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Figure 1: Just-in-Time Descriptive Analytics can automatically identify and annotate visual features (e.g. clusters, outliers, and trends) 

describing their semantics as users interact with visualizations by performing statistical computation at run-time. Shown above are about 400 

cars, shown as dots, representing dimensions such as mpg, weight, horsepower, and origin. Five clusters are detected and annotated 

automatically with descriptive labels (e.g. “European, 4 cyl.”) distinguishing their semantics from others. Within each cluster outliers (encircled 

in red) are also detected and labeled automatically (e.g. “3 cyl”). Looking at these visualizations users can easily understand structure of the 

data, i.e. what each cluster represents semantically and how data is distributed across several clusters, and build a qualitative mental model. 

ABSTRACT 

We introduce the concept of just-in-time descriptive analytics as a 

novel application of computational and statistical techniques 

performed at interaction-time to help users easily understand the 

structure of data as seen in visualizations. Fundamental to just-in-

time descriptive analytics is (a) identifying visual features, such as 

clusters, outliers, and trends, user might observe in visualizations 

automatically, (b) determining the semantics of such features by 

performing statistical analysis as the user is interacting, and (c) 

enriching visualizations with annotations that not only describe 

semantics of visual features but also facilitate interaction to 

support high-level understanding of data. In this paper, we 

demonstrate just-in-time descriptive analytics applied to a point-

based multi-dimensional visualization technique to identify and 

describe clusters, outliers, and trends. We argue that it provides a 

novel user experience of computational techniques working 

alongside of users allowing them to build faster qualitative mental 

models of data by demonstrating its application on a few use-

cases. Techniques used to facilitate just-in-time descriptive 

analytics are described in detail along with their runtime 

performance characteristics. We believe this is just a starting point 

and much remains to be researched, as we discuss open issues and 

opportunities in improving accessibility and collaboration. 

 

Keywords: Just-in-time descriptive analytics, feature 

identification and characterization, point-based visualizations. 

 

Index Terms: H.5.2 [Information Interfaces and Presentation]: 

User Interfaces; I.5.5 [Pattern Recognition]: Interactive Systems 
 

1    INTRODUCTION 

A good visualization reveals structure and patterns in data, and 

facilitates exploration of relationships between variables. The 

challenge is that as the data gets more complex (e.g. multiple 

dimensions, multiple datasets) inevitably representation and 

interaction becomes more complex. For example, for high-

dimensional data, representation may exhibit clutter and 

interactive exploration may become tedious [1]. To effectively 

support exploratory activities, techniques should support (1) 

qualitative understanding of  high-level structure of data, (2) 

development of hypotheses for deep analysis of relationships 

between variables, and (3) provenance and collaboration on 

qualitative insight (see also [2][3]). Our focus in this paper is (1). 

Our position is that visualization techniques should be more 

tightly-coupled with computational analytics techniques to deal 

with increasing complexity, particularly in the exploratory phase 

of data analysis to help users build qualitative mental models of 

data (see also [4][5][6][7]). To that end we introduce the concept 

of just-in-time descriptive analytics as a novel application of 

computational and statistical techniques during interaction time to 

help them easily understand the structure of data. The goal is not 

to compete with the human perceptual abilities to detect and 

identify patterns in visualizations but rather to potentially decrease 
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the cognitive load on users by automatically explaining structure 

in real-time as they interact, thus facilitating quick development of 

qualitative models of data, creating a novel user experience. 

Fundamental to interactive just-in-time descriptive analytics is 
(a) detecting visual features such as cluster, outliers, and trends 
that users might observe in visualizations automatically, (b) 
identifying the semantics of such features by performing statistical 
analysis as the user is interacting with data and creating 
annotations which uniquely describe visual features, and (c) 
enriching features in visualizations with annotations that not only 
describe their semantics (e.g. a cluster labelled distinctly as 
“European, 4cyl”) but also allows the user to interact with them, 
using for example brushing, to help development of high-level 
understanding of data.  

We argue that interactive just-in-time descriptive analytics 

allows the user to build faster qualitative mental models of data by 

demonstrating its application on a few use-cases, such as 

analyzing telecommunications churn. While we used the Star 

Coordinates technique (see [8]) to demonstrate the concept of just-

in-time descriptive analytics, techniques developed are directly 

applicable to other point-based visualization techniques, such as 2-

d and 3-d scatter-plots and multi-dimensional scaling, and 

conceptually applicable to other visualizations, such as line charts, 

though the features and as such algorithms would differ. In this 

paper we describe techniques used to facilitate just-in-time 

descriptive analytics for point-based visualizations in detail and 

present their runtime performance characteristics.  

The primary contribution of the paper is the exploration of 
statistical and computational techniques at interaction time to 
support visual exploration by explaining semantics of clusters, 
outliers, and trends users see on visualizations and thereby 
creating a novel user experience in interaction with data. To that 
end, our specific contributions are: (a) simple yet fast algorithms 
for detecting visual features such as cluster, outlier, and trends in 
point-based visualizations, (b) identifying semantic 
characterization of such features, (c) ranking of derived feature 
semantics for presentation, and (d) designing interaction 
techniques with feature annotations. 
 

2    RELATED WORK 

Related works falls into two fields: (1) data mining and (2) 

information visualization. First, we review computational and 

statistical techniques in the field of data mining for cluster 

detection. Next, we review techniques in the field of information 

visualization, particularly exploratory visualizations that leverage 

computational techniques to support users in visual data mining 

activities. 

2.1  Cluster Detection in Data Mining 

In data mining, clustering is considered as an unsupervised 

classification problem with the fundamental objective of 

identifying structure in data, particularly detecting and 

distinguishing groupings of data elements that are similar to each 

other and distinct from others based on some criteria.  

There are many cluster detection algorithms that are used in 

different applications (see [9][10] for comprehensive review). 

These algorithms differ in the way they model the data-space and 

in the way they choose similarity criteria. K-means is the most 

common clustering technique and works by iteratively refining k 

clusters to improve the quality of clustering based on some 

distance function in high-dimensional data-space [11]. Among all 

the techniques grid-based approaches are fairly flexible in their 

ability to find arbitrarily shaped clusters efficiently and 

consistently across different runs but choice of the grid-size is 

user-driven and requires some experimentation [12]. Our cluster 

detection algorithm is also a grid-based approach though it 

operates on the view-space, i.e. visualization, and as such assumes 

data is already reduced to 2d through transformations defined by a 

visualization such as multi-dimensional scaling.  

Fundamentally, clustering algorithms do not seek to provide an 

explanation or interpretation. As such our goal differs in that we 

seek to derive some semantics to explain the grouping and use 

such semantics to support interactive discovery process. Another 

important difference in our approach is that pattern detection is 

applied in the view-space as opposed to in the data-space. We seek 

to detect interesting patterns in the visualizations of data often 

mapped to lower-dimensional space but leverage full data-space to 

derive semantics for patterns observed in the view-space. Finally, 

we strive for simplicity in our algorithms, perhaps at the expense 

of quality, to achieve at least linear algorithmic complexity so that 

we can perform feature detection and semantics characterization 

as the user is interacting with data, without penalizing much the 

overall interactive performance. This is acceptable as our goal is to 

explain some of the features users might observe in visualizations 

for further exploration not necessarily to determine the optimal 

clustering of data. This is important particularly since high-

dimensionality of data presents a problem and traditional 

clustering algorithms often do not perform well particularly in 

terms of efficiency [13]. Given the high-computational cost and 

essential requirement of human judgment, there is growing interest 

in involving people in the cluster detection process. In the next 

section we will review visual data mining techniques. 

2.2   Visual Data Mining and Information Visualization 

Visualizations are powerful tools to help users explore and 

make sense of data, intuitively revealing trends, outliers, and 

clusters, though they have their limitations particularly for large 

and complex datasets [14]. Visual data mining aims to address this 

limitation by involving users directly in the data mining process 

using interactive visual techniques working together with data 

mining algorithms, such as decision-tree classifiers [15] [16][17]. 

Several approaches exist to explore complex high-dimensional 

datasets, such as multi-dimensional scaling [18], self-organizing 

maps [19], principal component analysis [20], and [21][22][23] by 

reducing the complexity, i.e. dimensions of data. A common 

problem in many of these techniques is that the projections that 

transform high-dimensional data into lower dimensions are not 

intuitive. Furthermore, multi-dimensional data has an inherent 

clutter problem, which may obscure structure present in the data 

and may make it difficult for users to find patterns and 

relationships. Though some of these problems can be addressed by 

selecting a subset of representative dimensions from the original 

set [24], still, there is an inherent challenge of traversing the high-

dimensional data-space to find and examine interesting 

relationships. For example, scatter plot matrices offer an intuitive 

way to examine binary relationships in multi-dimensional data yet 

they significantly suffer from dimensionality curse. To reduce the 

burden on the user, the grand tour technique uses a series of 2D 

projections in an animated fashion to traverse all different 

perspectives of data [25]. Projection Pursuit technique similarly 

uses statistical techniques to reduce the search space and find the 

most interesting possible projections [26][27]. While compelling 

these techniques may not be intuitive to the user and have high 

computational demands.  

To improve the quality of visualizations, metrics can be applied 

in several stages of the visualization pipeline [28], in data 

transformation [29][30], visual mapping [31][32], and view 

transformation [30]. For example, rearranging dimensions by their 
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similarity may improve the effectiveness of exploration of multi-

dimensional data [33]. Likewise, allowing users to rank (pairs of) 

dimensions to explore by a criterion, such as correlation 

coefficient, can help incorporate user’s interests in the interactive 

exploratory analysis process [2]. Similarly, scagnostics technique 

uses graph-theoretic approaches to define measures of shape, 

trend, and density in 2D scatter plots and creates a scatter plot 

matrix of these measures that users can use as a pointer to access 

original scatter plots [34]. In essence many of these metrics model 

human pattern recognition to some extent [28]. Studies such as 

[35][36] are critical in bringing validity to these approaches.   

In just-in-time descriptive analytics we avoid defining a 

complete path of exploration, often computed offline, but rather 

aim to explain what user might find interesting in the current 

projection, at interaction time, and have the user drive the 

exploration. Also, we avoid translating user’s interest to the 

metrics space, since it can be potentially challenging for the user 

to define their interest in statistical terms such as correlation 

coefficients. Our focus is on explaining what the user might be 

seeing in the visualizations through annotations, which can help 

them understand the data quickly.  We are not only talking about 

identifying interesting visual features but also about identifying 

the semantics of these features, unlike prior research.  

A recent technique, click2annotate allows semi-automatic 

annotation of interesting patterns such as clusters and outliers [37]. 

In this approach users select a set of points and select a pattern 

type (e.g. cluster), then a textual summary reporting a set of 

statistics, such as min/max values, cluster radius, is generated 

based on a template for the pattern type. In our approach patterns 

are detected and labeled automatically. Moreover our annotations 

focus on identifying distinguishing semantics of patterns from 

others in the visualization, as opposed to reporting the same set of 

statistics for each pattern. So, annotations in our approach are not 

merely statistical summaries but rather concise descriptive labels. 

Unlike click2annotate goal is not to document discoveries (as in 

[38]) but to explain structure of data to guide exploration. 

Therefore, our approach needs to compare and rank what is 

“interesting” based on some heuristics of features and we perform 

such calculations at interaction-time for good user experience. 

3    JUST- IN-T IME DESCRIPTIVE ANALYTICS  

The basic steps of just-in-time descriptive analytics are (1) 
visual feature detection, (2) feature ranking and annotation, and 
(3) annotation interaction to help support understanding of the 
structure of data (Figure 2). The goal is to accomplish all these 
computations just-in-time as users are interacting with data to 
provide a good user experience.  

Note that we use the term “feature” in a broad sense referring to 
anything that might be perceptually observed by the user revealing 
insight about data, such as clusters, outliers, and trends. The goal 
is not to substitute or compete with the human perceptual abilities 
but rather to potentially decrease the cognitive load on users by 
automatically identifying and describing semantics of features 
they might see in visualizations thus facilitating quick 
development of qualitative models of data. 

We will describe each of these steps in detail in the following 
sections by applying them on multi-dimensional data using Star 
Coordinates, to detect and describe features such as clusters, 
outliers, and trends. Star Coordinates provides an intuitive 
representation of multi-dimensional data by creating meaningful 
projections based on linear transformations as in 2- and 3-d scatter 
plots [8] and as such it is very suitable for our purposes. 

Just-in-time descriptive analytics can also be applied to 
multiple-datasets. This is possible if one can connect datasets 
through a primary key or use time as the basis for establishing 
associations. Even in 2-dimensional visualizations it is often the 
case that features in the visualization are due to intrinsic 
relationships between attributes not represented in the 
visualization. For example, a plot of product rating and price can 
reveal clusters of products whose semantics is explainable by 
attributes in other datasets such as product type and manufacturer.  

 
 Original Visualization  Feature Detection 

 Feature Annotation  Annotation Interaction 

Figure 2: Just-in-time descriptive analytics: (a) Original visualization, 

(b) Feature detection, (c) Feature ranking and annotation, and (d) 

annotation interaction. 

3.1   Cluster Detection 

3.1.1 Definition 

We consider clusters from a visual perception point of view 
since our goal for cluster detection is to identify what users might 
observe as a grouping of data points on a visualization. Perceptual 
grouping, as defined by Gestalt psychologists, refers to the human 
visual ability to extract relations using proximity, similarity, 
continuation, closure, and symmetry of lower-level primitive 
features and group them to obtain meaningful higher-level 
structure [39].  As such we define a cluster as a set of points in the 
view-space, connected to each other by proximity, and collectively 
perceived as a single arbitrarily-shaped object (as in [4]). Thus, 
our focus in terms of detection is on the view-space, eventual 
mapping of data to 2d, not on the high-dimensional data-space. 

In essence, we separate concerns of computing a mapping from 

data-space to view-space (responsibility of the visualization 

technique) and identifying  and describing interesting features in 

the view-space (just-in-time descriptive analytics) by deriving 

semantics from data-space. This has obvious performance 

benefits, which is important for achieving an interaction-time 

experience, since we are only dealing with a two-dimensional 

space for the purpose of detection, irrespective of the original 

dimensions of the data. It is important to note that the goal here is 

not to detect the clusters with the optimal quality but to identify 

visible clusters, describe and suggest them to the user for further 

exploration. The idea is to involve the user in the data mining 

process by driving their interest into potential hotspots of insight. 

 Another requirement for our purpose is the ability to detect 

arbitrary shapes as they may mean a particular kind of relationship 

between dimensions of data. For example, an elongated shape on a 

visualization might suggest a linear relationship or trend between 

two dimensions. Once such shapes are detected just-in-time 

descriptive analtyics techniques can be utilized to explain that 

particular shape (see Trend Detection). 
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(b) 

(c) 
 

Figure 4: (a) Using the same density level to detect clusters in the 
whole view-space may result in suboptimal clusters for clusters of 
varying densities, which can be addressed using (b) gradient- or 
(c) semantics-based extension of clusters. 

   
(a)                                        (b) 

   
(c)                                         (d) 

 
Figure 3: Steps of a 4-neighbor grid-based cluster detection 
algorithm: (a) assignment of points to grid cells, (b) traversal of grids 
in a row-major fashion, (c) assignment of a cluster id based on 4-
neighboring grid cells, and (d) merging of connected clusters. 

3.1.2 Approach 

We took a grid-density based approach to detect clusters in the 

view-space, since they are able to detect arbitrarily shaped 

clusters, connecting contiguous high-density grid cells. Grid-based 

approaches also scale well thus they suit our interaction-time 

performance requirements.  

We assume a set of k-dimensional data records, D = {d1, d2, …, 

di, …, dn}, with a cardinality of n, already mapped to view-space 

through some sort of transformation (τ) by a visualization 

technique, to obtain a set of points, P ={ p1, p2, …, pi, …, pn}, 

where  pi = τ(di) and pi ϵ R2. The detection algorithm starts by  

assigning each point pi to a grid cell G(r,c), based on the coordinates 

of the pi, i.e. pi
x and pi

y, and grid width. We then count the number 

of points in each grid cell, |G(r,c)|,, and calculate average for all 

occupied cells, µ. A grid cell is considered an eligible cluster cell 

if |G(r,c)|, > µ · f, where f is a fixed factor, determined by the user. 

The algorithm then proceeds by traversing each eligible cluster 

grid cell in a row-major order, left to right and top to bottom, 

making cluster assignments to grid cells. The assignment of 

cluster ids is done considering either 4-neighbors (only sharing an 

edge) or 8-neighbors (sharing edge or corner) of a given cell. If 

any of these neighbors are already assigned to a cluster, then the 

current eligible cell and other cells among the eligible neighbors 

are assigned to that cluster, merging the two clusters. Otherwise, a 

new cluster is created and current cell is assigned to that cluster 

(Figure 3). Computational complexity of the algorithm is O(n). 

Since the algorithm works in the view-space complexity is 

independent of the original dimensions.  

3.1.3 Limitations and Improvements 

While our basic grid-density based algorithm works for most 

practical purposes there are several issues with it. It is important to 

note that the goal is not necessarily to identify all clusters with 

their optimum boundaries but enough of the clusters and annotate 

them with their semantics to help the user. 
One issue is the choice of the grid cell size though unlike data-

space clustering algorithms the issue may not be as severe. 
Because the algorithm works on the view-space, dimensions of the 
visualization are often scaled either automatically or by the user 

such that data fits the view and is readable. A more important 
issue is the use of a global average cell density, µ,   to determine 
eligibility for cluster detection as it is possible that different 
clusters might have different densities (Figure 4.a). Another issue 
is the potential jitter as the user is interacting with the visualization 
changing the projection parameters. When users interactively 
change the projections the cluster centroids and cluster 
assignments might change due to changing grid assignments and 
cause undesired jitter when annotations are displayed at their 
centroids. The proposed algorithm also doesn’t handle nested 
clusters, where large clusters may contain denser clusters within. 

There are several ways to improve on the basic algorithm to 
address these issues without sacrificing performance much. The 
idea is to extend existing clusters in a post-processing step so that 
they are more inclusive of nearby cells if they are close in terms of 
change in density or in terms of semantics of the data points. 
Techniques such as hierarchical grids and nested means may also 
address these issues though with higher performance costs [3][40].  

Density change can be incorporated by calculating the gradient 
along x- and y-dimension for each cell. Gradients can be 
calculated by calculating the change in the number of data points 
from its neighbor cells horizontally and vertically, i.e. ∇(�,�)

�
=	|G(r,c)|-

|G(r-1,c)| and ∇(�,�)
� =	|G(r,c)|-|G(r,c-1)|. A grid cell would now be 

considered eligible if its gradients along either dimension are 
within a defined limit (Figure 4.b). Essentially the algorithm 
would extend clusters by smoothing out fuzzy boundaries based 
on grid cell densities. Semantics can be incorporated likewise in a 
post-processing step once the characteristics of each cluster are 
calculated. In this case cells with similar characteristics (e.g. cars 
with 4 cylinders) in neighboring cells are merged to the existing 
cluster (Figure 4.c). 

User involvement in this process is equally applicable to resolve 
these issues. Appropriate user interaction techniques can be 
provided to allow users to expand or contract clusters or define 
completely new clusters to support supervised interactive cluster 
detection and verification. 

3.2 Outlier Detection 

3.2.1 Definition 

As with clusters, we also take a perceptual perspective in 

thinking about outliers. There are several types of outlier points in 

a visualization: (a) false-positives, points that lie within a visual 

feature such as a cluster but semantically they don’t belong there, 

(b) close points that are near a visual feature but perhaps differ in 
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Figure 5: Types of outliers: (a) false-positive outliers are visually 
part of a feature they shouldn’t be, (b) close outliers are similar to a 
close-by feature but they aren’t part of, and (c) far outliers are far off 
from any other feature in the view space. 

just a few dimensions that pushed them out of the feature visually, 

and finally, and (c) far points that are distant from any visual 

feature but they are themselves not significantly dense enough to 

be identified as a cluster (Figure 5.) 

3.2.2 Approach 

We basically identify false-positives by going through all the 

data points in each cluster separately and comparing their values 

in each dimension to average values within the current cluster. If 

value is either below or above the mean by a factor (default 3, but 

could be adjusted by user) of standard deviation within cluster, i.e. 

| di
k - µk| > 3 σk, we mark such data points (di) as outliers and 

record such dimensions (k) along with the value (di
k) to inform the 

user. We save the number of outliers and total number of points in 

a cluster as indicators of the strength of the outliers to determine 

whether or not to show a dimension with outliers to the user. 

Alternatively, the difference between mean and actual value of 

outliers could also be taken into account for determining strength 

of outliers. The algorithmic complexity is O(kn) where n is the 

number of data points and k is the number of dimensions. 

In our current implementation we only detect false-positives 

however detection of close outliers can be performed similarly. 

All data points in nearby grid cells of a cluster can go through a 

similar process of checking their values against cluster means. 

Note that only data points that are not members of the cluster as a 

result of semantic extension should be processed. As for far 

outliers one can think processing cells that don’t belong to any 

cluster and checking their values against overall means and 

standard deviations. It is also possible to modify this process by 

adding a minimum distance to a cluster boundary requirement.  

3.2.3 Limitations 

 Our outlier detection algorithms focus on a single dimension 

value. It is possible that only combinations of dimension values 

may result in outliers. In this paper we didn’t focus on such 

outliers. Another limitation of the above algorithm is that for 

dimensions with categorical values it assumes values are mapped 

to a numeric value, and as such detection is at best suboptimal. 

A final remark is that outliers are not only useful for reporting 

such cases to the user but also for improving cluster semantics as 

such data points are removed in a pre-processing step in cluster 

refinement to improve the precision of the semantics derived.  

3.3 Trend Detection 

3.3.1 Definition 

We define trends as visual depictions of the form, direction, and 

strength of changes in data values. There are several types of 

trends, for example, the shape of a cluster can have an elongated 

shape suggesting that there is linear relationship between two or 

more dimensions, or it might reflect a dominant dimension 

exhibiting a directional trend within the cluster. Shape can be 

circular suggesting that perhaps there is a radial trend (Figure 6).  

What is common in essence about these several types of trends 

is that their shapes reveal the characteristics of the distribution of 

one more dimensions of the data elements in a cluster. The high-

level approach to detecting trends requires: (1) recognition of the 

shape of a cluster, (2) association of the shape to a trend-type, (3) 

identifying dimensions exhibiting that trend, and (4) determining 

the strength of trend. 

3.3.2 Approach 

In our current implementation, we only detect directional trends 

thus we only focus on steps 3 and 4. The algorithm starts off by 

calculating the average data values (µk
row=i, µk

col=j, for all (i,j), 

where G(i,j) ϵ cl ) for each dimension (k) for each row (i) and 

column (j) in a cluster (cl) (Figure 7.) Then, we perform simple 

linear regression to fit a line to the average values vertically 

( �
����
��

 = αk
row + βk

row · ri, where rmin ≤ ri ≤ rmax) and horizontally 

( ������
��

 = αk
col + βk

col · cj, where cmin ≤ ci ≤ cmax)) to determine if 

the average values increase or decrease consistently row after row, 

or column after column, within a cluster. Using the actual average 

values (µk
row=i, µk

col=j) and estimated values (�
����
�� , ������

�� ) we 

calculate the standard errors for row and column average values 

(σk
row, σk

col) compared to the fitted line. If standard error is less 

than a some fraction of error (σk
row  < ε) and magnitude of slope is 

higher than a threshold (βk
row and/or βk

col  > Θ) we claim that there 

is a directional trend. We save the standard error and slope as 

indicators of strength and direction of the trend to be used later to 

determine if trend is worthy of presenting to the user, in final 

analysis. The algorithmic complexity is O(kn) since we calculate 

statistics on each row/column in a cluster in each dimension. 

3.4 Feature Ranking and Annotation 

3.4.1 Definition 

Annotation of features is about deriving the semantics that 

describe the data points in a feature, e.g. cluster. When deriving 

such semantics for a cluster it is important to focus on its 

distinguishing semantics compared to other clusters. The goal is 

not to provide a complete statistical summary for each feature 

detected but rather to highlight the unique semantics of features 

and use that to explain high-level structure through annotations on 

visualizations. Such automatic annotation also provides an 

opportunity for cluster validation by the user.  

3.4.2 Approach 

To derive such semantics we use a number of metrics, including 

density of data values in a cluster, overlap with other clusters, 

number of outliers in a cluster, and strength of trends that might 

exist in a cluster.  

Cluster density is derived from the standard deviation of data 

values for each dimension. We essentially calculate a density 

       
Figure 6: A few trend types: (a) Directional trend corresponding to 
dimension values increasing along the direction of the elongated 
cluster (b) Concentric trend corresponding to a dimension values 
increasing radially from the center of a cluster. 
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Figure 7: Directional trend algorithm examines vertical and 
horizontal average values for each dimension in each row and 
column of a cluster, and tries to fit them to a line. If the standard 
error between actual and estimated values is low and slope is 
above a threshold it is considered that there is a directional trend. 

score (densityi
j) between 0 and 1, based on a step function of the 

standard deviation with steps at 0.01 (very dense), 0.05 

(moderately dense), 0.1 (somewhat dense), and 0.25 (sparse), 

corresponding to scores 1, 0.8, 0.5, and 0.1, respectively. 

Overlap score is determined by calculating the degree of 

overlap in data value ranges across each cluster. Instead of using 

the actual data values, e.g. min or max, to determine overlap, we 

calculate a range based on the standard deviation and means of 

data values as (µj – σj, µj + σj) to arrive at a more consistent range 

not deviated by extreme minimum and maximum values in 

clusters. For each cluster we calculate average degree of overlap 

with every other cluster to derive an overlap score, overlapi
j, 

between 0 and 1, complete overlap and no overlap, respectively. 

Thus, the higher the degree of overlap the less interesting becomes 

the dimension for uniquely describing the cluster. 

Outlier score is derived from the outlier ratio for each cluster by 

dividing the number of outliers to the total number of data points 

in each cluster. Again we employed a step function of outlier ratio 

to arrive at a score  (outlieri
j) between 0 and 1, with steps at 5%, 

1%, 0.5%, and so on, corresponding to scores 1, .8, .6, and so on. 

Trend score is calculated from the standard error of the line fit, 

as discussed in previous section. If the magnitude of the slope of 

the line is above a threshold it is considered to exhibit a trend with 

a trend score (trendi
j) between 0 and 1, based on step function of 

the standard error. This score is calculated both for row and 

column trends. 

The high-level algorithm basically goes through every cluster 

(ci) in the visualization and for each dimension in the data (j) we 

calculate density, overlap, outlier, and trend scores, as discussed 

above. Then, we calculate a weighted sum of scores for each 

dimension (scorei
j  = wdensity · densityi

j + woverlap · overlapi
j + woutlier 

· outlieri
j + wrowtrend · rowtrendi

j + wcoltrend · coltrendi
j) and for each 

cluster in the visualization. In our current implementation density 

score is given the highest weight, with decreasing weights given to 

overlap, trend, and outlier scores, in that order. Adding scores for 

a dimension from all clusters we calculate total scores for each 

dimension and divide that by the number of clusters to arrive at an 

average score for each dimension (µscore
j). Finally, we sort these 

average scores by dimension and determine a set of important 

dimensions (ID ⊆{1,2,..,n}) based average scores being above a 

threshold. Thus, we arrive at a set of characteristics, such as 

whether a cluster is dense, has trends and outliers, its min, max, 

and mean values, for each cluster for each important dimension. 

We use 

these 

characteristics to render annotations (e.g. cylinders=4 for ci, row 

trend on weight [1200..1600] for ck)  overlaid on the visualization 

to help users explore the data. The algorithmic complexity 

depends on the number of clusters (m) detected and on the number 

of dimensions (k), i.e. O(mk). 

3.5 Annotation Interaction 

3.5.1 Definition 

Annotations describe the semantic characteristics of the 

clusters, trends, and outliers. They are overlaid on visual feature in 

a visualization to explain such features and facilitate interaction. 

There are basically four different types of annotations 

corresponding to different types of features they represent: (a) 

clusters with a nominal value (e.g. “6 cyl”), (b) clusters with a 

range value (e.g. “[2000..3000] pounds”), (c) outliers in a cluster, 

and (d) trends  (e.g. “4 » 6 » 8 cyl”) (Figure 8.) A cluster can have 

multiple such characteristics, e.g. a cluster of American cars, with 

6 cylinders, weight ranging from 2000 to 3000 pounds, and as 

such multiple annotations.  

 

 
 

Figure 8: Annotations for (a) a cluster with a nominal value: 6 cyl. 
cars with an 4 cyl. outlier, (b) a cluster with a range value: 4 to 8 cyl. 
cars, and (c) a cluster with a directional trend where cars are 
distributed linearly from 4 cyl. to 6 and 8 cyl. within the cluster. 

3.5.2 Approach 

Given the characteristics of the feature, identified in the 

previous step, we use templates to produce the text of the 

annotations. Given a value or a range of values, templates define 

how to construct a short text phrase that can be displayed. 

Templates may include units (e.g. “cu in”), attribute name (e.g. 

“engine size”), value (singular and range) transformations (e.g. 1: 

“American”), and how these should be combined to produce a 

phrase. Each template specifies how a single value and a range of 

values should be rendered. There are default templates for short 

and long phrases, with reasonably good defaults, but having users 

specify their templates can further improve readability and 

recognition. Templates are specified as part of the schema 

definition. Templates are specified in JavaScript, thus a range of 

expressions are possible: 

Below are a couple of template specifications, illustrating: 

• data transformation, converting a two-digit year to a 

complete year representation: format:{single: "'19'+value",  

range: "'19'+min+'..'+'19'+max"} 

• units, format:{unit: "cu in"} 

Once texts of annotations are produced they are overlaid on the 

features they are associated with. For clusters, annotations are 

rendered at the cluster centroid. For outliers, annotations are 

rendered next to the data point. For trends, annotations are 

rendered centered over every other row or column within the 

cluster, thus there are often several annotations rendered along the 

shape of a cluster. The font size for the features are determined by 

the size of the features detected, we essentially used a fixed ratio 

to the radius of the feature size. 

In our current implementation, since there can be multiple 

annotations for each feature, we automatically cycle through each 
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Figure 9: Users can make a list of annotations and using brushing 
technique can highlight annotated data points in another 
projection, or they can also revert back to the projection at the time 
the annotation was captured. 

annotation at a frequency. When doing so we synchronize 

rendering of annotations such that at each cycle all clusters show 

annotations of the same dimension to support easy comparison 

across clusters. We also opted to display two annotations 

simultaneously, corresponding to different dimensions (e.g. 

“American, 6 cyl”) so that associations between characteristics can 

be made easily (Figure 1). We took care of not displaying a trend 

annotation with other annotations at the same time as that may 

cause overlaps. When user is not interacting with the visualization 

we automatically cycle through each important dimension 

identified. When the user moves the mouse or interacts in another 

way we freeze the cycling for a brief period to allow the user to 

select an annotation if they desire so.  

Currently, we support a few ways of interacting with 

annotations (Figure 9.) Users can brush over the annotations to 

highlight data points with the same semantics (e.g. “6 cyl”). This 

helps users in understanding and verifying clusters and how data 

points are distributed to each cluster. Users can also click to save 

an annotation and create a collection of annotations to use them 

later in their exploration. For example, they can brush over 

annotations in their collection and explore where the data points 

with those semantics lie at a later point in their exploration. 

Clicking over an annotation in the collection would bring back the 

projection to the point in time when that annotation was captured, 

supporting easier recall. While it is not yet implemented it would 

be possible to combine multiple annotations and support brushing 

so that hierarchical structures could be more easily explored.  

3.5.3 Limitations 

Currently, we don’t support users creating or expanding 

automatically detected clusters. Likewise allowing users to 

annotate features with their own tags would also be useful for 

capturing insight. These would involve users in the data-mining 

process even more, and support supervised cluster detection.  

We are also exploring several different design options for 

rendering annotations (such as small histograms) and features 

(such as enclosing borders to present clusters). While current 

annotations are easy to read, visual representation can further 

improve readability.  

4    EVALUATION 

Below we present a quantitative and qualitative evaluation of 
just-in-time descriptive analytics techniques discussed. First, we 
examine runtime performance and feature detection quality. Then, 
we present our analysis of two different datasets. 

4.1   Performance 

4.1.1 Setup and Datasets 

We performed runtime analysis on a Lenovo ThinkPad T410, 

with 6GB RAM, dual core 2.66Ghz Intel i7-620M, on 64bit 

Windows 7 Professional. Tests were performed on a web 

application using HTML5 Canvas and Dojo running on Firefox 

browser (ver. 10). Measurements were taken using console.time. 

The datasets used in the analysis were based on the original car 

dataset with about 400 9-dimensional data points (See Analysis: 

Cars Data). Larger sizes of the same dataset was created by adding 

small noise (randomizing +/-) to original values, where each data 

point would appear multiple times with similar characteristics, so 

that we would preserve the high-level structure and patterns in the 

data but with larger number of data points. The point here is to 

measure how well it scales with higher number of data points 

while preserving the same structure of data so that comparisons 

across different number of data points are fair. Higher-dimensional 

datasets were created similarly by adding new dimensions based 

on original dimensional values, again randomized to some degree. 

We measured performance in 150 or so runs of the algorithm in a 

sequence of projections such that we observed a mixed set of 

clusters, outliers, and trends and reported average running times. 

4.1.2 Runtime Performance 

Our results show near linear runtime performance as we tested 

the techniques on datasets of increasing number of data points, 

confirming our algorithmic complexity analysis findings (Figure 

10.a) At about 3200 data points we noticed slightly noticeable lag 

in interactive performance as total runtime was nearing 300ms, 

suggesting above that number of data points interaction quality 

would begin to suffer. Increasing the number of dimensions 

resulted in a similar near-linear performance curve (Figure 10.b) 

We also conducted another detailed run of the tests to examine 

the breakdown by the various parts of the technique (Figure 10.c) 

Visual cluster detection has about constant runtime performance 

as it leverages grid-based approach, it increased only slightly with 

the number of data points. Feature ranking also has about constant 

runtime performance as it depends on the number detected 

features and the number of dimensions, which in this case was the 

same in each dataset independent of size.  Outlier detection is 

heavily dependent on the number of data points because it relies 

on statistic calculation on each data point so was cluster 

refinement, which involved outlier removal and recalculation of 

cluster statistics. While trend detection was faster, its performance 

was also linear in terms of the number of data points since it also 

involves going through each row/column and calculating statistics. 

4.1.3 Quality Evaluation 

Quality of clusters is perceptual of nature, depends on task, and 
requires human-judgment and as such it is difficult to evaluate the 
quality of clustering techniques. In just-in-time descriptive 
analytics the goal is not to identify all clusters in absolute terms 
but to use potential features to guide further exploration. 
Nonetheless we evaluated the quality of our cluster detection and 
classification by perfoming simple statistics. Essentially for each 
classification for a cluster we calculated precision and recall, i.e. 
what percentage of data items within the cluster are appropriately 
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Figure 10: Performance: (a) Average total running times by number 
of data points on 9-dimensional data (b) Average total running 
times by number of dimensions on 400 data points, and (c) 
Breakdown of running times by analytics algorithm and by number 
of data points. 

 

labeled with that classification (precision), and what percentage of 
data items total with that classification are within that cluster 
(recall). As in performance analysis, we measured precision and 
recall in 1000 or so runs of the algorithm in a sequence of 
projections and report averages scores.  

It is important to note that this evaluation is very dependent on 
the mapping of the particular visualization technique and may not 
reflect the quality of our cluster detection and classification 
algorithm fairly. Just-in-time descriptive analytics can only be as 
good as dimensionality reduction/mapping to view-space of the 
visualization technique. Nonetheless we found fairly good average 
precision (.994) and reasonably good recall (.716) with an F1 
score of .828 for categorical dimensions. For numerical 
dimensions these scores are .993, .795, and .880, respectively. It is 
not surprising that precision is so high; after all, the classification 
is determined based on these values. Recall is lower but as 
suggested earlier using density gradient and semantic expansion 
and potentially other techniques recall will likely increase.  

4.2 Analysis: Cars Data 

We analyzed the cars dataset, which contained 406 car specs on 

the following 9 variables: model name, model year, miles per 

gallon (mpg), number of cylinders, engine displacement (cu. 

inches), horsepower (hp), weight (lbs.), time to accelerate from 0 

to 60 mph (sec.), and origin of car (1. American, 2. European, 3. 

Japanese). Dataset has missing data in several columns [41].  

We started our analysis by turning off the name and model year 

variables to explore cars purely from their technical specs. As a 

result, we obtained a projection that clearly showed three clusters. 

Clusters were automatically labeled as (A) “American..Japanese, 

3..5 cyl, 68..183 cu in”; (B) “American, 6 cyl, 156..262 cu in”; and 

(C) “American, 8 cyl, 302..400 cu in”.  The labeling appropriately 

showed the main distinguishing characteristics of each cluster, e.g. 

cluster A containing cars 3 to 5 cylinders, small engine-size, from 

each origin.  Cluster A also contained several 6 cylinder cars 

identified as outliers and one 200 cu in. engine car as an outlier. 

Upon examination of detailed values that car turned out to have a 

missing value for horsepower. The other outlier cars however 

were interesting in that they have very similar engine specs such 

as weight, etc. to the cluster they were presented in except the 6 

cylinders. None of the other clusters had outliers. 

To examine the largest cluster (cluster A) even more, we scaled 

origin variable and as a result we split this cluster into three sub-

clusters, one for each origin (Figure 1): (A1) “Japanese, 4 cyl.”; 

(A2) “European, 4 cyl.”; and (A3) “American 4 cyl.” Cluster A1 

had one European car as an outlier, 1971 buick-century, and had 

specs similar to Japanese cars. There were also a couple of 3 cyl. 

cars, identified as outliers. Cluster A2 had two 5 cyl. cars, and 

cluster A3 had one 6 cyl. car as outlier. 

This was a rather quick analysis aimed at gaining a high-level 

understanding of the structure of the data. Our analysis quickly 

revealed the hierarchical clusters around origin and cylinders, 

which correlated significantly with other dimensions of the car, 

such as weight and displacement such that even turning off the 

cylinders the clusters were described by their number of cylinders. 

4.3 Analysis: Telecommunications Churn Data 

We also analyzed a telecommunications churn dataset that 

consists of 5000 customer records including information about 21 

attributes such as state, area code, phone number, voice plan 

membership, number of voice messages, number of customer 

service calls, international plan membership, day, evening, night, 

and international minutes, calls, and charges, and churn indicating 

whether the customer left for a competitor or not [41]. 

We started our analysis by coloring churn and turning it off 

subsequently to examine how churned customers are distributed to 

different clusters. We also turned off columns such as state, area 

code, and phone number, we thought were not related to churn. As 

a result two main clusters emerged, labeled as (A) “no voice plan, 

0..12 voice msgs”, and (B) “voice plan, 8..50 voice msgs”. To 

make clusters more definitive we turned off potentially correlated 

dimensions such as minutes and calls, but kept charges for 

different periods of time (i.e. day, evening, and night). We also 

turned off number of voice messages and slowly more clusters 

emerged, we also scaled voice mail plan and international plan to 

separate the clusters more clearly (Figure 11.) As a result 4 

clusters emerged representing all combinations of international 

and voice plan membership, e.g. {intl. plan | no intl. plan} x 

{voice plan | no voice plan. These clusters were also labeled with 

number of voice messages, not shown in figure, as we only show 

two dimensions at a time. A quick examination of the distribution 

of churned data points, colored green, revealed that (1) customers 
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with international plan churned much more than those without; 

and (2) customers without an international plan but with voice 

mail plan are less likely to churn compared to those that do not 

have voice mail plan, as indicated by the number of green dots. 

 

 
Figure 11: Analysis of churn on telecommunications customer data 
by examining distribution of (churned/green) customers in four 
clusters (by international plan and voice plan) shows that customers 
with international plan churn significantly more than others.  

5    D ISCUSSION 

Based on our evaluation we see that just-in-time descriptive 

analytics can provide quick insight into datasets, particularly those 

that have a mix of categorical and numerical dimensions, such as 

the two datasets we presented here. This is not surprising since in 

our default ranking we gave density score the highest weight. 

Categorical dimensions have the advantage that their values (e.g. 

American vs. Japanese) are meaningful to the user, as opposed to 

numerical dimensions. To apply techniques developed here more 

effectively to numerical dimensions we think that applying 

binning and qualitative labeling of the bins, such cars with weights 

above 2500 as “heavy”, would prove very useful. 

 Furthermore, both of these datasets were dense datasets where 

data was strongly clustered. We believe to apply just-in-time 

descriptive analytics techniques effectively to more sparse datasets 

we need to improve on cluster detection and annotation. 

Particularly when there is a mix of dense and sparse clusters, 

fuzzy and overlapping boundaries, and potentially nested clusters 

we need to enhance our grid-based clustering algorithm. As for 

outliers, it would certainly be important to identify close and far 

outliers as they would certainly be informative as well. There are 

also several patterns that we are not addressing such as trends 

corresponding to contours of varying data values, typical in 

geographic datasets. 

In terms of user experience, current implementation suffers 

from lack of coherent cluster assignment across interactions as 

such we experience some jitter. There are several consequences of 

this. One is that the annotation position shifts as the centroid of the 

cluster changes due to changing cluster membership. Second, 

cluster characterization might be affected by this and as such the 

annotation labels/values might change. Lastly, this might even 

cause change in the relative ranking of the dimensions and as such 

change the presentation order. Currently, we are addressing this 

problem by sorting important dimensions, above the threshold for 

presentation, alphabetically so as users interact with the dataset 

incrementally, such as scaling a dimension, annotation labels don’t 

change abruptly.  

 Also important for user experience, we believe that for 

different datasets users should be able to adjust feature ranking 

weights to yield more or less of the desired features. For example, 

conditions for identifying points as outliers might be more or less 

stringent depending on the dataset and task. We also believe that 

involving users more in the identification and characterization of 

features would be help user experience significantly. 

Our performance evaluations based on a client-side 

implementation show reasonable interactive performance until 

couple of thousand data points. To scale beyond this we would 

need to implement a client-server architecture where the server 

would mimic the visual mappings based on specific projection 

parameters it receives from the client. The server would then 

detect, rank, and identify features and annotations and would send 

the calculated annotations along with their position and size back 

to the client. This would be very reasonable implementation for 

scaling up the techniques described here, as the message sizes 

between client and server would be minimal.  

Lastly, we need to evaluate whether annotations generated are 

useful, or whether they would mislead the user perception by 

conducting user studies. While we doubt that they will mislead the 

user as the annotations are precise in terms of their descriptions 

they may take attention away from other features that users might 

look at. User studies, particularly longitudinal studies, will need to 

be conducted to assess the validity of the proposed approach. 

6    CONCLUSION 

In this paper we explored just-in-time descriptive analytics 

techniques to help support understanding high-level structure of 

data. To that end we developed simple algorithms that would 

detect and describe clusters, outliers, and trends at interaction time 

as users are exploring the data. We believe that it provides a novel 

user experience of computational techniques working alongside of 

users allowing them to build faster qualitative mental models of 

data and we demonstrated its application on a few use-cases. 

These algorithms were specific to point-based visualizations 

however we think concepts developed in this paper are applicable 

to other visualizations. 

Beyond supporting qualitative understanding of  high-level 
structure of data, techniques developed can also be applied in 
improving accessibility of visualizations as fundamentally we are 
proposing not only a way to describe features in natural language 
but also interact with such features. Annotations display accessible 
textual descriptions of purely visual attributes for parts of a 
visualization and even support some interaction with them. We 
also think there is potential application of these techniques in 
improving collaboration among analysts, by capturing and sharing 
automatically identified annotations along with the specifics of the 
projections that resulted in particular views. Just-in-time 
descriptive analytics can also be useful in identifying and 
suggesting visual and data operations, for example view 
transformations such as scaling, rotation that users could do to 
gain new insight and as such improve quality and quantity of 
observations.  This would be possible as just-in-time descriptive 
analytics computes how many features (e.g. # of clusters, trends) 
and what semantics (e.g. a cluster of European cars) are associated 
with each feature, at least as far as detectable features are 
concerned, and how that would change as a result of an operation. 

We believe this is just the starting point of tighter integration of 
computational and visual techniques at interaction time. Much 
remains to be researched in terms of new visual features such as 
temporal trends, and algorithms to detect and describe them at 
interaction time.  
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