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ABSTRACT

Streamline-based techniques are designed based on the idea that
properties of streamlines are indicative of features in the underlying
field. In this paper, we show that statistical distributions of measure-
ments along the trajectory of a streamline can be used as a robust
and effective descriptor to measure the similarity between stream-
lines. With the distribution-based approach, we present a frame-
work for interactive exploration of 3D vector fields with streamline
query and clustering. We demonstrate the utility of our framework
with simulation data sets of varying nature and size.

1 INTRODUCTION

Visualization and exploration of vector fields plays an important
role in understanding the data generated from simulations in many
science and engineering disciplines. Among the numerous meth-
ods in practice, streamline based techniques continue to be one of
the most popular approaches. However, when dealing with very
large vector fields, a direct visualization of all the densely com-
puted streamlines is seldom useful due to visual clutter and occlu-
sion. Moreover, the user is often interested in looking at some spe-
cific flow features based on the goal of exploration. Hence, it is
important to be able to classify the streamlines based on features,
and display only those ones that are relevant to the user’s objective.

We propose a novel idea that uses the distribution of feature mea-
sures over a streamline to be the descriptor, and uses this descriptor
to measure the similarity between streamlines. The distribution-
based streamline distance metric has a major property compared
with some existing point location-based distance metrics such as
closest point distance [1] and Hausdorff distance [2]: the distribu-
tions of certain geometric properties on a streamline such as curva-
ture are invariant to translation and rotation. Also, compared with
point location-based metrics, our method has lower time complex-
ity, because point location-based methods need to iterate through
all the points on the two streamlines, the time complexity of our
method depends on the number of bins of histograms instead.

2 PROPOSED METHOD

The main idea of the proposed method is illustrated in Figure 1.
First, we seeded the field densely and generated a large number of
streamlines, so that no flow feature is missed. Then, Given a user-
specified measure, statistical distributions can be used to describe
its values and spread along the trajectory of a streamline. Assuming
k measures such as m1, . . . ,mk are selected for analysis, we compute
each of them at every sample point sp along a streamline, resulting
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Figure 1: The major steps for our framework

in a k-tuple measure {m
p
1 ,m

p
2 , . . . ,m

p
k
} for each point. We compute

a distribution separately from each measure and then represent it by
a histogram. Since the property of a streamline can vary from points
to points, simply keeping a single 1D histogram may not be suffi-
cient because the order of the measured values along the streamline
can be essential for describing its shape and for comparing with
other streamlines. For example, Figure 2(a) and 2(b) show two dif-
ferent streamlines color coded by curvature, one is more turbulent
at the beginning and the other is turbulent at the beginning and the
end. However, these two streamlines are undistinguishable by their
1D histograms since they are very similar, as shown in Figure 2(c)
and 2(d).

(a) (b) (c) 1D Histogram (d) 1D Histogram

Figure 2: Limitation of the 1D histogram representation.

To resolve the ambiguity, we use 2D histograms instead of the
simple 1D histograms to represent a streamline. Given a streamline,
first it is divided into M segments in such a way that each segment
contains the same number of sample points. For each segment, we
have a histogram and these M histograms are combined together to
form a 2D histogram. Also we create the same number of segments
for every streamline to facilitate easy segment-wise comparison be-
tween two streamlines. The goal of dividing a streamline into mul-
tiple segments is to preserve the order of feature measured along a
streamline, albeit loosely, while still being able to use histograms
to describe a streamline. Having more segments implies a higher
storage cost but can encode richer information. On the other hand,
It may produce less meaningful distributions because fewer points
are collected within each segment. Observing this trade-off, we al-
low the user to decide the number of segments based on whether
the ordering information is important in the analysis. Since the 2D
histograms can be constructed fast, user can change the number of
segments during exploration and get response in a few seconds.

An example of a 2D histogram constructed in this way is shown



in Figure 3(b). Figure 3(a) shows the streamline. Based on the
2D histogram representation of the streamline, we can understand
some underlying features about the streamline, such as the repre-

(a) (b) 2D Histogram (c) 2D Histogram (d) 2D Histogram

Figure 3: Example for 2D histogram. (b) is for streamline in (a).
(c),(d) are corresponding to the streamlines in Figure 2(a) and 2(b)

sented streamline has high curvature with high variation at the be-
ginning, but it gradually decreases to low curvature with low varia-
tion. Since the 2D histogram incorporates the order information to
some extent, it can better differentiate streamlines than simply us-
ing 1D histograms. The 2D histograms for the streamlines shown in
Figure 2(a) and 2(b) are shown in Figure 3(c) and 3(d). Based on
the two 2D histograms, it is easy to distinguish these two stream-
lines. With the histogram computed from each streamline, we can
compute the streamline similarity based on the distance between the
histograms. In the context of our problem, considering cross-bin re-
lationship is important, so we use the Earth Mover’s Distance [3] to
compute the distance between two histograms.

3 APPLICATIONS

Our distribution-based similarity measurement approach can be
used in many different applications, we describe two visualization
applications: similar streamline query and hierarchical clustering.

(a) (b) (c)

(d) (e)

Figure 4: Query results for Isabel and Plume. (a),(d): two target
streamlines. (b),(e): query results for (a) and (d) based on our
method. (c): query results for (a) based on Hausdorff distance

To explore the underlying vector field, users can request to dis-
play only streamlines that have a similar shape to that of the tar-
get streamline. To support this, we can perform a similarity query
where all streamlines are compared with the target streamline based
on our distribution-based distance metric. Curvature and torsion
are two metrics to characterize space curves. To compute the dis-
tance between two given streamlines, we first compute the distance
between their curvature histograms and the distance between their
torsion histograms. Then we sum these two quantities to get the fi-
nal distance. Figure 4 shows the query results. Compared with our
method, Hausdorff distance metric extract the streamlines which
are closed to the target streamline but not necessary the most simi-
lar streamlines as shown in Figure 4(c).

(a) (b) (c)

Figure 5: Hierarchical clustering results based on our method.(a),(b)
and (c) have 2, 7 and 10 clusters respectively.

Another way to explore flow fields is through hierarchical
streamline clustering. We use a bottom up agglomerative cluster-
ing method in our implementation. Users can show clusters at any
level to highlight the features in the flow field at different levels of
detail. In Figure 5, we shows the hierarchical clustering results for
a simple 2D vector field.

4 PERFORMANCE

Table 1: Timings for Streamline Query

Timing(in seconds)
Data # lines Histogram Const. Ours dh

Isabel 2000 0.92 0.062 314.108

Plume 2000 1.232 0.031 339.567

In Table 1, we summarize the timing of streamline query for
Hurricane Isabel(Figure 4(a)) and Plume(Figure 4(d)). The average
length of streamlines is around 2000. We compare the performance
of our distribution-based method with the Hausdorff distance dh. It
can be seen that our method outperformed by several times in terms
of speed. This is important for the users to get a rapid feedback
for their queries. And for hierarchical streamline clustering, we are
able to build the similarity matrix fast by using our method.

5 CONCLUSION AND FUTURE WORK

Our framework can be extended along several directions. First,
we will extend our framework to handle time-varying vector data.
Secondly, besides the three geometric measures, curvature, curl
and torsion, additional measures including domain-specific phys-
ical quantities can be included to explore 3D vector fields. We be-
lieve that combining different feature measures can produce more
robust query and clustering results, and reveal different features in
the vector field.
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