
* eser@us.ibm.com

Just-in-Time Annotation of Clusters, Outliers, and Trends in Point-based

Data Visualizations

Eser Kandogan*
IBM Center for Advanced Visualization, IBM Research

Figure 1: Just-in-Time Descriptive Analytics can automatically identify and annotate visual features (e.g. clusters, outliers, and trends)

describing their semantics as users interact with visualizations by performing statistical computation at run-time. Shown above are about 400

cars, shown as dots, representing dimensions such as mpg, weight, horsepower, and origin. Five clusters are detected and annotated

automatically with descriptive labels (e.g. “European, 4 cyl.”) distinguishing their semantics from others. Within each cluster outliers (encircled

in red) are also detected and labeled automatically (e.g. “3 cyl”). Looking at these visualizations users can easily understand structure of the

data, i.e. what each cluster represents semantically and how data is distributed across several clusters, and build a qualitative mental model.

ABSTRACT

We introduce the concept of just-in-time descriptive analytics as a

novel application of computational and statistical techniques

performed at interaction-time to help users easily understand the

structure of data as seen in visualizations. Fundamental to just-in-

time descriptive analytics is (a) identifying visual features, such as

clusters, outliers, and trends, user might observe in visualizations

automatically, (b) determining the semantics of such features by

performing statistical analysis as the user is interacting, and (c)

enriching visualizations with annotations that not only describe

semantics of visual features but also facilitate interaction to

support high-level understanding of data. In this paper, we

demonstrate just-in-time descriptive analytics applied to a point-

based multi-dimensional visualization technique to identify and

describe clusters, outliers, and trends. We argue that it provides a

novel user experience of computational techniques working

alongside of users allowing them to build faster qualitative mental

models of data by demonstrating its application on a few use-

cases. Techniques used to facilitate just-in-time descriptive

analytics are described in detail along with their runtime

performance characteristics. We believe this is just a starting point

and much remains to be researched, as we discuss open issues and

opportunities in improving accessibility and collaboration.

Keywords: Just-in-time descriptive analytics, feature

identification and characterization, point-based visualizations.

Index Terms: H.5.2 [Information Interfaces and Presentation]:

User Interfaces; I.5.5 [Pattern Recognition]: Interactive Systems

1 INTRODUCTION

A good visualization reveals structure and patterns in data, and

facilitates exploration of relationships between variables. The

challenge is that as the data gets more complex (e.g. multiple

dimensions, multiple datasets) inevitably representation and

interaction becomes more complex. For example, for high-

dimensional data, representation may exhibit clutter and

interactive exploration may become tedious [1]. To effectively

support exploratory activities, techniques should support (1)

qualitative understanding of high-level structure of data, (2)

development of hypotheses for deep analysis of relationships

between variables, and (3) provenance and collaboration on

qualitative insight (see also [2][3]). Our focus in this paper is (1).

Our position is that visualization techniques should be more

tightly-coupled with computational analytics techniques to deal

with increasing complexity, particularly in the exploratory phase

of data analysis to help users build qualitative mental models of

data (see also [4][5][6][7]). To that end we introduce the concept

of just-in-time descriptive analytics as a novel application of

computational and statistical techniques during interaction time to

help them easily understand the structure of data. The goal is not

to compete with the human perceptual abilities to detect and

identify patterns in visualizations but rather to potentially decrease

73

IEEE Conference on Visual Analytics Science and Technology 2012
October 14 - 19, Seattle, WA, USA
978-1-4673-4753-2/12/$31.00 ©2012 IEEE

the cognitive load on users by automatically explaining structure

in real-time as they interact, thus facilitating quick development of

qualitative models of data, creating a novel user experience.

Fundamental to interactive just-in-time descriptive analytics is
(a) detecting visual features such as cluster, outliers, and trends
that users might observe in visualizations automatically, (b)
identifying the semantics of such features by performing statistical
analysis as the user is interacting with data and creating
annotations which uniquely describe visual features, and (c)
enriching features in visualizations with annotations that not only
describe their semantics (e.g. a cluster labelled distinctly as
“European, 4cyl”) but also allows the user to interact with them,
using for example brushing, to help development of high-level
understanding of data.

We argue that interactive just-in-time descriptive analytics

allows the user to build faster qualitative mental models of data by

demonstrating its application on a few use-cases, such as

analyzing telecommunications churn. While we used the Star

Coordinates technique (see [8]) to demonstrate the concept of just-

in-time descriptive analytics, techniques developed are directly

applicable to other point-based visualization techniques, such as 2-

d and 3-d scatter-plots and multi-dimensional scaling, and

conceptually applicable to other visualizations, such as line charts,

though the features and as such algorithms would differ. In this

paper we describe techniques used to facilitate just-in-time

descriptive analytics for point-based visualizations in detail and

present their runtime performance characteristics.

The primary contribution of the paper is the exploration of
statistical and computational techniques at interaction time to
support visual exploration by explaining semantics of clusters,
outliers, and trends users see on visualizations and thereby
creating a novel user experience in interaction with data. To that
end, our specific contributions are: (a) simple yet fast algorithms
for detecting visual features such as cluster, outlier, and trends in
point-based visualizations, (b) identifying semantic
characterization of such features, (c) ranking of derived feature
semantics for presentation, and (d) designing interaction
techniques with feature annotations.

2 RELATED WORK

Related works falls into two fields: (1) data mining and (2)

information visualization. First, we review computational and

statistical techniques in the field of data mining for cluster

detection. Next, we review techniques in the field of information

visualization, particularly exploratory visualizations that leverage

computational techniques to support users in visual data mining

activities.

2.1 Cluster Detection in Data Mining

In data mining, clustering is considered as an unsupervised

classification problem with the fundamental objective of

identifying structure in data, particularly detecting and

distinguishing groupings of data elements that are similar to each

other and distinct from others based on some criteria.

There are many cluster detection algorithms that are used in

different applications (see [9][10] for comprehensive review).

These algorithms differ in the way they model the data-space and

in the way they choose similarity criteria. K-means is the most

common clustering technique and works by iteratively refining k

clusters to improve the quality of clustering based on some

distance function in high-dimensional data-space [11]. Among all

the techniques grid-based approaches are fairly flexible in their

ability to find arbitrarily shaped clusters efficiently and

consistently across different runs but choice of the grid-size is

user-driven and requires some experimentation [12]. Our cluster

detection algorithm is also a grid-based approach though it

operates on the view-space, i.e. visualization, and as such assumes

data is already reduced to 2d through transformations defined by a

visualization such as multi-dimensional scaling.

Fundamentally, clustering algorithms do not seek to provide an

explanation or interpretation. As such our goal differs in that we

seek to derive some semantics to explain the grouping and use

such semantics to support interactive discovery process. Another

important difference in our approach is that pattern detection is

applied in the view-space as opposed to in the data-space. We seek

to detect interesting patterns in the visualizations of data often

mapped to lower-dimensional space but leverage full data-space to

derive semantics for patterns observed in the view-space. Finally,

we strive for simplicity in our algorithms, perhaps at the expense

of quality, to achieve at least linear algorithmic complexity so that

we can perform feature detection and semantics characterization

as the user is interacting with data, without penalizing much the

overall interactive performance. This is acceptable as our goal is to

explain some of the features users might observe in visualizations

for further exploration not necessarily to determine the optimal

clustering of data. This is important particularly since high-

dimensionality of data presents a problem and traditional

clustering algorithms often do not perform well particularly in

terms of efficiency [13]. Given the high-computational cost and

essential requirement of human judgment, there is growing interest

in involving people in the cluster detection process. In the next

section we will review visual data mining techniques.

2.2 Visual Data Mining and Information Visualization

Visualizations are powerful tools to help users explore and

make sense of data, intuitively revealing trends, outliers, and

clusters, though they have their limitations particularly for large

and complex datasets [14]. Visual data mining aims to address this

limitation by involving users directly in the data mining process

using interactive visual techniques working together with data

mining algorithms, such as decision-tree classifiers [15] [16][17].

Several approaches exist to explore complex high-dimensional

datasets, such as multi-dimensional scaling [18], self-organizing

maps [19], principal component analysis [20], and [21][22][23] by

reducing the complexity, i.e. dimensions of data. A common

problem in many of these techniques is that the projections that

transform high-dimensional data into lower dimensions are not

intuitive. Furthermore, multi-dimensional data has an inherent

clutter problem, which may obscure structure present in the data

and may make it difficult for users to find patterns and

relationships. Though some of these problems can be addressed by

selecting a subset of representative dimensions from the original

set [24], still, there is an inherent challenge of traversing the high-

dimensional data-space to find and examine interesting

relationships. For example, scatter plot matrices offer an intuitive

way to examine binary relationships in multi-dimensional data yet

they significantly suffer from dimensionality curse. To reduce the

burden on the user, the grand tour technique uses a series of 2D

projections in an animated fashion to traverse all different

perspectives of data [25]. Projection Pursuit technique similarly

uses statistical techniques to reduce the search space and find the

most interesting possible projections [26][27]. While compelling

these techniques may not be intuitive to the user and have high

computational demands.

To improve the quality of visualizations, metrics can be applied

in several stages of the visualization pipeline [28], in data

transformation [29][30], visual mapping [31][32], and view

transformation [30]. For example, rearranging dimensions by their

74

similarity may improve the effectiveness of exploration of multi-

dimensional data [33]. Likewise, allowing users to rank (pairs of)

dimensions to explore by a criterion, such as correlation

coefficient, can help incorporate user’s interests in the interactive

exploratory analysis process [2]. Similarly, scagnostics technique

uses graph-theoretic approaches to define measures of shape,

trend, and density in 2D scatter plots and creates a scatter plot

matrix of these measures that users can use as a pointer to access

original scatter plots [34]. In essence many of these metrics model

human pattern recognition to some extent [28]. Studies such as

[35][36] are critical in bringing validity to these approaches.

In just-in-time descriptive analytics we avoid defining a

complete path of exploration, often computed offline, but rather

aim to explain what user might find interesting in the current

projection, at interaction time, and have the user drive the

exploration. Also, we avoid translating user’s interest to the

metrics space, since it can be potentially challenging for the user

to define their interest in statistical terms such as correlation

coefficients. Our focus is on explaining what the user might be

seeing in the visualizations through annotations, which can help

them understand the data quickly. We are not only talking about

identifying interesting visual features but also about identifying

the semantics of these features, unlike prior research.

A recent technique, click2annotate allows semi-automatic

annotation of interesting patterns such as clusters and outliers [37].

In this approach users select a set of points and select a pattern

type (e.g. cluster), then a textual summary reporting a set of

statistics, such as min/max values, cluster radius, is generated

based on a template for the pattern type. In our approach patterns

are detected and labeled automatically. Moreover our annotations

focus on identifying distinguishing semantics of patterns from

others in the visualization, as opposed to reporting the same set of

statistics for each pattern. So, annotations in our approach are not

merely statistical summaries but rather concise descriptive labels.

Unlike click2annotate goal is not to document discoveries (as in

[38]) but to explain structure of data to guide exploration.

Therefore, our approach needs to compare and rank what is

“interesting” based on some heuristics of features and we perform

such calculations at interaction-time for good user experience.

3 JUST- IN-T IME DESCRIPTIVE ANALYTICS

The basic steps of just-in-time descriptive analytics are (1)
visual feature detection, (2) feature ranking and annotation, and
(3) annotation interaction to help support understanding of the
structure of data (Figure 2). The goal is to accomplish all these
computations just-in-time as users are interacting with data to
provide a good user experience.

Note that we use the term “feature” in a broad sense referring to
anything that might be perceptually observed by the user revealing
insight about data, such as clusters, outliers, and trends. The goal
is not to substitute or compete with the human perceptual abilities
but rather to potentially decrease the cognitive load on users by
automatically identifying and describing semantics of features
they might see in visualizations thus facilitating quick
development of qualitative models of data.

We will describe each of these steps in detail in the following
sections by applying them on multi-dimensional data using Star
Coordinates, to detect and describe features such as clusters,
outliers, and trends. Star Coordinates provides an intuitive
representation of multi-dimensional data by creating meaningful
projections based on linear transformations as in 2- and 3-d scatter
plots [8] and as such it is very suitable for our purposes.

Just-in-time descriptive analytics can also be applied to
multiple-datasets. This is possible if one can connect datasets
through a primary key or use time as the basis for establishing
associations. Even in 2-dimensional visualizations it is often the
case that features in the visualization are due to intrinsic
relationships between attributes not represented in the
visualization. For example, a plot of product rating and price can
reveal clusters of products whose semantics is explainable by
attributes in other datasets such as product type and manufacturer.

 Original Visualization Feature Detection

 Feature Annotation Annotation Interaction

Figure 2: Just-in-time descriptive analytics: (a) Original visualization,

(b) Feature detection, (c) Feature ranking and annotation, and (d)

annotation interaction.

3.1 Cluster Detection

3.1.1 Definition

We consider clusters from a visual perception point of view
since our goal for cluster detection is to identify what users might
observe as a grouping of data points on a visualization. Perceptual
grouping, as defined by Gestalt psychologists, refers to the human
visual ability to extract relations using proximity, similarity,
continuation, closure, and symmetry of lower-level primitive
features and group them to obtain meaningful higher-level
structure [39]. As such we define a cluster as a set of points in the
view-space, connected to each other by proximity, and collectively
perceived as a single arbitrarily-shaped object (as in [4]). Thus,
our focus in terms of detection is on the view-space, eventual
mapping of data to 2d, not on the high-dimensional data-space.

In essence, we separate concerns of computing a mapping from

data-space to view-space (responsibility of the visualization

technique) and identifying and describing interesting features in

the view-space (just-in-time descriptive analytics) by deriving

semantics from data-space. This has obvious performance

benefits, which is important for achieving an interaction-time

experience, since we are only dealing with a two-dimensional

space for the purpose of detection, irrespective of the original

dimensions of the data. It is important to note that the goal here is

not to detect the clusters with the optimal quality but to identify

visible clusters, describe and suggest them to the user for further

exploration. The idea is to involve the user in the data mining

process by driving their interest into potential hotspots of insight.

 Another requirement for our purpose is the ability to detect

arbitrary shapes as they may mean a particular kind of relationship

between dimensions of data. For example, an elongated shape on a

visualization might suggest a linear relationship or trend between

two dimensions. Once such shapes are detected just-in-time

descriptive analtyics techniques can be utilized to explain that

particular shape (see Trend Detection).

75

(a)

(b)

(c)

Figure 4: (a) Using the same density level to detect clusters in the
whole view-space may result in suboptimal clusters for clusters of
varying densities, which can be addressed using (b) gradient- or
(c) semantics-based extension of clusters.

(a) (b)

(c) (d)

Figure 3: Steps of a 4-neighbor grid-based cluster detection
algorithm: (a) assignment of points to grid cells, (b) traversal of grids
in a row-major fashion, (c) assignment of a cluster id based on 4-
neighboring grid cells, and (d) merging of connected clusters.

3.1.2 Approach

We took a grid-density based approach to detect clusters in the

view-space, since they are able to detect arbitrarily shaped

clusters, connecting contiguous high-density grid cells. Grid-based

approaches also scale well thus they suit our interaction-time

performance requirements.

We assume a set of k-dimensional data records, D = {d1, d2, …,

di, …, dn}, with a cardinality of n, already mapped to view-space

through some sort of transformation (τ) by a visualization

technique, to obtain a set of points, P ={ p1, p2, …, pi, …, pn},

where pi = τ(di) and pi ϵ R2. The detection algorithm starts by

assigning each point pi to a grid cell G(r,c), based on the coordinates

of the pi, i.e. pi
x and pi

y, and grid width. We then count the number

of points in each grid cell, |G(r,c)|,, and calculate average for all

occupied cells, µ. A grid cell is considered an eligible cluster cell

if |G(r,c)|, > µ · f, where f is a fixed factor, determined by the user.

The algorithm then proceeds by traversing each eligible cluster

grid cell in a row-major order, left to right and top to bottom,

making cluster assignments to grid cells. The assignment of

cluster ids is done considering either 4-neighbors (only sharing an

edge) or 8-neighbors (sharing edge or corner) of a given cell. If

any of these neighbors are already assigned to a cluster, then the

current eligible cell and other cells among the eligible neighbors

are assigned to that cluster, merging the two clusters. Otherwise, a

new cluster is created and current cell is assigned to that cluster

(Figure 3). Computational complexity of the algorithm is O(n).

Since the algorithm works in the view-space complexity is

independent of the original dimensions.

3.1.3 Limitations and Improvements

While our basic grid-density based algorithm works for most

practical purposes there are several issues with it. It is important to

note that the goal is not necessarily to identify all clusters with

their optimum boundaries but enough of the clusters and annotate

them with their semantics to help the user.
One issue is the choice of the grid cell size though unlike data-

space clustering algorithms the issue may not be as severe.
Because the algorithm works on the view-space, dimensions of the
visualization are often scaled either automatically or by the user

such that data fits the view and is readable. A more important
issue is the use of a global average cell density, µ, to determine
eligibility for cluster detection as it is possible that different
clusters might have different densities (Figure 4.a). Another issue
is the potential jitter as the user is interacting with the visualization
changing the projection parameters. When users interactively
change the projections the cluster centroids and cluster
assignments might change due to changing grid assignments and
cause undesired jitter when annotations are displayed at their
centroids. The proposed algorithm also doesn’t handle nested
clusters, where large clusters may contain denser clusters within.

There are several ways to improve on the basic algorithm to
address these issues without sacrificing performance much. The
idea is to extend existing clusters in a post-processing step so that
they are more inclusive of nearby cells if they are close in terms of
change in density or in terms of semantics of the data points.
Techniques such as hierarchical grids and nested means may also
address these issues though with higher performance costs [3][40].

Density change can be incorporated by calculating the gradient
along x- and y-dimension for each cell. Gradients can be
calculated by calculating the change in the number of data points
from its neighbor cells horizontally and vertically, i.e. ∇(�,�)

�
=	|G(r,c)|-

|G(r-1,c)| and ∇(�,�)
� =	|G(r,c)|-|G(r,c-1)|. A grid cell would now be

considered eligible if its gradients along either dimension are
within a defined limit (Figure 4.b). Essentially the algorithm
would extend clusters by smoothing out fuzzy boundaries based
on grid cell densities. Semantics can be incorporated likewise in a
post-processing step once the characteristics of each cluster are
calculated. In this case cells with similar characteristics (e.g. cars
with 4 cylinders) in neighboring cells are merged to the existing
cluster (Figure 4.c).

User involvement in this process is equally applicable to resolve
these issues. Appropriate user interaction techniques can be
provided to allow users to expand or contract clusters or define
completely new clusters to support supervised interactive cluster
detection and verification.

3.2 Outlier Detection

3.2.1 Definition

As with clusters, we also take a perceptual perspective in

thinking about outliers. There are several types of outlier points in

a visualization: (a) false-positives, points that lie within a visual

feature such as a cluster but semantically they don’t belong there,

(b) close points that are near a visual feature but perhaps differ in

76

Figure 5: Types of outliers: (a) false-positive outliers are visually
part of a feature they shouldn’t be, (b) close outliers are similar to a
close-by feature but they aren’t part of, and (c) far outliers are far off
from any other feature in the view space.

just a few dimensions that pushed them out of the feature visually,

and finally, and (c) far points that are distant from any visual

feature but they are themselves not significantly dense enough to

be identified as a cluster (Figure 5.)

3.2.2 Approach

We basically identify false-positives by going through all the

data points in each cluster separately and comparing their values

in each dimension to average values within the current cluster. If

value is either below or above the mean by a factor (default 3, but

could be adjusted by user) of standard deviation within cluster, i.e.

| di
k - µk| > 3 σk, we mark such data points (di) as outliers and

record such dimensions (k) along with the value (di
k) to inform the

user. We save the number of outliers and total number of points in

a cluster as indicators of the strength of the outliers to determine

whether or not to show a dimension with outliers to the user.

Alternatively, the difference between mean and actual value of

outliers could also be taken into account for determining strength

of outliers. The algorithmic complexity is O(kn) where n is the

number of data points and k is the number of dimensions.

In our current implementation we only detect false-positives

however detection of close outliers can be performed similarly.

All data points in nearby grid cells of a cluster can go through a

similar process of checking their values against cluster means.

Note that only data points that are not members of the cluster as a

result of semantic extension should be processed. As for far

outliers one can think processing cells that don’t belong to any

cluster and checking their values against overall means and

standard deviations. It is also possible to modify this process by

adding a minimum distance to a cluster boundary requirement.

3.2.3 Limitations

 Our outlier detection algorithms focus on a single dimension

value. It is possible that only combinations of dimension values

may result in outliers. In this paper we didn’t focus on such

outliers. Another limitation of the above algorithm is that for

dimensions with categorical values it assumes values are mapped

to a numeric value, and as such detection is at best suboptimal.

A final remark is that outliers are not only useful for reporting

such cases to the user but also for improving cluster semantics as

such data points are removed in a pre-processing step in cluster

refinement to improve the precision of the semantics derived.

3.3 Trend Detection

3.3.1 Definition

We define trends as visual depictions of the form, direction, and

strength of changes in data values. There are several types of

trends, for example, the shape of a cluster can have an elongated

shape suggesting that there is linear relationship between two or

more dimensions, or it might reflect a dominant dimension

exhibiting a directional trend within the cluster. Shape can be

circular suggesting that perhaps there is a radial trend (Figure 6).

What is common in essence about these several types of trends

is that their shapes reveal the characteristics of the distribution of

one more dimensions of the data elements in a cluster. The high-

level approach to detecting trends requires: (1) recognition of the

shape of a cluster, (2) association of the shape to a trend-type, (3)

identifying dimensions exhibiting that trend, and (4) determining

the strength of trend.

3.3.2 Approach

In our current implementation, we only detect directional trends

thus we only focus on steps 3 and 4. The algorithm starts off by

calculating the average data values (µk
row=i, µk

col=j, for all (i,j),

where G(i,j) ϵ cl) for each dimension (k) for each row (i) and

column (j) in a cluster (cl) (Figure 7.) Then, we perform simple

linear regression to fit a line to the average values vertically

(�
����
��

 = αk
row + βk

row · ri, where rmin ≤ ri ≤ rmax) and horizontally

(������
��

 = αk
col + βk

col · cj, where cmin ≤ ci ≤ cmax)) to determine if

the average values increase or decrease consistently row after row,

or column after column, within a cluster. Using the actual average

values (µk
row=i, µk

col=j) and estimated values (�
����
�� , ������

��) we

calculate the standard errors for row and column average values

(σk
row, σk

col) compared to the fitted line. If standard error is less

than a some fraction of error (σk
row < ε) and magnitude of slope is

higher than a threshold (βk
row and/or βk

col > Θ) we claim that there

is a directional trend. We save the standard error and slope as

indicators of strength and direction of the trend to be used later to

determine if trend is worthy of presenting to the user, in final

analysis. The algorithmic complexity is O(kn) since we calculate

statistics on each row/column in a cluster in each dimension.

3.4 Feature Ranking and Annotation

3.4.1 Definition

Annotation of features is about deriving the semantics that

describe the data points in a feature, e.g. cluster. When deriving

such semantics for a cluster it is important to focus on its

distinguishing semantics compared to other clusters. The goal is

not to provide a complete statistical summary for each feature

detected but rather to highlight the unique semantics of features

and use that to explain high-level structure through annotations on

visualizations. Such automatic annotation also provides an

opportunity for cluster validation by the user.

3.4.2 Approach

To derive such semantics we use a number of metrics, including

density of data values in a cluster, overlap with other clusters,

number of outliers in a cluster, and strength of trends that might

exist in a cluster.

Cluster density is derived from the standard deviation of data

values for each dimension. We essentially calculate a density

Figure 6: A few trend types: (a) Directional trend corresponding to
dimension values increasing along the direction of the elongated
cluster (b) Concentric trend corresponding to a dimension values
increasing radially from the center of a cluster.

77

Figure 7: Directional trend algorithm examines vertical and
horizontal average values for each dimension in each row and
column of a cluster, and tries to fit them to a line. If the standard
error between actual and estimated values is low and slope is
above a threshold it is considered that there is a directional trend.

score (densityi
j) between 0 and 1, based on a step function of the

standard deviation with steps at 0.01 (very dense), 0.05

(moderately dense), 0.1 (somewhat dense), and 0.25 (sparse),

corresponding to scores 1, 0.8, 0.5, and 0.1, respectively.

Overlap score is determined by calculating the degree of

overlap in data value ranges across each cluster. Instead of using

the actual data values, e.g. min or max, to determine overlap, we

calculate a range based on the standard deviation and means of

data values as (µj – σj, µj + σj) to arrive at a more consistent range

not deviated by extreme minimum and maximum values in

clusters. For each cluster we calculate average degree of overlap

with every other cluster to derive an overlap score, overlapi
j,

between 0 and 1, complete overlap and no overlap, respectively.

Thus, the higher the degree of overlap the less interesting becomes

the dimension for uniquely describing the cluster.

Outlier score is derived from the outlier ratio for each cluster by

dividing the number of outliers to the total number of data points

in each cluster. Again we employed a step function of outlier ratio

to arrive at a score (outlieri
j) between 0 and 1, with steps at 5%,

1%, 0.5%, and so on, corresponding to scores 1, .8, .6, and so on.

Trend score is calculated from the standard error of the line fit,

as discussed in previous section. If the magnitude of the slope of

the line is above a threshold it is considered to exhibit a trend with

a trend score (trendi
j) between 0 and 1, based on step function of

the standard error. This score is calculated both for row and

column trends.

The high-level algorithm basically goes through every cluster

(ci) in the visualization and for each dimension in the data (j) we

calculate density, overlap, outlier, and trend scores, as discussed

above. Then, we calculate a weighted sum of scores for each

dimension (scorei
j = wdensity · densityi

j + woverlap · overlapi
j + woutlier

· outlieri
j + wrowtrend · rowtrendi

j + wcoltrend · coltrendi
j) and for each

cluster in the visualization. In our current implementation density

score is given the highest weight, with decreasing weights given to

overlap, trend, and outlier scores, in that order. Adding scores for

a dimension from all clusters we calculate total scores for each

dimension and divide that by the number of clusters to arrive at an

average score for each dimension (µscore
j). Finally, we sort these

average scores by dimension and determine a set of important

dimensions (ID ⊆{1,2,..,n}) based average scores being above a

threshold. Thus, we arrive at a set of characteristics, such as

whether a cluster is dense, has trends and outliers, its min, max,

and mean values, for each cluster for each important dimension.

We use

these

characteristics to render annotations (e.g. cylinders=4 for ci, row

trend on weight [1200..1600] for ck) overlaid on the visualization

to help users explore the data. The algorithmic complexity

depends on the number of clusters (m) detected and on the number

of dimensions (k), i.e. O(mk).

3.5 Annotation Interaction

3.5.1 Definition

Annotations describe the semantic characteristics of the

clusters, trends, and outliers. They are overlaid on visual feature in

a visualization to explain such features and facilitate interaction.

There are basically four different types of annotations

corresponding to different types of features they represent: (a)

clusters with a nominal value (e.g. “6 cyl”), (b) clusters with a

range value (e.g. “[2000..3000] pounds”), (c) outliers in a cluster,

and (d) trends (e.g. “4 » 6 » 8 cyl”) (Figure 8.) A cluster can have

multiple such characteristics, e.g. a cluster of American cars, with

6 cylinders, weight ranging from 2000 to 3000 pounds, and as

such multiple annotations.

Figure 8: Annotations for (a) a cluster with a nominal value: 6 cyl.
cars with an 4 cyl. outlier, (b) a cluster with a range value: 4 to 8 cyl.
cars, and (c) a cluster with a directional trend where cars are
distributed linearly from 4 cyl. to 6 and 8 cyl. within the cluster.

3.5.2 Approach

Given the characteristics of the feature, identified in the

previous step, we use templates to produce the text of the

annotations. Given a value or a range of values, templates define

how to construct a short text phrase that can be displayed.

Templates may include units (e.g. “cu in”), attribute name (e.g.

“engine size”), value (singular and range) transformations (e.g. 1:

“American”), and how these should be combined to produce a

phrase. Each template specifies how a single value and a range of

values should be rendered. There are default templates for short

and long phrases, with reasonably good defaults, but having users

specify their templates can further improve readability and

recognition. Templates are specified as part of the schema

definition. Templates are specified in JavaScript, thus a range of

expressions are possible:

Below are a couple of template specifications, illustrating:

• data transformation, converting a two-digit year to a

complete year representation: format:{single: "'19'+value",

range: "'19'+min+'..'+'19'+max"}

• units, format:{unit: "cu in"}

Once texts of annotations are produced they are overlaid on the

features they are associated with. For clusters, annotations are

rendered at the cluster centroid. For outliers, annotations are

rendered next to the data point. For trends, annotations are

rendered centered over every other row or column within the

cluster, thus there are often several annotations rendered along the

shape of a cluster. The font size for the features are determined by

the size of the features detected, we essentially used a fixed ratio

to the radius of the feature size.

In our current implementation, since there can be multiple

annotations for each feature, we automatically cycle through each

78

Figure 9: Users can make a list of annotations and using brushing
technique can highlight annotated data points in another
projection, or they can also revert back to the projection at the time
the annotation was captured.

annotation at a frequency. When doing so we synchronize

rendering of annotations such that at each cycle all clusters show

annotations of the same dimension to support easy comparison

across clusters. We also opted to display two annotations

simultaneously, corresponding to different dimensions (e.g.

“American, 6 cyl”) so that associations between characteristics can

be made easily (Figure 1). We took care of not displaying a trend

annotation with other annotations at the same time as that may

cause overlaps. When user is not interacting with the visualization

we automatically cycle through each important dimension

identified. When the user moves the mouse or interacts in another

way we freeze the cycling for a brief period to allow the user to

select an annotation if they desire so.

Currently, we support a few ways of interacting with

annotations (Figure 9.) Users can brush over the annotations to

highlight data points with the same semantics (e.g. “6 cyl”). This

helps users in understanding and verifying clusters and how data

points are distributed to each cluster. Users can also click to save

an annotation and create a collection of annotations to use them

later in their exploration. For example, they can brush over

annotations in their collection and explore where the data points

with those semantics lie at a later point in their exploration.

Clicking over an annotation in the collection would bring back the

projection to the point in time when that annotation was captured,

supporting easier recall. While it is not yet implemented it would

be possible to combine multiple annotations and support brushing

so that hierarchical structures could be more easily explored.

3.5.3 Limitations

Currently, we don’t support users creating or expanding

automatically detected clusters. Likewise allowing users to

annotate features with their own tags would also be useful for

capturing insight. These would involve users in the data-mining

process even more, and support supervised cluster detection.

We are also exploring several different design options for

rendering annotations (such as small histograms) and features

(such as enclosing borders to present clusters). While current

annotations are easy to read, visual representation can further

improve readability.

4 EVALUATION

Below we present a quantitative and qualitative evaluation of
just-in-time descriptive analytics techniques discussed. First, we
examine runtime performance and feature detection quality. Then,
we present our analysis of two different datasets.

4.1 Performance

4.1.1 Setup and Datasets

We performed runtime analysis on a Lenovo ThinkPad T410,

with 6GB RAM, dual core 2.66Ghz Intel i7-620M, on 64bit

Windows 7 Professional. Tests were performed on a web

application using HTML5 Canvas and Dojo running on Firefox

browser (ver. 10). Measurements were taken using console.time.

The datasets used in the analysis were based on the original car

dataset with about 400 9-dimensional data points (See Analysis:

Cars Data). Larger sizes of the same dataset was created by adding

small noise (randomizing +/-) to original values, where each data

point would appear multiple times with similar characteristics, so

that we would preserve the high-level structure and patterns in the

data but with larger number of data points. The point here is to

measure how well it scales with higher number of data points

while preserving the same structure of data so that comparisons

across different number of data points are fair. Higher-dimensional

datasets were created similarly by adding new dimensions based

on original dimensional values, again randomized to some degree.

We measured performance in 150 or so runs of the algorithm in a

sequence of projections such that we observed a mixed set of

clusters, outliers, and trends and reported average running times.

4.1.2 Runtime Performance

Our results show near linear runtime performance as we tested

the techniques on datasets of increasing number of data points,

confirming our algorithmic complexity analysis findings (Figure

10.a) At about 3200 data points we noticed slightly noticeable lag

in interactive performance as total runtime was nearing 300ms,

suggesting above that number of data points interaction quality

would begin to suffer. Increasing the number of dimensions

resulted in a similar near-linear performance curve (Figure 10.b)

We also conducted another detailed run of the tests to examine

the breakdown by the various parts of the technique (Figure 10.c)

Visual cluster detection has about constant runtime performance

as it leverages grid-based approach, it increased only slightly with

the number of data points. Feature ranking also has about constant

runtime performance as it depends on the number detected

features and the number of dimensions, which in this case was the

same in each dataset independent of size. Outlier detection is

heavily dependent on the number of data points because it relies

on statistic calculation on each data point so was cluster

refinement, which involved outlier removal and recalculation of

cluster statistics. While trend detection was faster, its performance

was also linear in terms of the number of data points since it also

involves going through each row/column and calculating statistics.

4.1.3 Quality Evaluation

Quality of clusters is perceptual of nature, depends on task, and
requires human-judgment and as such it is difficult to evaluate the
quality of clustering techniques. In just-in-time descriptive
analytics the goal is not to identify all clusters in absolute terms
but to use potential features to guide further exploration.
Nonetheless we evaluated the quality of our cluster detection and
classification by perfoming simple statistics. Essentially for each
classification for a cluster we calculated precision and recall, i.e.
what percentage of data items within the cluster are appropriately

79

(a)

(b)

(c)

Figure 10: Performance: (a) Average total running times by number
of data points on 9-dimensional data (b) Average total running
times by number of dimensions on 400 data points, and (c)
Breakdown of running times by analytics algorithm and by number
of data points.

labeled with that classification (precision), and what percentage of
data items total with that classification are within that cluster
(recall). As in performance analysis, we measured precision and
recall in 1000 or so runs of the algorithm in a sequence of
projections and report averages scores.

It is important to note that this evaluation is very dependent on
the mapping of the particular visualization technique and may not
reflect the quality of our cluster detection and classification
algorithm fairly. Just-in-time descriptive analytics can only be as
good as dimensionality reduction/mapping to view-space of the
visualization technique. Nonetheless we found fairly good average
precision (.994) and reasonably good recall (.716) with an F1
score of .828 for categorical dimensions. For numerical
dimensions these scores are .993, .795, and .880, respectively. It is
not surprising that precision is so high; after all, the classification
is determined based on these values. Recall is lower but as
suggested earlier using density gradient and semantic expansion
and potentially other techniques recall will likely increase.

4.2 Analysis: Cars Data

We analyzed the cars dataset, which contained 406 car specs on

the following 9 variables: model name, model year, miles per

gallon (mpg), number of cylinders, engine displacement (cu.

inches), horsepower (hp), weight (lbs.), time to accelerate from 0

to 60 mph (sec.), and origin of car (1. American, 2. European, 3.

Japanese). Dataset has missing data in several columns [41].

We started our analysis by turning off the name and model year

variables to explore cars purely from their technical specs. As a

result, we obtained a projection that clearly showed three clusters.

Clusters were automatically labeled as (A) “American..Japanese,

3..5 cyl, 68..183 cu in”; (B) “American, 6 cyl, 156..262 cu in”; and

(C) “American, 8 cyl, 302..400 cu in”. The labeling appropriately

showed the main distinguishing characteristics of each cluster, e.g.

cluster A containing cars 3 to 5 cylinders, small engine-size, from

each origin. Cluster A also contained several 6 cylinder cars

identified as outliers and one 200 cu in. engine car as an outlier.

Upon examination of detailed values that car turned out to have a

missing value for horsepower. The other outlier cars however

were interesting in that they have very similar engine specs such

as weight, etc. to the cluster they were presented in except the 6

cylinders. None of the other clusters had outliers.

To examine the largest cluster (cluster A) even more, we scaled

origin variable and as a result we split this cluster into three sub-

clusters, one for each origin (Figure 1): (A1) “Japanese, 4 cyl.”;

(A2) “European, 4 cyl.”; and (A3) “American 4 cyl.” Cluster A1

had one European car as an outlier, 1971 buick-century, and had

specs similar to Japanese cars. There were also a couple of 3 cyl.

cars, identified as outliers. Cluster A2 had two 5 cyl. cars, and

cluster A3 had one 6 cyl. car as outlier.

This was a rather quick analysis aimed at gaining a high-level

understanding of the structure of the data. Our analysis quickly

revealed the hierarchical clusters around origin and cylinders,

which correlated significantly with other dimensions of the car,

such as weight and displacement such that even turning off the

cylinders the clusters were described by their number of cylinders.

4.3 Analysis: Telecommunications Churn Data

We also analyzed a telecommunications churn dataset that

consists of 5000 customer records including information about 21

attributes such as state, area code, phone number, voice plan

membership, number of voice messages, number of customer

service calls, international plan membership, day, evening, night,

and international minutes, calls, and charges, and churn indicating

whether the customer left for a competitor or not [41].

We started our analysis by coloring churn and turning it off

subsequently to examine how churned customers are distributed to

different clusters. We also turned off columns such as state, area

code, and phone number, we thought were not related to churn. As

a result two main clusters emerged, labeled as (A) “no voice plan,

0..12 voice msgs”, and (B) “voice plan, 8..50 voice msgs”. To

make clusters more definitive we turned off potentially correlated

dimensions such as minutes and calls, but kept charges for

different periods of time (i.e. day, evening, and night). We also

turned off number of voice messages and slowly more clusters

emerged, we also scaled voice mail plan and international plan to

separate the clusters more clearly (Figure 11.) As a result 4

clusters emerged representing all combinations of international

and voice plan membership, e.g. {intl. plan | no intl. plan} x

{voice plan | no voice plan. These clusters were also labeled with

number of voice messages, not shown in figure, as we only show

two dimensions at a time. A quick examination of the distribution

of churned data points, colored green, revealed that (1) customers

80

with international plan churned much more than those without;

and (2) customers without an international plan but with voice

mail plan are less likely to churn compared to those that do not

have voice mail plan, as indicated by the number of green dots.

Figure 11: Analysis of churn on telecommunications customer data
by examining distribution of (churned/green) customers in four
clusters (by international plan and voice plan) shows that customers
with international plan churn significantly more than others.

5 D ISCUSSION

Based on our evaluation we see that just-in-time descriptive

analytics can provide quick insight into datasets, particularly those

that have a mix of categorical and numerical dimensions, such as

the two datasets we presented here. This is not surprising since in

our default ranking we gave density score the highest weight.

Categorical dimensions have the advantage that their values (e.g.

American vs. Japanese) are meaningful to the user, as opposed to

numerical dimensions. To apply techniques developed here more

effectively to numerical dimensions we think that applying

binning and qualitative labeling of the bins, such cars with weights

above 2500 as “heavy”, would prove very useful.

 Furthermore, both of these datasets were dense datasets where

data was strongly clustered. We believe to apply just-in-time

descriptive analytics techniques effectively to more sparse datasets

we need to improve on cluster detection and annotation.

Particularly when there is a mix of dense and sparse clusters,

fuzzy and overlapping boundaries, and potentially nested clusters

we need to enhance our grid-based clustering algorithm. As for

outliers, it would certainly be important to identify close and far

outliers as they would certainly be informative as well. There are

also several patterns that we are not addressing such as trends

corresponding to contours of varying data values, typical in

geographic datasets.

In terms of user experience, current implementation suffers

from lack of coherent cluster assignment across interactions as

such we experience some jitter. There are several consequences of

this. One is that the annotation position shifts as the centroid of the

cluster changes due to changing cluster membership. Second,

cluster characterization might be affected by this and as such the

annotation labels/values might change. Lastly, this might even

cause change in the relative ranking of the dimensions and as such

change the presentation order. Currently, we are addressing this

problem by sorting important dimensions, above the threshold for

presentation, alphabetically so as users interact with the dataset

incrementally, such as scaling a dimension, annotation labels don’t

change abruptly.

 Also important for user experience, we believe that for

different datasets users should be able to adjust feature ranking

weights to yield more or less of the desired features. For example,

conditions for identifying points as outliers might be more or less

stringent depending on the dataset and task. We also believe that

involving users more in the identification and characterization of

features would be help user experience significantly.

Our performance evaluations based on a client-side

implementation show reasonable interactive performance until

couple of thousand data points. To scale beyond this we would

need to implement a client-server architecture where the server

would mimic the visual mappings based on specific projection

parameters it receives from the client. The server would then

detect, rank, and identify features and annotations and would send

the calculated annotations along with their position and size back

to the client. This would be very reasonable implementation for

scaling up the techniques described here, as the message sizes

between client and server would be minimal.

Lastly, we need to evaluate whether annotations generated are

useful, or whether they would mislead the user perception by

conducting user studies. While we doubt that they will mislead the

user as the annotations are precise in terms of their descriptions

they may take attention away from other features that users might

look at. User studies, particularly longitudinal studies, will need to

be conducted to assess the validity of the proposed approach.

6 CONCLUSION

In this paper we explored just-in-time descriptive analytics

techniques to help support understanding high-level structure of

data. To that end we developed simple algorithms that would

detect and describe clusters, outliers, and trends at interaction time

as users are exploring the data. We believe that it provides a novel

user experience of computational techniques working alongside of

users allowing them to build faster qualitative mental models of

data and we demonstrated its application on a few use-cases.

These algorithms were specific to point-based visualizations

however we think concepts developed in this paper are applicable

to other visualizations.

Beyond supporting qualitative understanding of high-level
structure of data, techniques developed can also be applied in
improving accessibility of visualizations as fundamentally we are
proposing not only a way to describe features in natural language
but also interact with such features. Annotations display accessible
textual descriptions of purely visual attributes for parts of a
visualization and even support some interaction with them. We
also think there is potential application of these techniques in
improving collaboration among analysts, by capturing and sharing
automatically identified annotations along with the specifics of the
projections that resulted in particular views. Just-in-time
descriptive analytics can also be useful in identifying and
suggesting visual and data operations, for example view
transformations such as scaling, rotation that users could do to
gain new insight and as such improve quality and quantity of
observations. This would be possible as just-in-time descriptive
analytics computes how many features (e.g. # of clusters, trends)
and what semantics (e.g. a cluster of European cars) are associated
with each feature, at least as far as detectable features are
concerned, and how that would change as a result of an operation.

We believe this is just the starting point of tighter integration of
computational and visual techniques at interaction time. Much
remains to be researched in terms of new visual features such as
temporal trends, and algorithms to detect and describe them at
interaction time.

81

REFERENCES

[1] Peng, W., Ward, M. O., Rundensteiner, E. A. Clutter Reduction in

Multi-dimensional Data Visualization using Dimension Reordering.

Proc. of the IEEE Information Visualization, pp. 89–96, 2004.

[2] Seo, J., Shneiderman, B. A Rank-by-feature Framework for

Unsupervised Multidimensional Data Exploration Using Low

Dimensional Projections. Proc. of the IEEE Information

Visualization, pp. 65–72, 2004.

[3] Guo, D., Gahegan M., Peuquet D., MacEachren, A. Breaking Down

Dimensionality: An Effective Feature Selection Method for High

Dimensional Clustering. Workshop on Clustering High Dimensional

Data and its Applications, Proc. 3rd SIAM International Conference

on Data Mining, 2003.

[4] Guo, D. Coordinating Computational and Visual Approaches for

Interactive Feature Selection and Multivariate Clustering.

Information Visualization 2, pp. 232–246, 2003.

[5] Jong, H., Rip, A. The Computer Revolution in Science: Steps

Toward the Realization of Computer-supported Discovery

Environments. Artificial Intelligence 91, pp. 225–256, 1997.

[6] Wong, P.C. Visual Data Mining. IEEE Computer Graphics &

Applications19, pp. 20–31, 1999.

[7] Ankerst, M., Ester, M., Kriegel, H.-P. Towards an Effective

Cooperation of the User and the Computer for Classification. Proc.

6th International Conf. on Knowledge Discovery and Data Mining

(KDD ’00), pp.179–188, 2000.

[8] Kandogan, E. Visualizing Multi-dimensional Clusters, Trends, and

Outliers using Star Coordinates. Proc. of the seventh International

Conference on Knowledge Discovery and Data Mining (KDD ’01),

pp.107–116, 2001.

[9] Jain, A., Murty, M. N., Flynn, P. J. Data Clustering: A Review. ACM

Computing Surveys 31(3), pp. 264–323, 1999.

[10] Han, J., Kamber, M., Data Mining: Concepts and Techniques.

Morgan Kaufmann Publishers, 2001.

[11] MacQueen, J. B. Some Methods for Classification and Analysis of

Multivariate Observations. Proc. of 5th Berkeley Symposium on

Mathematical Statistics and Probability, pp.281–297, 1967.

[12] Sheikholeslami, G., Chatterjee, S., Zhang, A., Wavecluster: A Multi-

resolution Clustering Approach for Very Large Spatial Databases.

Proc. of Very Large Databases Conference, pp.428–439, 1998.

[13] Abul, A. L., Alhajj, R., Polat, F., Barker K. Cluster Validity Analysis

Using Subsampling. Proc. of IEEE International Conference on

Systems, Man, and Cybernetics 2, pp. 1435–1440, 2003.

[14] Shneiderman, B. Inventing Discovery Tools: Combining Information

Visualization with Data Mining. Information Visualization 1(1), pp.

5–12, 2002

[15] Keim, D. A. 2002. Information Visualization and Visual Data

Mining. IEEE Transactions on Visualization and Computer Graphics

8(1), pp. 1–8, January 2002.

[16] Ankerst, M., Elsen, C., Ester, M., Kriegel, H-P. Visual Classification:

An Interactive Approach to Decision Tree Construction. Proc. 5th

Intl. Conf. on Knowledge Discovery and Data Mining (KDD ’99),

pp. 392–396, 1999.

[17] Teoh, S. T., Ma, K-L. Starclass: Interactive Visual Classification

using Star Coordinates. Proc. of 3rd SIAM International Conference

on Data Mining, pp. 178–185, 2003.

[18] Borg, I., Groenen, P. Modern Multidimensional Scaling: Theory and

Applications (2nd ed.). New York: Springer-Verlag, 2005.

[19] Kohonen, T. Self-Organizing Maps (2nd ed.). Berlin: Springer, 1997.

[20] Jolliffe, T. I. Principal Component Analysis. Springer Press, 2002.

[21] Paulovich, F. V., Nonato, L. G., Minghim, R., Levkowitz, H. Least

Square Projection: A Fast High-precision Multidimensional

Projection Technique and its Application to Document Mapping.

IEEE Trans. Vis. Comput. Graph. 14(3), pp. 564–575, 2008.

[22] Joia, P., Paulovich, F., Coimbra, D., Cuminato, J. A., Nonato, L.G.

Local Affine Multidimensional Projection. IEEE Transactions on

Visualization and Computer Graphics 17, pp. 2563–2571, 2011.

[23] Ingram, S., Munzner, T., Glimmer, O. M. Multilevel MDS on the

GPU. IEEE Transactions on Visualization and Computer Graphics

15, pp. 249–261, 2009.

[24] Yang, J., Ward, M. O., Rundensteiner, E. A., Huang, S. Visual

Hierarchical Dimension Reduction for Exploration of High

Dimensional Datasets. Proc. of the Joint Eurographics - IEEE TCVG

Symposium on Visualization, pp. 19–28, 2003.

[25] Asimov, D. The Grand Tour: A Tool for Viewing Multidimensional

Data. SIAM Journal of Scientific and Statistical Computing 6(1), pp.

128–143, 1985.

[26] Friedman, J., Tukey, J. W. A Projection Pursuit Algorithm for

Exploratory Data Analysis. IEEE Transactions on Computers 23, pp.

881–890, 1974.

[27] Cook, D., Buja, A., Cabrera, J., Hurley, C. Grand Tour and

Projection Pursuit. Journal of Computational and Graphical Statistics

23, pp.155–172, 1995.

[28] Bertini, E., Tatu, A., Keim, D. Quality Metrics in High-Dimensional

Data Visualization: An Overview and Systematization. IEEE

Transactions on Visualization and Computer Graphics 17(12), pp.

2203–2212, 2011.

[29] Johansson , S., Johansson, J. Interactive Dimensionality Reduction

Through User-defined Combinations of Quality Metrics. IEEE Trans.

On Visualization and Computer Graphics 15(6), pp. 993–1000, 2009.

[30] Yang, J., Peng, W., Ward, M. O., Rundensteiner, E. A. Interactive

Hierarchical Dimension Ordering, Spacing and Filtering for

Exploration of High Dimensional Datasets. IEEE Symposium on

Information Visualization 2003 (InfoVis ’03), pp. 105–112, 2003.

[31] Schneidewind, J., Sips, M., Keim, D. A. Pixnostics: Towards

Measuring the Value of Visualization. Proceedings of the IEEE

Symposium on Visual Analytics Science and Technology (VAST

’06), pp. 199–206, 2006.

[32] Tatu, A., Albuquerque, G., Eisemann, M., Schneidewind, J., Theisel,

H., Magnor, M., Keim, D. A. Combining Automated Analysis and

Visualization Techniques for Effective Exploration of High-

dimensional Data. Proceedings of the IEEE Symposium on Visual

Analytics Science and Technology (VAST ’09), pp. 59–66, 2009.

[33] Ankerst, M., Berchtold, S., Keim, D.A. Similarity Clustering of

Dimensions for an Enhanced Visualization of Multidimensional

Data. Proc. IEEE Symp. on Information Visualization, pp. 52–60,

1998.

[34] Wilkinson, L., Anand, A., Grossman, R. Graph-Theoretic

Scagnostics. Proc. of IEEE Symposium on Information

Visualization, pp. 157–164, 2005.

[35] Tatu, A., Bak, P., Bertini, E., Keim, D. A., Schneidewind, J. Visual

Quality Metrics and Human Perception: An Initial Study on 2D

Projections of Large Multidimensional Data. Proceedings of the

International Conference on Advanced Visual Interfaces (AVI ’10),

pp. 49–56, 2010.

[36] Rensink, R. A., Baldridge, G. The Perception of Correlation in

Scatterplots. Computer Graphics Forum (EuroVis ’10) 29(3), pp.

1203–1210, 2010.

[37] Chen, Y., Barlowe, S., Yang, J. Click2Annotate: Automated Insight

Externalization with Rich Semantics. Proc. of the IEEE Conference

on Visual Analytics Science and Technology (VAST ’10), pp. 155–

162, 2010.

[38] Yang, D., Xie, Z., Rundensteiner, E.A., Ward, M. O. Managing

Discoveries in the Visual Analytic Process. SIGKDD Explorations

9(2), pp. 22–29, 2007.

[39] Lowe, D. G. Perceptual Organization and Visual Recognition.

Kluwer Academic Publishers, 1985.

[40] Jain, A.K., Dubes, R.C. Algorithms for Clustering Data. Prentice-

Hall, 1988.

[41] Frank, A., Asuncion, A. UCI Machine Learning Repository, 2010.

Available at http://archive.ics.uci.edu/ml.

82

