
Extending the Processing Programming Environment to Tiled Displays

Brandt Michael Westing*, Robert Turknett**
Texas Advanced Computing Center

The University of Texas at Austin

ABSTRACT
MostPixelsEver – Cluster Edition is an extension of the
Processing programming environment that enables visualization
in cluster-driven display environments without extensive
knowledge of programming languages, graphics interfaces, or
distributed computing. The work described here enables visual
artists, humanities scholars and students, and even traditional
programmers to create interactive visualizations in high-resolution
distributed environments with simplicity. MostPixelsEver hides
the inherent complexity of distributed environments by
abstraction, and makes it possible to rapidly create visualizations
on large displays.

Keywords: tiled displays, programming languages, visual arts.

Index Terms:	 D.1.3 [Programming Techniques]: Distributed
Programming; I.3.8 [Computer Graphics]: Applications

1 INTRODUCTION
Processing is a programming environment that was developed in
2001 to promote software literacy in the visual arts[1]. It is a free
and open-source programming language and development
environment that was originally developed to teach fundamentals
of computer programming, but quickly developed into a tool for
creating professional work. Processing abstracts complicated
programming concepts and simplifies the workflow in creating
software by: hiding compilation, linking, and running the program
executable; by implementing a scripting layer on Java; and by
providing a simplified development environment. Furthermore,
Processing provides a programming construct broken into two
functional components that abstract the control loop found in most
applications.

While Processing works well on its own, it does not natively
support distributed instances, or multiple dependent processes
running on multiple hosts. This presents a barrier for usage of this
easy to use language and environment on tiled displays or multi-
projector systems. Others have developed frameworks that allow
the development of distributed graphics software [1][2], but the
work described here provides a much simpler interface to
programming with distributed graphics contexts by harnessing the
usability of the Processing language. [4] provides similar
functionality, but does not provide for easy configuration, relying
on the user to create individual configuration files per host, while
our work needs only one file. Additionally, [4] does not support
broadcast of arbitrary message types between processes, and does
not implement non-busy frame locking. This work, by building on
[4], simplifies the use of Processing in distributed graphics
contexts.

*bwesting@tacc.utexas.edu
**turknett@tacc.utexas.edu

2 IMPLEMENTATION
In an effort make the distributed environment transparent to the
user, this work requires the user only make a small number of
method calls when setting up the scene. Once the calls are made,
the user can write the Processing sketch how they would in a
single process environment. The notion of a messaging Process is
introduced here that implements the abstraction of the distributed
environment for the user. Once a Process is instantiated and
started, communication with other Processing sketches on the
network are handled transparently by the messaging Process
running locally. In the case of a tiled display, there would be a
Processing sketch instance running on each node, with a
complementary messaging Process instance running on each
node. The messaging Process instance handles communication
and synchronization via frame locking.

2.1 Implementation: Configuration
To properly set the view frustum of each renderer within the

distributed context, a configuration file is created that contains the
screen dimensions and location of the process within the larger
display. This file serves to also indicate a leader messaging
Process: the process that will serve frame event messages to
follower messaging Processes.

Figure 1: The messaging Process (MPE Library) instance is run on

each host and transparently handles communication between
the leader process and follower processes.

2.2 Implementation: Interaction with Processing
Once a messaging Process instance is started on a host by the
main Processing instance, it registers itself with the main instance
by requiring that the main process call designated method call-
back in the messaging Process instance before and after the scene

is drawn. This call-back registration serves to enable frame
locking and frustum correction (Figure 2). Before the scene is
drawn, the main instance transparently calls the messaging
Process object to adjust the view frustum such that the scene
appears correct within the larger display surface. This call ensures
that the entire scene is not drawn to the local window, but that
only the correct portion of the scene is drawn with respect to the
larger display area (Figure 2).

After the scene has been drawn, but before the scene is pushed
to the graphics pipeline for rasterization, a post-draw method is
called on the Process and causes the Processing instance to halt
until the frame lock has been unlocked. The frame lock is
controlled by the Process instance and unlocks the frame lock
when a frame event message is sent from the master messaging
Process (or head node). This sequence of events effectively
synchronizes the display surface such that each process must be
ready to render the scene before the scene is rendered. While this
has the negative side effect that the slowest process controls the
speed of rendering, it guarantees that the display is in sync.

Figure 2: Frustum per process (blue) must be corrected from the

aggregated display frustum (green).

2.3 Implementation: Inter-process Communication
The configuration file designates a leader messaging Process that
will coordinate synchronization between follower Processes.
When a follower Process is instantiated, it connects to the leader
through socket communication and establishes itself as a follower.
When all followers have registered with the leader Process, the
leader will broadcast a ‘frame event’ message that signals that the
followers may have their frame lock unlocked. At this time, the
leader will also unlock its own frame lock and render the scene.
After a follower has rendered the scene, it sends an ‘end frame’
message to the leader. Once the leader has received all the ‘end
frame’ messages, it again broadcasts a ‘frame event’ message
signalling that the followers may now render. This sequence
iterates until interruption by application exit.

The leader Process may also send attribute information along
with ‘frame event’ messages. This attribute information may
contain information on mouse input at the head node, or any other
input sequence that would support interaction. Lastly, an
asynchronous messaging Process may be started that can contact
the leader to provide input. This asynchronous Process need not
render anything or abide by frame locking, as its sole purpose is to

provide input to the Processes that make up the distributed
graphics context.

3 CONCLUSIONS AND FUTURE WORK
The work described provides a transparent interface for writing
graphics applications that span multi-node distributed display
environments. Extending the Processing Programming
Environment to distributed environments creates an effective and
easy-to-use graphics environment for tiled displays supporting
interaction and facilitating application creation.

This work is still in progress and is an early indication of the
reality in easy-to-use interfaces for an otherwise difficult system.
The limitations of the system described are that it runs only as fast
as the slowest process in the distributed system. This can be
alleviated by removing frame locking, but at the cost of
synchronization. A more complex protocol, perhaps one that uses
buffering, could be explored that might alleviate this problem.
Furthermore, this system works because of the inherent
determinism in an application. Given an input set, the
computation will result in the same output on each run. However,
when user input is present at one process and not the other, the
input must be broadcasted to all other processes over the network.
This is possible with simple input such as mouse and keyboard,
but quickly becomes unwieldy with more complex input such as
video or sensors.

4 SAMPLE CODE
The following snippet of code renders a cube to a distributed

display. Commented lines show the MostPixelsEver additions:

Process process; // MPE Process thread
Configuration tileConfig; // MPE Configuration object

void setup() {
 // create a new configuration object
 tileConfig = new Configuration(“configuration.xml", this);

 // set the size of the sketch based on the configuration file
 size(tileConfig.getLWidth(), tileConfig.getLHeight(), OPENGL);

 // create a new process
 process = new Process(tileConfig);

 // start the MPE process
 process.start();
}

void draw() {
 rotateY(-.5);
 background(0);
 fill(255,0,0);
 box(200);
}

5 ACKNOWLEDGEMENTS
This work was made possible by funding from the National

Endowment for the Humanities (NEH) Grant: HD-51475-11, A
Thousand Words: Advanced Visualization for the Humanities.

REFERENCES
[1] K. Doerr, F. Kuester, "CGLX: A Scalable, High-performance

Visualization Framework for Networked Display Environments,"
IEEE Transactions on Visualization and Computer Graphics, vol.
99, 2010.

[2] S. Eilemann, M. Makhinya, R. Pajarola, “Equalizer: A Scalable
Parallel Rendering Framework,” IEEE Transactions on Visualization
and Computer Graphics, vol. 15, no. 3, 2009.

[3] Processing, Cover, B. Fry, C. Reas, date last referenced: 06/25/2012,
http:// http://processing.org/.

[4] Daniel Shiffman, Most Pixels Ever, D. Shiffman, date last
referenced: 06/25/2012, http://www.shiffman.net/2007/03/02/most-
pixels-ever/.

