensus of the par-
ticipants. After those, time permitting, will come the (M,M) scenarios. A scenario

56 	The ATAM—A Method for Architecture Evaluation
	

3.2 Detailed Description of the ATAM Steps 	57

garnering an L rating in either category is not likely to be examined since it
makes little sense to spend time on a case of little importance or little expected
difficulty.

Refining the utility tree often leads to interesting and unexpected results.
For example, Figure 3.4 came from an actual evaluation in which the stake-
holders initially told us that security and modifiability were the key quality
attributes. It turns out that another group of stakeholders thought that in fact
performance and availability were the important drivers, and this discrepancy
did not surface until the utility tree step. Creating the utility tree guides the key
stakeholders in considering, explicitly stating, and prioritizing all of the current
and future driving forces on the architecture.

The output of utility tree generation is a prioritized list of scenarios that
serves as a plan for the remainder of the ATAM. It tells the ATAM team where
to spend its (relatively limited) time, and in particular where to probe for archi-
tectural approaches and risks. The utility tree guides the evaluators to look at
the architectural approaches involved with satisfying the high-priority scenar-
ios at the leaves of the utility tree. Additionally, the utility tree serves to make
the quality attribute requirements concrete, forcing the evaluation team and the
customer to define their quality requirements precisely. Statements commonly
found in requirements documents such as "The architecture shall be modifiable
and robust" are untenable here because they have no operational meaning: they
are not testable.

3.2.6 Step 6: Analyze the Architectural Approaches

At this point, there is now a prioritized set of concrete quality requirements
(from Step 5) and a set of architectural approaches utilized in the architecture
(from Step 4). Step 6 sizes up how well suited they are to each other. Here, the
evaluation team can probe the architectural approaches that realize the impor-
tant quality attributes. This is done with an eye to documenting these architec-
tural decisions and identifying their risks, nonrisks, sensitivity points, and
tradeoffs. The team probes for sufficient information about each architectural
approach to conduct a rudimentary analysis about the attribute for which the
approach is relevant. The goal is for the evaluation team to be convinced that
the instantiation of the approach in the architecture being evaluated is appropri-
ate for meeting the attribute-specific requirements for which it is intended.

Outputs of this step include

• The architectural approaches or decisions relevant to each high-priority
utility tree scenario. The team should expect that all the approaches identi-
fied have been captured in Step 4; if not, the team should probe to find out
the reason for the discrepancy. The architect should identify the approach
and the components, connectors, and constraints involved.

• The analysis questions associated with each approach, geared to the qual-
ity attribute with which its scenario is associated. These questions might
come from documented experience with approaches (as found in ABASs
and their associated quality attribute characterizations, discussed in Chap-
ter 5), from books on software architecture (see For Further Reading at the
end of this chapter), or from the prior experiences of the assembled stake-
holders. In practice all three areas are mined for questions.

• The architect's responses to the questions.

• The risks, nonrisks, sensitivity points, and tradeoff points identified. Each
of these is associated with the achievement of one or more quality attribute
refinements in the utility tree with respect to the quality attribute questions
that probed the risk.

In effect, the utility tree tells the evaluation team where to probe the archi-
tecture (because this is a highly important factor for the success of the system),
the architect (one hopes) responds with the architectural approach that answers
this need, and the team can use the quality attribute–specific questions to probe
the approach more deeply. The questions help the team to

• Understand the approach in detail and how it was applied in this instance
• Look for well-known weaknesses with the approach
• Look for the approach's sensitivity and tradeoff points
• Find interactions and tradeoffs with other approaches

In the end, each of these may provide the basic material for the description
of a risk, and this is recorded in an ever-growing list of risks.

For example, assigning processes to a server might affect the number of
transactions that server can process in a second. Thus the assignment of pro-
cesses to the server is a sensitivity point with respect to the response as mea-
sured in transactions per second. Some assignments will result in unacceptable
values of this response—these are risks. Finally, when it turns out that an archi-
tectural decision is a sensitivity point for more than one attribute, it is desig-
nated as a tradeoff point.

The analysis questions are not an end unto themselves. Each is a starting
point for discussion and for the determination of a potential risk, nonrisk, sen-
sitivity point, or tradeoff point. These, in turn, may catalyze a deeper analysis,
depending on how the architect responds. For example, if the architect cannot
characterize client loading and cannot say how priorities are allocated to pro-
cesses and how processes are allocated to hardware, then there is little point in
doing a sophisticated queuing or rate-monotonic performance analysis. If such
questions can be answered, then the evaluation team can perform at least a
rudimentary or back-of-the-envelope analysis to determine whether these archi-
tectural decisions are problematic or not vis-à-vis the quality attribute requirements
they are meant to address. The analysis is not meant to be comprehensive and

Analysis of Architectural Approach

Scenario ft; Number Scenario: Text of scenario from utility tree

Attribute(s). 	 Quality attribute(s) with which this scenario is concerned

Architectural
Diagram

Primary
CPU (0S1)

heartbeat
(1 sec.)

Backup CPU
w/watchdog

(052)

Switch
CPU (0S1)

3.2 Detailed Description of the ATAM Steps 	59 58 	The ATAM—A Method for Architecture Evaluation

detailed. The key is to elicit enough architectural information to establish some
link between the architectural decisions that have been made and the quality
attribute requirements that need to be satisfied.

A template for capturing the analysis of an architectural approach for a
scenario is shown in Figure 3.5.

For example, Step 6 might elicit from an architect the following informa-
tion, shown in Figure 3.6, in response to a utility tree scenario that required
high availability from a system.

As shown in Figure 3.6, based upon the results of this step the evaluation

team can identify and record a set of sensitivity points and tradeoff points, risks
and nonrisks. All sensitivity points and tradeoff points are candidate risks. By
the end of the ATAM, each sensitivity point and each tradeoff point should be
categorized as either a risk or a nonrisk. The risks, nonrisks, sensitivity points,
and tradeoffs are gathered together in separate lists. The numbers R8, T3, S4,
N12, and so on in Figure 3.6 simply refer to entries in these lists.

Analysis of Architectural Approach

Scenario #: A 12
	

Scenario: Detect and recover from HW failure of a primary CPU

Attribute(s)
	

Availability

Environment
	

Normal operations

Stimulus
	

One of the CPUs fails

Response
	

0.999999 availability of the switch

Architectural Decisions 	Sensitivity 	Tradeoff
	

Risk 	Nonrisk

Backup CPUs
	

S2 	 R8

No backup data channel
	

S3 	 T3 	 R9

Watchdog 	 S4
	

N12

Heartbeat
	

S5
	

N13

Failover routing S6 N14

Reasoning • Ensures no common mode failure by using different hardware and
operating system (see Risk R8)

• Worst•case rollover is accomplished in 4 seconds as computing
state takes that long at worst

• Guaranteed to detect failure with 2 seconds based on rates of
heartbeat and watchdog

• Watchdog is simple and proven reliable
• Availability requirement might be at risk due to lack of backup

data channel (see Risk R9)

Environment

Stimulus

Response

Architectural decisions
relevant to this scenario
that affect quality
attribute response

Relevant assumptions about the environment in which the
system resides, and the relevant conditions when the scenario
Is carried out

A precise statement of the quality attribute stimulus (e.g., function
invoked, failure, threat, modification . .) embodied by the scenario

A precise statement of the quality attribute response (e.g., response time,
measure of difficulty of modification)

Figure 3.6 Example of Analysis of an Architectural Approach

Architectural Decisions 	Sensitivity 	Tradeoff
	

Risk 	Nonrisk

Sensitivity
	

Tradeoff 	Risk # 	Nonrisk #
Point #
	

Point #

Reasoning Qualitative and/or quantitative rationale for why the list of architectural
decisions contribute to meeting each quality attribute requirement expressed
by the scenario

Diagram or diagrams of architectural views annotated with architectural
information to support the above reasoning, accompanied by explanatory
text if desired

At the end of this step, the evaluation team should have a clear picture of
the most important aspects of the entire architecture, the rationale for key
design decisions that have been made, and a list of risks, nonrisks, sensitivity
points, and tradeoff points.

At this point the team can now test its understanding of the architectural
representations that have been generated. This is the purpose of the next two steps. Architectural

Diagram

3.2.7 Step 7: Brainstorm and Prioritize Scenarios

Scenarios drive the testing phase of the ATAM. Generating a set of scenarios
has proven to be a great facilitator of discussion and brainstorming, when

Figure 3.5 Template for Analysis of an Architectural Approach

60 	The ATAM—A Method for Architecture Evaluation
	

3.2 Detailed Description of the ATAM Steps 	61

greater numbers of stakeholders (see sidebar Stakeholders) are gathered to par-
ticipate in the ATAM. Scenarios are used to

• Represent stakeholders' interests

• Understand quality attribute requirements

While utility tree generation is primarily used to understand how the archi-
tect perceived and handled quality attribute architectural drivers, the purpose of
scenario brainstorming is to take the pulse of the larger stakeholder commu-
nity. Scenario brainstorming works well in larger groups, creating an atmosphere
in which the ideas and thoughts of one person stimulate others. The process
fosters communication and creativity and serves to express the collective mind
of the participants. The prioritized list of brainstormed scenarios is compared
with those generated via the utility tree exercise. If they agree, great. If addi-
tional driving scenarios are discovered, this is also an important outcome.

In this step, the evaluation team asks the stakeholders to brainstorm three
kinds of scenarios.

1. Use case scenarios represent the ways in which the stakeholders expect
the system to be used. In use case scenarios the stakeholder is an end user,
using the system to execute some function.

2. Growth scenarios represent ways in which the architecture is expected to
accommodate growth and change in the moderate near term: expected
modifications, changes in performance or availability, porting to other
platforms, integration with other software, and so forth.

3. Exploratory scenarios represent extreme forms of growth, ways in which
the architecture might be stressed by changes: dramatic new performance
or availability requirements (order-of-magnitude changes, for example),
major changes in the infrastructure or mission of the system, and so forth.
Whereas growth scenarios provide a way to show the strengths and weak-
nesses of the architecture with respect to anticipated forces on the system,
exploratory scenarios attempt to find more sensitivity and tradeoff points
that appear at the stress points of the architecture. The identification of
these points helps assess the limits of the system's architecture.

Stakeholders are encouraged to consider scenarios in the utility tree that
have not been analyzed; those scenarios are legitimate candidates to put into
the brainstorm pool. This gives the stakeholders the opportunity to revisit sce-
narios from Steps 5 and 6 that they might think received too little attention.
This is in keeping with the spirit of Steps 7 and 8 as testing activities.

Once the scenarios have been collected, they must be prioritized. First,
stakeholders are asked to merge scenarios that they believe represent the same
behavior or quality concern. Then stakeholders vote for the scenarios they
think are most important. Each stakeholder is allocated a number of votes

equal to 30 percent of the number of scenarios, 2 rounded up. So, for instance, if
there were eighteen scenarios collected, each stakeholder would be given six
votes. These votes can be allocated in any way that the stakeholder sees fit: all
six votes for one scenario, one vote each for six scenarios, or anything in between.

Each stakeholder casts his or her votes publicly; our experience tells us it's
more fun that way, and the exercise builds unity among the participants. Once
the votes are tallied, the evaluation leader orders the scenarios by vote total and
looks for a sharp drop-off in the number of votes. Scenarios "above the line"
are adopted and carried forth to subsequent steps. For example, a team might
consider only the top five scenarios.

Figure 3.7 shows a few example scenarios from an evaluation of a vehicle
dispatching system (only the top five scenarios of the more than thirty collected
are shown here), along with their votes.

At this point in an evaluation, we pause and compare the result of scenario
prioritization with the results of the utility tree exercise from Step 5 and look
for agreement or disagreement. Using group consensus, each high-priority
brainstormed scenario is placed into an appropriate leaf node in the utility tree.
First, we agree on which quality attributes each scenario is addressing. In Figure
3.8, the highly ranked scenarios from Figure 3.7 are shown along with an indi-
cation of the quality attribute or attributes that each scenario affects most heavily;
this helps to place the scenarios in appropriate branches of the utility tree.

When a brainstormed scenario is placed into the utility tree, one of three
things will happen:

1. The scenario will match and essentially duplicate an already-existing leaf
node.

Votes Scenario

4 Dynamically replan a dispatched mission within 10 minutes 28

27 Split the management of a sot of vehicles across multiple control sites 26

10 Change vendor analysis tools after mission has commenced without
restarting system

23

12 Retarget a collection of diverse vehicles to handle an emergency
situation in less than 10 seconds after commands are issued

13

14 Change the data distribution mechanism from CORBA to a new
emerging standard with less than six person-months' effort

12

Figure 3.7 Examples of Scenarios with Rankings

2. This is a common facilitated brainstorming technique.

3.2 Detailed Description of the ATAM Steps 	63
62 	The ATAM—A Method for Architecture Evaluation

Scenario 	# Votes 	Quality Attributes

4 	 28 	Performance

27 	 26 	Performance, modifiability, availability

10 	 23 	Modifiability

12 	 13 	Performance

14 	 12 	Modifiability

Figure 3.8 Highly Ranked Scenarios with Quality Attribute Annotations

2. The scenario will go into a new leaf node of an existing branch (or, if it
addresses more than one quality attribute, it will be placed into the leaves
of several branches after rewording to ensure its relevance to each particu-
lar quality attribute is clear).

3. The scenario will fit in no branch of the tree because it expresses a quality
attribute not previously accounted for.

The first and second cases indicate that the larger stakeholder community
was thinking along the same lines as the architect. The third case, however,
suggests that the architect may have failed to consider an important quality
attribute, and subsequent probing here may produce a risk to document.

From the introduction to this chapter, recall that Step 7 is the first of two
so-called testing steps.The utility tree generation and the scenario brainstorm-
ing activities reflect the quality attribute goals, but via different elicitation
means and from the point of view of different groups of stakeholders. The sce-
narios elicited in Step 5 are being tested against those representing a larger
group of stakeholders.

The architects and key developers created the initial utility tree. The wid-
est possible group of stakeholders is involved in the scenario brainstorming and
prioritization. Comparing the highly ranked outputs of both activities often
reveals disconnects between what the architects believe to be important system
qualities and what the stakeholders as a whole believe to be important. This, by
itself, can reveal serious risks in the architecture by highlighting entire areas of
concern to which the architects have not attended. Table 3.1 highlights the dif-
ferences between Step 5 and Step 7.

Before this step, the utility tree was the authoritative repository of all the
detailed high-priority quality attribute requirements from all sources. After this
step, when the high-priority brainstormed scenarios are reconciled with the
utility tree, it still is.

Table 3.1 Utility Trees versus Scenario Brainstorming

Utility Trees
	

Scenario Brainstorming

Stakeholders 	Architects, project leader 	All stakeholders

Typical group 	evaluators; 2-3 project
size 	 personnel

	 evaluators; 5-10 project-related
personnel

Primary goals
	

Elicit, make concrete, and
	

Foster stakeholder communication
prioritize the driving quality 	to validate quality attribute goals
attribute requirements 	 elicited via the utility tree
Provide a focus for the remain-
der of the evaluation

Approach
	

General to specific! begin with
	

Specific to general: begin with
quality attributes, refine until

	
scenarios, then identify quality

scenarios emerge 	 attributes they express

NIMMNIMI■ 	

Stakeholders

A multitude of people have a stake in a system's architecture, and all of them
exert whatever influence they can on the architect(s) to make sure that their
goals are addressed. The users want a system that is easy to use and has rich.
functionality. The maintenance organization wants a system that is easy to
modify. The developing organization (as represented by management) wants a
system that is easy to build and will employ the existing work force to good
advantage. The customer (who pays the bill) wants the system to come in on
time and within budget.

The architecture is where these concerns converge, and it is the architect
who must weigh them carefully and mediate their achievement. It can be a
very daunting task.

First of all, many of these concerns are not expressed as actual require-
ments. Put another way, the requirements, specification for a system conveys
only a fraction of the constraints that an architecture must satisfy to be accept-
able. The model taught in software engineering classes, wherein the require-
ments document comes sailing through the transom window and lamb with a
thud on the architect's desk, after which he or she can confidently design the
system, is just not true. This model ignores the other stakeholders for the
architecture who have concerns beyond the behavior and functionality. They
also levy additional goals on the architecture, and although these goals are not
quite requirements, the architecture will be as much of a failure if those goals
are not met.

64 	The ATAM—A Method for Architecture Evaluation
65 3.2 Detailed Description of the A TAM Steps

For example, the project manager may need to utilize an otherwise-idle
staff who are experts in databases and may exert pressure on the architect to
include a database in the system. The presence of a recently purchased tool
environment, the cost of which the management is eager to justify, exerts pres-
sure to develop with an architectural style that can be easily handled by that
environment. The need to conform to new standards, to incorporate new kinds
of peripheral devices, to migrate to new versions of the operating system, or to
accommodate new functionality are architectural constraints that rarely make
it into a requirements document in ways other than the vague and not-very-
helpful dictum, "The system shall be easy to change."

And, as we have already seen, none of the concerns expressed as a
generic quality (such as "The system shall be easy:to use") can stand as the
basis for any sort of design decision.

Worse, many of the stakeholders' wants and needs are likely to be in
direct conflict with each other. Users' desire for speed may conflict with the
maintainers' desire for modifiability, for instance. The architecture serves as
the focal point for all of the often-conflicting pressures manifested by the dif-
ferent stakeholders' concerns. All of these wants and desires converge in the
architecture, and the architect is often in the position of mediating the conflicts.

Therefore, a critical step of any architecture evaluation is to elicit exactly
what the goals for the architecture in fact are, and the stakeholders who own
those goals are the ones from whom they are elicited. The requirements speci-
fication, if it exists, is but a starting point. The other goals, and the stakehold-
ers who chaMpion them, must be taken into account. This leads to one of the
most important principles about architecture evaluation:

Active participation by the architecture's stakeholders is absolutely
essential for a high-quality evaluation.

The following table shows some of the architecture's stakeholders who
might be involved in an architectural evaluation.. Of course, not all are needed
for every architecture evaluation; the specific context will determine which are
appropriate and which are not.

Of course, it is often impractical to assemble this many people for a two-
or three-day meeting. Many of the stakeholders may not even work for the
organization in which the architecture is being developed. The goal is to have
the important stakeholders' views represented. If, for example, the system is
envisioned to have a long lifetime of evolution and modification, then you
should recruit people who can speak to the kinds of modifications that the
architecture should enable. And not all systems have the same set of stakehold-
ers—perhaps performance is simply not a concern, or there will be no system

administrator.
If you cannot assemble all of the architecture's stakeholders, then try to

assemble people who can represent them. Having stakeholders missing or

• Stakeholders for an Architecture EvalUatibn

Stakeholder 	Definition

Producers of the System

Software 	Person responsible for the
architect 	architecture of the system

and responsible for making
tradeoffs among compet-
ing quality pressures

Developer
	

Coder or designer

Maintainer
	

Person making changes
after initial deployment

Integrator
	

Developer responsible for
integrating (assembling)
the components

Tester
	

Developer responsible for
testing the system

Standards
	

Developer responsible for
expert
	

knowing the details of stan-
dards (current and future)
to which the software must
conform

engineer
Performance

tem actifacts to see if the
Person who analyzes sys-

system will meet its perfor-
mance and throughput
requirements

Security expert
	

Person responsible for
making sure that the system
will meet its security
requirements

Project
	

Person who allocates
manager 	resources to teams, is

responsible for meeting
schedule and budget, inter-
faces with customer

Interest

Moderation and mediation all
of the quality concerns of the
other stakeholders

Clarity and completeness of
architecture description, high
cohesion of parts, limited cou-
pling of parts, clear intercon-
nection mechanisms

Maintainability, ability to locate
every place in the system that
must change in response to a
modification

Same as developer

Integrated, consistent error-
handling protocols; limited
component coupling; high
component cohesion; concep-
tual integrity .

Separation of concerns, modi-
fiability, interoperability

Understandability, conceptual
integrity, performance,
reliability

Security

Clear structuring of architec-
ture to drive team formation,
work breakdown structure,
milestones and deadlines, etc.

(continued)

Functionality, usability

Architectural clarity, complete-
ness, simple interaction mech-
anisms, simple tailoring
mechanisms

Functionality, usability,
flexibility

iit#4$0:

'End user

Application
builder (in
the case of a
product-line
architecture)

Mission
specialist,
mission
planner ,

represented with low fidelity exposes, you to the risk that the architecture will

not be analyzed (or will be analyzed with low fidelity) with respect to the

missing stakeholders' concerns. The acceptability of that risk to you will
determine whether or not you wish to proceed with the evaluation anyway.

The quality of a software architecture evaluation depends in very large

part on the quality of the stakeholders whom you are able to assemble
for it.

We wish to call out one stakeholder in the preceding in particular: the„

software architect. The next principle of sound architecture evaluations is this:

Insist on having the architect, or the architecture team, present at the
evaluation.

User of the implemented
system

Person who will take the
architecture and any reus-
able components that exist
with it and instantiate them
to build a product

Representative of the cus-
tomer who knows how the
system is expected to be
used to accomplish strate-
gic objectives; has broader
perspective than end users
alone

Servicers of the System

System
administrator

Person running the system 	Ease in finding the location of

(if different from user) 	problems that may arise

Persons Interfacing or Interoperating with the Software

Representatives
of the domain or
community

Builder's or owners of simi- 	Interoperability

lar systems or systems with
which the subject system is
intended to work

Network
administrator 	network

Person administering the 	Network performance, pre-
dictability

Service
representatives

People who provide sup-
port for the use and mainte- tailorability
nance of the system in the
field

Usability, serviceability,

3.2 Detailed Description of the ATAM Steps 	67
66 	The ATAM—A Method for Architecture Evaluation

Stakeholders for an Architecture Evaluation (continued)
	

Stakeholders for an Architecture Evaluation (continued)

Stakeholder 	Definition Interest

Stakeholder 	Definition 	 Interest

Product-line
manager or
"reuse czar"

Customer

Person who has a vision for
how this architecture and
related assets can be (re-)
used to further the develop-
ing organization's long-
range goals

Purchaser of the system

Reusability, flexibility

Schedule of completion, over-
all budget, usefulness of the
system, meeting customers'
(or market's) expectations

System
architect

Device expert

Architect of the entire sys-
tem; person who makes
tradeoff decisions between
hardware and software and
who selects the hardware
environment

Person who knows the
devices with which the soft-
ware must interface: can
predict future trends in
hardware technology

Portability, flexibility, perfor-
mance, efficiency

Maintainability, performance Consumers of the System

Therefore, whenever crafting the list of stakeholders to be present during
an evaluation, make sure the architect is first on the list.

Having the architect present is essential for several reasons. First of all,

failure to identify an architect is a sure sign of trouble on a project. Second, an

architecture evaluation will likely be the first time that an architect will have
the luxury of having all of the stakeholders in the same room at the same time,
articulating their goals for the architecture in a facilitated environment. If the

architect is not there, the experience will be wasted. Third, the architect will be

the one who will take away action items requiring attention in the architectural

design. And fourth, somebody has to present the architecture to be evaluated

and explain how it will meet the articulated goals. Who better than the architect?

Remember that you need to not just identify the kinds of stakeholders
who should be present (or represented) but also to identify names of specific
individuals who will serve the stakeholder roles. You can help the client iden-

tify the kinds (using the preceding table), but the client will have to assign

names and ensure their participation. If the client cannot identify individuals

3.2 Detailed Description of the ATAM Steps 	69 68 	The ATAM—A Method for Architecture Evaluation

3.2.8 Step 8: Analyze the Architectural Approaches

After the scenarios have been collected and analyzed, the evaluation team
guides the architect in the process of carrying out the highest-ranked scenarios
from Step 7 on whatever architectural descriptions have been presented. The
architect explains how relevant architectural decisions contribute to realizing
the scenario. Ideally this activity is dominated by the architect's explanation of
scenarios in terms of previously discussed architectural approaches.

In this step the evaluation team performs the same activities as in Step 6,
mapping the highest-ranked newly generated scenarios onto the architectural
artifacts thus far uncovered. Assuming Step 7 didn't produce any high-priority
scenarios that were not already covered by previous analysis, Step 8 is a testing
activity: it is to be hoped that little new information will be uncovered.

3.2.9 Step 9: Present the Results

Finally, the collected information from the ATAM needs to be summarized and
presented back to the stakeholders. This presentation typically takes the form
of a verbal report accompanied by slides but might, in addition, be accompa-
nied by a more complete written report delivered subsequent to the ATAM. In
this presentation the evaluation leader recapitulates the steps of the ATAM and
all the information collected in the steps of the method, including the business
context, the driving requirements, the constraints, and the architecture. Most
important, however, is the set of ATAM outputs:

• The architectural approaches documented

• The set of scenarios and their prioritization

• The set of attribute-based questions

• The utility tree

• The risks discovered

• The nonrisks documented

• The sensitivity points and tradeoff points found

These outputs are all uncovered, publicly captured, and catalogued during
the evaluation. But in Step 9, the evaluation team produces an additional out-
put: risk themes. Experience shows that risks can be grouped together based on
some common underlying concern or systemic deficiency. For example, a

Sensitivities, Risks, and Nonrisks

The ATAM relies heavily on the identification of sensitivity points and risks in
the architecture. It relies on sensitivity points to not only locate potential prob-

tlems (risks) in the architecture but also to find the strengths of the architectute.
One aspect of the method that is often overlooked is that we can find nonrisks
as well as risks.

Recall that nonrisks, like risks; are related to architectural responses
stemming from architectural decisions, based on some assumed stimuli. But
with nonrisks we say that the architectural decision is appropriate—the way
that the architecture has been designed meets the quality attribute require-
ments. We want to record this information, as we record information .about
risks, because if these architectural decisions ever change, we must examine
their effect on the nonrisk to see if it still poses no risk. For example, we might
choose to store some important shared system information in a fiat file located
on a centrally accessible server. We know that this poses no risk because the
file is small, there are no security concerns associated with accessing the infor-
mation in the file, and the various programs that need to use it never attempt to
access it simultaneously. If any of these assumptions ever changed—for exam-
ple, if the size of the file grew dramatically, or it began to hold confidential
inforthation, or if different programs might contend for exclusive access to the
file—then we would have to revisit the architectural decision. Using a flat file
might now be a risk.

As we stated in Chapter 2, a sensitivity point is a property of one or more
components (and/or component relationships) that is critical for achieving (or
failing to achieve) a particular quality attribute response..And as part of an
ATAM effort every sensitivity point should be explicitly classified as a risk or
a nonrisk, depending upon whether the desired response is achieved or not.

But there are other potential problems that we find during an ATAM exer-
cise, and these can stem from factors beyond just architectural decisions. Dur-
ing the evaluation we might uncover potential problems that are managerial or
process-related in nature. We might find supplier-related problems. We might
discover that funding is insecure or schedules are unreasonable or that techni-
cal decisions are being made for political reasons. These findings are called
issues and we record those separately (see the Issues sidebar in Chapter 4).

---RK

group of risks about inadequate or out-of-date documentation might be
grouped into a risk theme stating that documentation is given insufficient con-
sideration. A group of risks about the system's inability to function in the face
of various kinds of hardware and/or software failures might lead to a risk
theme about insufficient attention paid to backup capability or provision of
high availability. For each risk theme, the evaluation team identities which of

and vouch for their participation in time for the evaluation, then you should

call time-out until he or she can. 	
—PCC

c co '‘)
a.

F.;o
ca
c
n itit

*d

**

**

70 	The ATAM—A Method for Architecture Evaluation
3.3 The Phases of the ATAM 	71

the business drivers listed in Step 2 are affected. Identifying risk themes and
then relating them to specific drivers precipitates two effects. First, it brings the
evaluation full circle by relating the final results to the initial presentation. This
provides a satisfying closure to the exercise. Second, it elevates the risks that
were uncovered to the attention of management. What might otherwise have
seemed to a manager like an esoteric technical issue is now identified unambig-
uously as a threat to something that manager cares about.

Because the evaluation team is systematically working through and trying
to understand the architectural approaches, it is inevitable that, at times, the
evaluation team sometimes makes recommendations on how the architecture
might have been designed or analyzed differently. These mitigation strategies
may be process related (for example, a database administrator stakeholder
should be consulted before completing the design of the system administration
user interface), they may be managerial (for example, three subgroups within
the development effort are pursuing highly similar goals and these should be
merged), or they may be technical (for example, given the estimated distribu-
tion of customer input requests, additional server threads need to be allocated to
ensure that worst-case latency does not exceed five seconds). However, offering
mitigation strategies is not an integral part of the ATAM. The ATAM is about
locating architectural risks. Addressing them may be done in any number of ways.

Table 3.2 summarizes the nine steps of the ATAM and shows how each step
contributes to the outputs that the ATAM delivers after an evaluation.

3.3 The Phases of the ATAM

Up to this point we have enumerated and described the steps of the ATAM. In
this section we describe how the steps of the ATAM are carried out over time.
The ATAM comprises four phases, corresponding to segments of time when
major activities occur.

Phase 0 is a setup phase in which the evaluation team is created and a part-
nership is formed between the evaluation organization and the organization
whose architecture is to be evaluated. Phase 1 and Phase 2, the evaluation
phases of the ATAM, comprise the nine steps presented so far in this chapter.
Phase 1 is architecture-centric and concentrates on eliciting architectural infor-
mation and analyzing it. Phase 2 is stakeholder-centric and concentrates on
eliciting stakeholder points of view and verifying the results of the first phase.
Phase 3 is a follow-up phase in which a final report is produced, follow-on
actions (if any) are planned, and the evaluation organization updates its
archives and experience base.

The four phases are detailed next.

Table 3.2 	Steps and Outputs of the ATAM, Correlated

Outputs of the ATAM:

Steps of ATAM:

*C' 	c
a) a) 	o
E S 	2 Ts
0 n

in 	4 -c 	ri can

a) 	 .% 	
CI f.1 N 	 CD co

iz• TO e 	0
' .3 	-i 75,

.r.. 0 	
a) 	co 	ca.

a_Occ 	04

o

c..)
a , u)

0
«. T... v = , 0 .0

(13

0 Q co

2 .- 	>..
a a- co
a. . c
<Oa

e)
a)
c.)
es
o , 4) cx
et ja
4 --
-C-0 •.- , < = ,.

a) t.; :w
c a.– 3
O. = 0
ca 12
2à °

C 	(1,
65

•C:
c
0

*Cr Z

1. Present the ATAM

2. Present business
drivers

*a *b

3. Present architecture „ . *c

4. Identify architectural
approaches

** * .e

5. Generate quality
attribute utility tree

6. Analyze architectural
approaches

*g ** * * * *

7. Brainstorm and priori-
tize scenarios

**

8. Analyze architectural
approaches

*9 ** * * **

9. Present results

Key: ** = the step is a primary contributor to the output; * = the step is a secondary contributor.
a. The business drivers include the first, coarse description of the quality attributes.
b. The business drivers presentation might disclose an already-identified or long-stand-

ing risk which should be captured.
c. The architect may identify a risk in his or her presentation.
d. The architect may identify a sensitivity or tradeoff point in his or her presentation.

• e. Many architectural approaches have standard risks associated with them.
f. Many architectural approaches have standard sensitivities and quality attribute

tradeoffs associated with them.
g. The analysis steps might reveal one or more architectural approaches not identified

in Step 4, which will then produce new approach-specific questions.

3.3.1 Phase 0 Activities

Phases 1 and 2 of the ATAM are where the analysis takes place and so are con-
sidered the "heart" of the method. But before Phase 1 can begin, a partnership

72 	The ATAM—A Method for Architecture Evaluation 	 3.3 The Phases of the Al AM 	73

must be established between the sponsor of the evaluation and the organization
carrying it out. A statement of work must be signed and agreements arranged
about times, dates, costs, and disposition of work. The evaluation team must be
formed. This is the purpose of Phase 0.

Phase 0 includes all the groundwork that must be laid before an architec-
ture evaluation can begin. Properly executed groundwork will ensure that the
exercise will be a success. When the preparation phase is completed, you
should be ready to begin the evaluation exercise with confidence that your cli-
ent will understand what is involved, that the necessary resources will be at
hand, and that the goals and outcomes of the evaluation are clear to all parties.

Phase 0 consists of two parts: establishing a partnership with the client and
preparation for the evaluation phases.

Partnership
Phase 0 involves communication with the person(s) who commissioned the
evaluation, whom we will refer to as the client. How you and the client make
initial contact is beyond the scope of this book, as are any arrangement made
concerning compensation for the work performed. Whatever the circumstances,
we assume that you and the client have conversed about the possibility of per-
forming an architecture evaluation. Now is the time to solidify the agreement.

The client needs to be someone who can exercise control over the project
whose architecture is the subject of evaluation. Perhaps the client is a manager
of the project. Or perhaps the client is someone in an organization who is
acquiring a system based on the architecture. If the acquisition is a major one,
the developing organization may well agree to having its architecture evaluated
by outsiders. The client may or may not work for the same organization as the
acquirer. In any case, it is assumed that the client has enough leverage to cause
the development project to take the necessary time out so that the architecture
can undergo the evaluation. It is also assumed that the client has access to a
broad selection of stakeholders for the architecture.

The following issues must be resolved before the client gives the go-ahead
for the evaluation to take place.

1. The client should have a basic understanding of the evaluation method and
the process that will be followed. This can be handled by a briefing or by a
written description of the method. This book is also a definitive source of
information but may contain more than your client wishes to know. It is a
good idea to make a videotape of a method briefing to give to prospective
clients.

2. The client should describe the system and architecture being evaluated.
This enables the evaluation leader to decide whether or not there is enough
material present—that is, whether the architecture is far enough along—so
that an ATAM-based evaluation will be useful. At this point, the evaluation
leader will have to make a "go/no-go" decision.

3. Assuming the decision is "go," a contract or statement of work should be
negotiated and signed. This lets both sides make sure that the following
issues are understood:
• Who is responsible for providing the necessary resources (such as supplies,

facilities, a location, the attendance of stakeholders, the presence of the
architect and other project representatives, and so on) for the evaluation

• What is the period of performance for the evaluation a window in which
the evaluation will be carried out

• To whom will the final report be delivered and by when
• What is the team's availability (or nonavailability) for follow-up work

4. Issues of proprietary information should be resolved. For example, the
evaluation team might need to sign nondisclosure statements.

The negotiation phase is also a good time to talk to the client about the
costs and benefits of architecture evaluation. Perhaps by the time the client has
come to you, he or she already believes in the intrinsic value of the activity, but
one of the goals of the premeeting is to share with the client any data you have
about past benefits so that the client will feel confident about proceeding. Also,
the client and the architect may belong to a different organization (such as
when the client is acquiring the architecture from a separate development orga-
nization), in which case the client may be convinced of the value of the evalua-
tion, but the architect and his or her organization may not be. Arming the client
with cost/benefit data will help convince the developers of the value.

To increase client buy-in, you can do the following:

• Share with your client cost data and associated benefits from public
sources, such as this book, and your own data from previous evaluations.

• As your repository of evaluations grows, share the (sanitized) comments about
benefits with the client. Add them to your method overview presentation.

• Cite any instances you can of one organization asking for multiple evaluations.

Preparation

The preparation half of Phase 0 consists of

• Forming the evaluation team
• Holding an evaluation team kickoff meeting
• Making the necessary preparations for Phase 1

If your organization does not have a standing evaluation team, then you will
have to form one. This means choosing individuals to take part in the exercise.
Finding the individuals, scheduling their time, and clearing their participation
with their respective supervisors are all part of forming the team.

Once you have assembled a team (or even if you have a standing team)
you will need to assign each member a role in the upcoming evaluation. It is

74 	The AT AM 	Method for Architecture Evaluation 3.3 The Phases of the ATAM 	75

always a good idea to rotate the roles among team members from exercise to
exercise; this way there are more people available to perform any given role in
the event of a personnel shortage. The table below defines those roles and
responsibilities for an architecture evaluation using the ATAM.

There is not necessarily a one-to-one correspondence between people and
roles: a person may assume more than one role, or more than one person may

Table 3.3 Evaluation Team Individual Roles and Responsibilities (continued)

Role
	

Responsibilities 	 Desirable Characteristics

Timekeeper 	Helps the evaluation leader

amount of time devoted to each
stay on schedule. Helps control

	Willingness to brazenly interrupt
discussion to call time.

scenario during evaluation
phase.

Team leader

Evaluation
leader

Scenario
scribe

Questioner 	Raises issues of architectural
interest that perhaps the stake-
holders have not considered.

Sets up the evaluation; coordi-
nates with client; makes sure
client's needs are met; estab-
lishes evaluation contract.
Forms the evaluation team. In
charge of seeing that final
report is produced and deliv-
ered (although the writing may
be delegated).

Runs evaluation. Facilitates
elicitation of scenarios; admin-
isters scenario selection/prioriti-
zation process; facilitates
evaluation of scenarios against
architecture. Facilitates on-site
analysis.

Writes scenarios on flip chart or
whiteboard during scenario
elicitation process. Carefully
captures agreed-upon wording
of each scenario and doesn't
let discussion continue until
exact wording is captured.

Well-organized, with managerial
skills. Good at interacting with cli-
ent. Able to meet deadlines.

Comfortable in front of an audi-
ence. Excellent facilitation skills.
Good understanding of architec-
tural issues. Practiced in architec-
ture evaluations. Able to tell when
protracted discussion is leading
to a valuable discovery, or when
it is pointless and should be
redirected.

Good handwriting. Willingness to
be a stickler about not moving on
before an idea (a scenario) is
captured. Able to quickly absorb
and distill the essence of techni-
cal discussions.

Thoughtful observer. Knowledge-
able in the evaluation process.
Should have previous experience
in the architecture evaluation
method.

Should be fluent in the steps of
the method. Willing and able to
provide guidance to the evalua-
tion leader in a discrete manner.

Good architectural insights;
good insights into needs of stake-
holders. Experience with systems
in similar domain. Not afraid to
bring up possibly contentious
issues and pursue them dog-
gedly. Familiarity with attributes
of concern.

Table 3.3 Evaluation Team Individual Roles and Responsibilities

Role
	 Responsibilities

	 Desirable Characteristics

Process
observer

Keeps notes on where the eval-
uation process itself could be
improved or deviated from the
plan. Usually a silent observer,
but may make process-based
suggestions to the evaluation
leader, discretely, during the
evaluation. After evaluation,
reports on how the process
went and what lessons were
learned for future improve-
ment. Also responsible for
reporting experience to archi-
tecture evaluation team at
large.

Process
enforcer

Helps the evaluation leader
remember and carry out the
steps of the evaluation method.

Proceedings
scribe

Captures the proceedings in
electronic form on a laptop
computer or in-room worksta-
tion. Captures the raw scenar-
ios. Captures the issue(s) that
motivated each scenario, as
this is often lost in the wording
of the scenario itself. Captures
the resolution of each scenario
when applied to architecture(s).
Generates a printed list of
adopted scenarios for hand-out
to all participants.

Good, fast typist. Well-organized
to allow rapid recall of informa-
tion. Good understanding of
architectural issues. Able to
assimilate technical issues
quickly. Must not be afraid to
interrupt the flow of discussion
(at opportune times) to test
understanding of an issue, so
that the appropriate information
is captured.

collectively carry out a role. It is up to the evaluation team leader to assign peo-
ple to roles (and roles to people). These rules of thumb may help.

• The minimum complement for an evaluation team should be four people.
• One person can usually carry out the process observer, timekeeper, and

questioner roles simultaneously.

• The team leader's responsibilities occur primarily outside the evaluation
exercise; hence, that person can double up on any other in-exercise role.
The team leader is often the evaluation leader, because both tend to be
senior people, but not always.

(continued)

76 	The ATAM—A Method for Architecture Evaluation
	

3.3 The Phases of the ATAM 	77

• Questioners should be chosen so that the appropriate spectrum of expertise
in qualities of interest (performance, reliability, maintainability, and so on)
can be brought to bear on the system being evaluated.

In Chapter 10, we will discuss setting up a standing evaluation team in
which individuals are rotated on and off and trained so as to spread the exper-
tise throughout the organization. This practice has many organizational bene-
fits and is a major step in adopting mature architecture-based development
processes within an organization. But more to the immediate point, it obviates
the problem of recruiting individuals willing to serve on the team: the team is

already formed.
After the team is formed, a kickoff meeting should be held in which all

available knowledge about the evaluation should be shared and team roles assigned.
Preparations for Phase 1 include taking care of the myriad logistical details to
assure that everyone shows up at the right time and place prepared to work—
this means the project's representatives in addition to the evaluation team.

3.3.2 Phase 1 Activities

In Phase 1, the ATAM team meets with a subset of the team whose architecture
is being evaluated, perhaps for the first time. This meeting has two concerns:
organization of the rest of the analysis activities and information collection.
Organizationally, the manager of the architecture team needs to make sure that
the right people attend the subsequent meetings, that people are prepared, and
that they come with the right attitude—a spirit of nonadversarial teamwork.

With a small group of key people, Phase 1 concentrates on Steps 1 through
6. The evaluation team presents the ATAM method; a spokesperson for the
project presents the business drivers; the architect presents the architecture.
The group catalogs architectural approaches and builds the utility tree. The
high-priority utility tree scenarios then form the basis for analysis.

Besides carrying out the six steps, the evaluation team has another purpose
to fulfill during Phase 1. It needs to gather as much information as possible to

determine

• Whether the remainder of the evaluation is feasible and should proceed. If
not, then Phase 1 is an opportune cutoff point, before the larger group of
stakeholders is assembled for Phase 2.

• Whether more architectural documentation is required and, if so, precisely
what kinds of documentation and how it should be represented. If this is
the case, the evaluation team can work with the architecture team during
the hiatus between Phase 1 and Phase 2 to help them "catch up" so that
Phase 2 can begin on a complete note.

• Which stakeholders should be present for Phase 2. An action item at the end
of Phase 1 is for the evaluation's sponsor to make sure that the right stake-
holders assemble for Phase 2. (See the Stakeholders sidebar on page 63.)

There is a hiatus between Phase 1 and Phase 2 in which ongoing discovery
and analysis are performed by the architecture team, in collaboration with the
evaluation team. As we described earlier, the evaluation team does not build
detailed analytic models during this phase, but they do build rudimentary mod-
els that will give the evaluators and the architect sufficient insight into the
architecture to make the Phase 2 meeting more productive. Also, during this
hiatus the final composition of the evaluation team is determined, according to
the needs of the evaluation, availability of human resources, and the schedule.
For example, if the system being evaluated is safety critical, a safety expert
might be recruited, or if it is database-centric, an expert in database design
could be recruited to be part of the evaluation team.

3.3.3 Phase 2 Activities

At this point, the evaluation team will have understanding of the architecture in
sufficient detail to support verification of the analysis already performed and
further analysis as needed. The appropriate stakeholders have been identified
and have been given advance reading materials such as a description of the
ATAM, perhaps some scenario examples, and system documentation including
the architecture, business case, and key requirements. These reading materials
aid in ensuring that the stakeholders know what to expect from the ATAM.
Now the stakeholders are gathered for Phase 2, which can involve as few as 3
to 5 stakeholders or as many as 40. 3

Since there will be a broader set of stakeholders attending Phase 2 and
since a number of days or weeks may have transpired between the first and second
meetings, Phase 2 begins with an encore of Step 1: Present the ATAM. After
that, Steps 2 through 6 from Phase 1 are recapped for the new stakeholders.
Then the evaluation proceeds by carrying out Steps 7, 8, and 9.

Table 3.4 lists the steps and typical categories of attendees for Phase 1 and
Phase 2.

A Typical ATAM Agenda for Phase 1 and Phase 2

In Figure 3.9 we show an example of a typical ATAM agenda for Phases 1 and
Each activity in this figure is followed by its step number, where appropriate,

in parentheses. While the times here need not be slavishly followed, this sched-
ule represents a reasonable partitioning of the available time in that it allows
more time on those activities that experience has shown to produce more
results (in terms of finding architectural risks).

3. Strive for about 10-15 stakeholders. A much larger crowd than that is feasible but will require
excellent facilitation skills on the part of the evaluation leader and more time than is shown in
the sample agenda in Figure 3.9.

Start

8:30 am

10:00

10:45

11:00

12:00

12:30 pm

1:45

2:45

3:45

4:00

5:00 pm

Day 1

8:30 ern

9:15

10:00

10:15

11:15

12:00

1:00 pm

2:00

3:30

3:45

5:00 pm

Day 2

8:30 am

8:45

9:30

10:30

10:45

11:15

12:30 pm

1:30

2:45

3:30

5:00 pm

79

Activity

Generate Quality Attribute Utility Tree (Step 5)

Figure 3.9 A Sample ATAM Agenda for Phases 1 and 2

Analyze Architectural Approaches (Step 6)

Break

Analyze Architectural Approaches (Step 6)

Adjourn for the Day

Phase 2
Introductions/Recap ATAM

Analyze Architectural Approaches (Step 6)

Brainstorm Scenarios (Step 7)

Break

Prioritize Scenarios (Step 7)

Analyze Architectural Approaches (Step 8)

Lunch

Analyze Architectural Approaches (Step 8)

Prepare Presentation of Results/Break

Present Results (Step 9)

Adjourn

Introductions/ATAM Presentation (Step 1)

Present Business Drivers (Step 2)

Break

Present Architecture (Step 3)

Identify Architectural Approaches (Step 4)

Lunch Phase 1

Generate Quality Attribute Utility Tree (Step 5)

Analyze Architectural Approaches (Step 6)

Break

Analyze Architectural Approaches (Step 6)

Adjourn

Hiatus

Introductions/ATAM Presentation (Step 1)

Present Business Drivers (Step 2)

Break

Present Architecture (Step 3)

Identify Architectural Approaches (Step 4)

Lunch

78 	The ATAM—A Method for Architecture Evaluation

Table 3.4 ATAM Steps Associated with Stakeholder Groups

Participants 	 Participants

for Phase 1 	 for Phase 2

1 	Present the ATAM

2 	Present business drivers

3 	Present architecture

4 	Identify architectural
approaches

5 	Generate quality

Evaluation team and
project decision makers

Evaluation team,
project decision
makers, and
all stakeholders

attribute utility tree

6 	Analyze architectural
approaches

7 	Brainstorm and prioritize
scenarios

8 	Analyze architectural
approaches

9 	Present results

N/A

3.3.4 Phase 3 Activities

On the back end of the ATAM, the final report (if called for by the agreement
between the evaluation organization and the evaluation client) must be written
and delivered. But equally important from the point of view of maintaining an
ATAM capability, repositories of artifacts must be updated, surveys and effort
measures taken, and the evaluation team debriefed to try to identify ways in
which the method could be improved. Phase 3 is the follow-up phase.
In Phase 3, the following tasks must be accomplished:

1. Produce the final report.

2. Collect data for measurement and process improvement.

3. Update the artifact repositories.

Producing the Final Report
If the contract with the client includes a written final report, it is produced dur-
ing Phase 3. Producing the final report is a matter of cataloging (a) what you
did, (b) what you found, and (c) what you concluded. By using a standard
report template (such as the one outlined on page 203 in Chapter 6) and assign-
ing responsibility for specific sections to team members at the start of the eval-
uation, writing the report can be accomplished quickly and efficiently.

Step
Activity

80 	The Al AM—A Method for Architecture Evaluation
	

3.3 The Phases of the ATAM 	81

The Two Faces of the ATAM

The Strength of Scenarios

The predecessor of the ATAM is the SAAM (Software Architecture Analysis
Method), which you will read about in Chapter 7. For a long while I thought
SAAM was short for Scenario-based Architecture Analysis Method. It could
have been, since scenarios are the root of its success.

The SAAM involves facilitating a scenario brainstorming session to gen-
erate a list of scenarios. A subset of the scenarios is then used to illuminate the
architecture by identifying the components that would be involved if the archi-
tecture were actually able to execute the: scenario. If the architecture cannot
support the scenario, the exercise determines•which components will have to
change in order to execute the scenario. Some informal analysis is also per-
formed, for example, by looking for components that are involved in "execut-
ing" many disparate scenarios but perhaps shouldn't be.

The SAAM is a successful method primarily for two reasons:

1. The brainstorming and prioritization of scenarios generally foster a
level of stakeholder interaction and cooperative creative thinking that
has never occurred before.

2. The generated collection of scenarios often is the best representation,:,-.,
of system requirements that the stakeholders have seen up to that point.

The participating stakeholders generally feel that they learn something
about the architecture and possibly each other. Moreover, in many cases, a
SAAM-based evaluation is the first time that all of the stakeholders are assem-

bled in the same place at the same time.
Clearly these were benefits that we wanted to retain when creating the

ATAM. One of the faces of the ATAM is, in effect, the SAAM.

Putting "Analysis" in the Analysis Method

When we set out to create the ATAM, one of our goals was to strengthen the
"analysis" aspect of the software evaluation. In fact, my attitude (despite the
success of the SAAM) was that the ATAM should be predominantly about
analysis and that scenario generation and stakeholder interaction was too
touchy-feely. The real benefits accrue when you collect hard-core architecture
data (process execution times, process priorities, details of encryption strategy,
estimates of component failure rates, places where coupling between compo-

, nents is too strong, etc.) and then use some analytic methods to draw some
firm engineering conclusions.

I then participated in my first ATAM-based evaluation exercise. Many
stakeholders were present, but one "participant" was conspicuously absent: the

architecture. However, what I found to be most amazing was that nobody
seemed to miss it Despite the absence of hard-core architectural information,
we successfully executed the ATAM and the customer derived significz -int ben-
efits from the experience. The participants felt that the discussion generated as
a result of brainstorming scenarios and subsequently recalling (and sometimes
creating) the architecture in real time was very valuable. Once again, scenarios
carried the day. We had actually carried out a multi-attribute SAAM-based
evaluation exercise under the guise of the ATAM.

Well I became a believer in scenarios. However, the ATAM team still felt
that the analysis aspects of the ATAM could and should be strengthened, but
we needed additional methodological machinery that would enable us to carry
out analysis in real time in the Presence of many stakeholders.

Our solution was to incorporate the concept of architeetural approaches
(as discussed in Chapter 1) into the ATAM. The core of the idea was that
approaches or patterns would be helpful in illuminating the "shape" of the
architecture, whereas scenarios illuminated only selected paths through the
architecture. We felt that understanding the shape (or shapes) of the architec-
ture would be very helpful in analyzing its properties since different
approaches are important for achieving different attribute-specific require
ments. The new and improved method would work something like this

• Identify the attributes that are key to the success of the system (using
utility trees).

• Determine the architectural approaches that are used within the archi-
tecture to meet those attribute requirements.

• Ask attribute-specific questions (derived from the various attribute
characterizations) to understand the extent to which those approaches
are suitable for meeting the attribute-specific requirements.

Armed with our new methodological machinery, we tried out our new
version of the ATAM. It proved to be somewhat successful. We found some
approaches and many risks, but the analysis that we perfonned was cursory at

Moreover, some of the stakeholders were confused, zisking questions like:

• "What's an architectural approach and how do I go about finding one?"
• "Is portability an aspect of modifiability?"

• "Why don't we add manageability to the utility tree?"

Some of our other observations were:

• When generating the utility tree we found that the most vocal folks
dominated the discussion.

• No one quite understood attribute-specific questions, so we ended up
generating most of those ourselves. 	5.

82 	The ATAM—A Method for Architecture Evaluation 3.3 The Phases of the ATAM 	83

• It wasn't clear why we needed both utility trees and scenarios. They

seemed redundant.

This mode of operation was not amenable to large-group interaction and
required more up-front preparation. It seemed better suited for a smaller group
centered around the architects. Even with a more robust set of steps in our method,
eliciting detailed architectural information and carrying out analysis in real time
in the presence of many stakeholders was inherently awkward and difficult.

Two Faces Are Better Than One
We needed a new mode of interaction but didn't want to sacrifice the benefits
of the old mode. That's when we decided that two faces are better than one.
The same set of steps can be used at different times with different emphases.
One face is very much architecture-centric and concentrates on eliciting archi-
tecture information and analyzing the architecture. The second face is very
much stakeholder-centric and concentrates on eliciting stakeholder points of
view and verifying the results of the first phase. These two modes of interac-
tion are compared in the following table.

Two Faces of the ATAM

Face 1 for Phase 1 	 Face 2 for Phase 2

Few stakeholders (2-4) 	 Many stakeholders (10-15)

Architecture-centric
	 Stakeholder-centric

Solution-oriented
	

Problem-oriented

Analysis-oriented
	

Verification-oriented

Fosters an understanding of
	

Fosters stakeholder interaction

architecture

Scenarios primarily used in creating 	Scenarios primarily used to verify

utility tree
	 utility tree

High bandwidth, informal technical 	Organized meeting

conversations

—MHK

Collecting Data

Each evaluation provides a convenient, inexpensive opportunity to collect data
so that you can improve your ideas about the costs and benefits of performing
evaluations, and also to collect participants' impressions about what worked
particularly well and what could stand to be improved.

Data comes from two sources: the evaluation team and the client. In both
cases, you should collect improvement data (ideas about what worked particu-
larly well and what could have been improved) and cost/benefit data. The client
may not recognize benefits until well after the evaluation, so we recommend a
follow-up survey to be taken about six months after the evaluation to gauge the
longer-term effects.

We recommend sending out five short surveys:

1. An improvement survey to the participants, asking their impressions of the
evaluation exercise

2. An improvement survey to the team members, asking for their impressions
of the exercise

3. A cost survey to the client
4. A cost survey to the evaluation team
5. A long-term benefits survey to the client

It will help to categorize the cost data in terms of before-exercise activi-
ties, during-exercise activities, and post-exercise activities. Examples for many
of these surveys may be found in Chapter 10.

Updating the Artifact Repositories

You should maintain repositories of the artifacts you used or produced during
each previous evaluation. These will serve you during future evaluations.

In addition to recording the cost and benefit information, store the scenar-
ios that you produced. If future systems that you evaluate are similar in nature,
you will probably find that the scenarios that express the architecture's require-
ments will converge into a uniform set. This gives you a powerful opportunity
to streamline the evaluation method: you can dispense with the scenario brain-
storming and prioritization steps of the ATAM altogether and simply use the
standard scenario set for your domain. The scenarios have in some sense grad-
uated to become a checklist, and checklists are extremely useful because each
architect in the developing organization can keep a copy of the checklist in his
or her desk drawer and make sure the architecture passes with respect to it.
Then an evaluation becomes more of a confirmation exercise than an investiga-
tory one. Stakeholders' involvement becomes minimal—as long as you have
confidence in the applicability and completeness of the checklist with respect
to the new system under evaluation—thus reducing the expense of the evalua-
tion still further.

Besides the scenarios, make a list of the analysis questions you used; these
are the evaluation team's best tools, and growing your toolbox will make future
evaluations easier and give you something to show to newly added team mem-
bers as part of their training.

Add participants' comments to a repository as well. Future evaluation
leaders can read through these and gain valuable insights into the details and

84 	The A7AA4—A Method for Architecture Evaluation
	

3.5 Discussion Questions 	85

idiosyncrasies of past evaluations. These exercise summaries provide excellent
training material for new evaluation leaders.

Finally, keep a copy of the final report, sanitized if necessary to avoid
identifying the system or cleansed of incriminating remarks. Future evaluation
teams will appreciate having a template to use for the reports they produce.

3.4 For Further Reading

As this book was going to press, an initial draft of a training course on the
ATAM was being alpha-tested. You can watch for details at the SEI's architec-
ture tradeoff analysis Web site [SEI ATA].

The ATAM's analysis steps are based on questions about architectural
approaches and quality attributes. The former come from descriptions of archi-
tectural styles in books [Bass 98, Shaw 96, Buschmann 96, Schmidt 00], and
those chapters of Smith and Williams that deal with architecting performance-
critical systems [Smith 01]. Quality attribute questions come from resources on
performance evaluation [Klein 93, Smith 01], Markov modeling for availabil-
ity [Iannino 94], fault tolerance [Jalote 94], reliability [Lyu 96], security [SEI
NSS], and inspection and review methods (such as the SAAM, described in
Chapter 7) for modifiability.

To read an interesting treatment of quality attribute requirements and their
relationship to design decisions, see Chung et al. [Chung 00]. They, refer to an
early paper by Boehm et al. [Boehm 76] that presents a tree of software quality
characteristics very similar to the utility trees presented in this chapter.

3.5 Discussion Questions

1. Prepare a short, informal presentation on the ATAM and present it to your
colleagues.

2. Think of a software system in your organization whose architecture is of
some interest. Prepare a presentation of the business drivers for this sys-
tem, using the template given in this chapter.

3. What do you suppose the quality attributes of interest are for this system?
Sketch a utility tree for the system. For each quality attribute of interest,
write a refinement of it, and then write a scenario or two that make the
concern concrete.

4. If you were going to evaluate the architecture for this system, who would
you want to participate? What are the stakeholder roles associated with
this system, and who could you get to represent those roles?

5. For each stakeholder role you identified, write a couple of scenarios that
represent that role's point of view of the system.

6. How do the quality-attribute-focused scenarios you wrote for question 3
compare with the stakeholder-role-focused scenarios you wrote for ques-
tion 5? Do they cover the same or different issues?

7. Pick a few of the scenarios you wrote for question 5 and try to understand
how the architecture you've selected would respond to them. Use the anal-
ysis template given in this chapter.

8. Think of a system in your organization that is not yet ready for an architec-
ture evaluation. What is it about the system that made you choose it? Can
you generalize your answer to establish criteria for whether or not a
project is ready for an architecture evaluation?

	Developing Object-Oriented software
	1.0 Introduction
	1.1 The Evolution of this Approach
	1.2 The Genealogy of this Approach
	1.2.1 Notation
	1.2.2 Work Products

	1.3 Roles in an Object-Oriented Project
	1.4 Method and Language Independence
	1.5 Adapting this Approach for a Specific Project

	2.0 Work Product Oriented and Workbook-Centered Development
	2.1 What Does Work Product Oriented Mean?
	2.2 What Does Workbook-Centered Mean?
	2.3 What is a Project Workbook?
	2.4 Workbook Structure
	2.4.1 Composite Structure Workbook

	2.5 Terminology

	3.0 Iterative and Incremental Development
	3.1 Development Process Models
	3.1.1 The Waterfall Process Model
	3.1.2 The Incremental Component Process Model
	3.1.3 The Iterative Process Model

	3.2 Project Risks
	3.3 The Iterative and Incremental Process model
	3.4 Terminology

	4.0 Scenario-Driven Development
	4.1 The Traceability Gap
	4.2 Use Cases
	4.3 Scenarios
	4.4 Object Interaction Diagrams (OIDS)
	4.5 A Chain of Traceability
	4.6 Scenario-Driven Development Variations
	4.6.1 Data-Driven Approach
	4.6.2 State-Driven Approach

	4.7 Traceability for Scenario-Driven Development
	4.8 Terminology

	5.0 Overall Project Structure
	5.1 Overall Process
	5.2 Project Shape
	5.3 Work Products Related to Planning Project Shape
	5.4 Variations on Project Shape

	6.0 Project Increments
	6.1 Typical Project Increments
	6.2 Work Products Related to Planning Increments
	6.3 Variations on Increments
	6.3.1 A Set-Up Increment
	6.3.2 A Depth-First Increment
	6.3.3 Release 1.0 Increment
	6.3.4 Release 1.1 Increment
	6.3.5 Release 2.0 Increment

	7.0 Development Phases
	7.1 Requirements Gathering
	7.2 Project Management
	7.2.1 Initial Project Planning
	7.2.2 Organize Project Plan
	7.2.3 Maintain Project Workbook

	7.3 Problem Analysis
	7.4 User interface Design
	7.5 System Design
	7.6 Implementation
	7.7 Testing
	7.8 Summary of Development Phases

	9.0 Requirements Work Products
	9.1 Problem Statement
	9.2 Use Case Model
	9.3 Nonfuctional Requirements
	9.4 Prioritized Requirements
	9.5 Business Case
	9.6 Acceptance Plan

	10.0 Project Management Work Products
	10.1 Intended Development Process
	10.2 Project Workbook Outline
	10.3 Resource Plan
	10.4 Schedule
	10.5 Release Plan
	10.6 Quality Assurance Plan
	10.7 Risk Management Plan
	10.8 Reuse Plan
	10.9 Test Plan
	10.10 Metrics
	10.11 Project Dependencies
	10.12 Issues

	11.0 Analysis Work Products
	11.1 Analysis Guidelines
	11.2 Subject Areas
	11.3 Analysis Object Model
	11.4 Analysis Scenarios
	11.5 Analysis Object Interaction Diagrams
	11.6 Analysis State Models
	11.7 Analysis Class Descriptions

	13.0 Design Work Products
	13.1 Design Guidelines
	13.2 System Architecture
	13.3 Application Programming Interfaces (APIS)
	13.4 Target Environment
	13.5 Subsystem Model
	13.6 Design Object Model
	13.7 Design Scenarios
	13.8 Design Object Interaction Diagrams
	13.9 Design State Models
	13.10 Design Class Descriptions
	13.11 Rejected Design Alternatives

	Software Architecture Evaluation Handout
	2 - Evaluating a Software Architecture
	2.1 Why Evaluate an Architecture?
	2.2 When Can an Architecture Be Evaluated?
	2.3 Who's Involved?
	2.4 What Result Does an Architecture Evaluation Produce?
	2.5 For What Qualities Can We Evaluate an Architecture?
	2.6 Why Are Quality Attributes Too Vague for Analysis?
	2.7 What Are the Outputs of an Architecture Evaluation?
	2.7.1 Outputs from the ATAM, the SAAM, and ARID
	2.7.2 Outputs Only from the ATAM

	2.8 What Are the Benefits and Costs of Performing an Architecture Evaluation?
	2.9 For Further Reading
	2.10 Discussion Questions

	3 - The ATAM - A Method for Architecture Evaluation
	3.1 Summary of the ATAM Steps
	3.2 Detailed Description of the ATAM Steps
	3.2.1 Step 1: Present the ATAM
	3.2.2 Step 2: Present the Business Drivers
	3.2.3 Step 3: Present the Architecture
	3.2.4 Step 4: Identify the Architectural Approaches
	3.2.5 Step 5: Generate the Quality Attribute Utility Tree
	3.2.6 Step 6: Analyze the Architectural Approaches
	3.2.7 Step 7: Brainstorm and Prioritize Scenarios
	3.2.8 Step 8: Analyze the Architectural Approaches
	3.2.9 Stp 9: Present the Results

	3.3 The Phases of the ATAM
	3.3.1 Phase 0 Activities
	3.3.2 Phase 1 Activities
	3.3.3 Phase 2 Activities
	3.3.4 Phase 3 Activities

	3.4 For Further Reading
	3.5 Discussion Questions

