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ABSTRACT

Interactive visualization and analysis of large and complex volume
data is still a big challenge. Compression-domain volume rendering
methods have shown that mathematical tools to represent and com-
press large data are very successful. We use a new framework that
is widely used for data approximation – tensor approximation (TA).
Specific properties of the TA bases are elaborated in the context of
multiresolution and multiscale volume visualization.
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1 INTRODUCTION

Todays volume datasets are not only large, but, in particular, exhibit
an increasing complexity of internal structure at different spatial
scales. To cope with these challenging volume datasets and show
variable feature scales and spatial resolutions, we describe the ad-
vantageous properties and features of the TA framework [3]. TA
is a compression-domain method that works with computed data-
specific bases, while other compression-domain approaches like
wavelets base on pre-defined filters. [8, 6] have shown that TA is
more compact and is able to capture non-axis aligned features at
different scales. Wavelets are advantageous to reconstruct the over-
all statistical distribution of a dataset at coarser resolutions, whereas
TA extracts specific features based on statistical properties like the
major direction. We aim at the latter.

For state-of-the-art out-of-core volume visualization [4, 2, 1] two
key points are: (1) to decompose the data into subvolumes, and (2)
to store the data at multiple resolutions in order to load the appropri-
ate data portions on demand. Both key issues are supported intrinsi-
cally within the TA framework. Along the spatial axis (rows) of the
TA factor matrices, the spatial distribution of the data is represented
along the given data direction. It is possible to select subranges of
the TA factor matrix rows in order to either (1) reconstruct only
a specific subvolume or (2) reconstruct it at a lower resolution by
mipmapping [7]. Another TA factor matrices property along the
rank axis (columns) is that a column subrange approximates the
data at a coarser scale of the visible structural features [6].

TA has successfully been applied to interactive large volume vi-
sualization in [5]. However, specific TA matrix properties have not
yet been exploited. Here, we describe these TA features that can be
utilized for multiresolution and multiscale volume visualization.

2 BACKGROUND: TENSOR APPROXIMATION (TA)

TA is a SVD/PCA-like approximation tool that works for higher or-
der data tensors. A tensor is a generalization of a multidimensional
array, e.g., a matrix is a second-order tensor. In the context of vol-
ume visualization, we represent a volume as a third-order tensor
A ∈ RI1×I2×I3 with voxels aiii2i3 and apply a tensor decomposition
as described in [3]. We use the so called Tucker model, which con-
sists of one factor matrix per mode U(n) ∈ RIn×Rn and one core
tensor, e.g., B ∈ RR1×R2×R3 for a volume. The core tensor B is
in effect a projection of the original data A onto the basis of the
factor matrices U(n). In case of a volume, the Tucker model has
three modes as illustrated in Fig. 1, and defines an approximation
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Ã =B×1 U(1)×2 U(2)×3 U(3) of the original volume A (using n-
mode products ×n). The voxel-wise Tucker reconstruction of Ã is
defined as ãi1i2i3 = ∑r1 ∑r2 ∑r3 br1r2r3 · u

(1)
i1r1
· u(2)i2r2

· u(3)i3r3
, with factor

matrix and core tensor entries u(n)inr and br1r2r3 .
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Figure 1: Tucker tensor approximation: Ã =B×1 U(1)×2 U(2)×3 U(3)

3 TA FACTOR MATRIX PROPERTIES

The TA factor matrices U(n) resemble a frequency pattern (as e.g.
known from DCT-bases), illustrated for the hazelnut dataset in
Fig. 2. As can be observed, the matrices reveal two different axis.
The vertical axis (rows) shows the spatial distribution of the data,
whereas the horizontal axis (columns) refines (frequency) details of
the dataset. Seen in the context of a volume, the rows correspond
to the spatial dimension along each mode n, and the columns corre-
spond to the approximation quality and the feature scale space.
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Figure 2: Factor matrix pattern shown for initial matrices (stretched).
Value encoding: brown (negative), white (zero), green (positive).

The differences of adjusting the parameters along the two axes
are illustrated in Figs. 3 and 4. By selecting a subset of rows, we
reconstruct a subvolume; by selection a subset of columns, we re-
construct the full volume, but at a coarser feature scale.
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Figure 3: Spatial selectivity: A range of selected submatrix rows re-
constructs a defined subvolume (in brown) of the original dataset.

U(3)U(1) U(2)I1 I2

I2
I3

I3

R1 R2 R3

R1

R2
R3

K1 K2 K3

I1

K1
K2 K3

B
�A

Figure 4: Rank reduced reconstruction: A reduced range of factor
matrix columns with corresponding fewer core tensor entries recon-
structs a lower quality approximation but at full resolution.

In summary, both axis represent parameter spaces for large vol-
ume visualization. We explain how these two properties can be
exploited for multiresolution modeling (spatial selection and sub-
sampling, Sec. 3.1) and multiscale approximation (tensor rank re-
duction, Sec. 3.2).



3.1 Spatial Selectivity
For view-frustum culling and adaptive brick selection in interactive
multiresolution volume visualization, efficient access to spatially
restricted subvolumes is required. Since a TA factor matrix’s rows
directly correspond to its spatial dimension, we can reconstruct a
subvolume directly from the TA factor matrices. That means, we
can define row-index subranges Jn ⊆ [0 . . . In] that reconstruct a de-
fined spatial subvolume J1× J2× J3 for the reduced index ranges
in ∈ Jn of the voxelwise reconstruction (Sec. 2, Fig. 3). Using
these row-block submatrices U(n)

Jn
we formulate the subvolume re-

construction as ÃJ1×J2×J3 =B×1 U(1)
J1
×2 U(2)

J2
×3 U(3)

J3
. In Fig. 5 an

example of two selected subvolumes (1 and 2) is illustrated. For the
two different subvolumes, we selected the factor matrix row vectors
corresponding to the position of the subvolume in the input dataset.
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Figure 5: Spatial selectivity of factor matrices. Two selected bricks
are reconstructed by the selection of row index subranges.

In multiresolution volume visualization, lower resolution sub-
sampled representations of subvolume bricks are needed for view-
dependent adaptive LOD rendering. Due to the direct spatial cor-
respondence of factor-matrix rows to the spatial dimensions, we
can apply the lower-resolution subsampling on the factor matrices
before the brick reconstruction. Correspondingly, we construct a
lower-resolution reconstruction in the n-th mode by averaging pairs
of rows to get a downsampled matrix U(n)

↓1
(with In/2 rows). Down-

sampling and averaging pairs of rows corresponds to halving the
reconstructed volume resolution (known as mipmapping). In Fig. 6,
we show the factor matrix averaging as used for a multiresolution
tensor representation and its effects on the visual reconstructions.

 643

 
1283 2563

5123

8bit

A
A↓k A↓k A↓k

Figure 6: Factor matrix subsampling (bottom row) compared to direct
TA (middle row) derived from original subsampled inputs A (top row).

3.2 Approximation and Rank Reduction
The Tucker model defines a rank-(R1,R2,R3) approximation [3],
whereas a small Rn corresponds to a low-rank approximation (many
details removed) and a large Rn corresponds to an approximation
closer matching the original. The rank Rn for the initial decom-
position has to be explicitly given. However, further adaptive rank
reductions can be applied after the initial decomposition (similar
matrix SVD rank reduction). Even tough the ordering of the coef-
ficients in the core tensor is not strictly decreasing, as in the ma-
trix SVD case, in practice progressive tensor rank reduction in the
Tucker model works for adaptive visualization of the data at differ-
ent feature scales, Fig. 7. The tensor rank parameter Rn is respon-

sible for the number of TA coefficients and bases that are used for
the reconstruction and hence is responsible for the approximation
level and the storage costs. Note that the reconstruction is still at
the original spatial resolution as visualized with examples in Fig. 7,
which compares the progressive rank reduction from an initial rank-
(256,256,256) TA (bottom) to a specific fixed rank-(R1,R2,R3) de-
composition (top) for a 5123 input volume. Even low-rank approx-
imations are able to capture the nuts as main features.
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Figure 7: Tensor rank reduction (bottom row) compared to rank-
(R,R,R) tensor approximations to specific rank R (top row).

4 FUTURE WORK

Interactive visual analysis of large and complex volume datasets
is an ongoing and challenging problem, which was addressed e.g.,
with compression-domain volume rendering and out-of-core mul-
tiresolution volume rendering systems. For future work, we aim to
improve on [5], which performs a single TA for every multireso-
lution brick, and exploit TA matrix properties to come up with a
novel out-of-core volume rendering system that loads the data from
global TA matrices to handle interactive visualization (multiresolu-
tion) and feature scale space reconstructions (multiscalability).
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