
Recent Advances in the Equalizer Parallel Rendering Framework
Stefan Eilemann∗

Blue Brain Project, EPFL and Eyescale Software GmbH

ABSTRACT

In this poster we present the recent advances in Equalizer, a frame-
work for scalable parallel rendering based on OpenGL, which pro-
vides an application programming interface (API) to develop scal-
able graphics applications for a wide range of systems ranging from
large distributed visualization clusters and multi-processor multi-
GPU graphics systems to single-GPU desktop machines.

Recent advances include optimizations for visualization clusters
using multi-GPU NUMA nodes, tile and subpixel decompositions,
automatic configuration on multi-GPU machines and scalable visu-
alization clusters, as well as novel features for Virtual Reality, most
notably support for dynamic focus distance.

Index Terms: I.3.2 [Computer Graphics]: Graphics Sys-
tems/Distributed Graphics—Parallel Rendering; I.3.m [Computer
Graphics]: Miscellaneous/Rendering Clusters—Scalable Render-
ing; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism/Virtual Reality—Immersive Environments

1 INTRODUCTION

The continuing improvements in hardware integration lead to ever
faster CPUs and GPUs, as well as higher resolution sensor and
display devices. Moreover, increased hardware parallelism is ap-
plied in form of multi-core CPU workstations, massive parallel su-
per computers, or cluster systems. Hand in hand goes the rapid
growth in complexity of data sets from numerical simulations,
high-resolution 3D scanning systems or biomedical imaging, which
causes interactive exploration and visualization of such large data
sets to become a serious challenge. It is thus crucial for a visual-
ization solution to take advantage of hardware accelerated scalable
parallel rendering. In this systems poster we present a scalable par-
allel rendering framework called Equalizer that is aimed primarily
at cluster-parallel rendering, but works as well in a shared-memory
system. Figure 1 shows the main use cases for parallel rendering.

In addition to the basic framework described in [4], we will
present the latest research results around Equalizer, namely opti-
mizations for hybrid multi-GPU clusters [3], new tile and subpixel
decomposition schemes, automatic configuration, advanced Virtual
Reality features as well as new Equalizer-based applications.

2 PARALLEL RENDERING FRAMEWORK

Equalizer is a framework to develop and deploy distributed and
non-distributed parallel rendering applications. The programming
interface is based on a set of C++ classes, modeled closely to the
resource hierarchy of a graphics rendering system. The application
subclasses these objects and overrides C++ task methods, similar
to C callbacks. These task methods will be called in parallel by
the framework, depending on the current configuration. This paral-
lel rendering interface is significantly different from Chromium [7]
and more similar to VRJuggler [2] and MPK [1]. The class frame-
work and in particular its use is described in more detail in [4].

∗e-mail: stefan.eilemann@epfl.ch

An Equalizer application does not have to select a particular ren-
dering configuration itself; it is configured automatically using lo-
cal and remote resource discovery, or manually using simple ASCII
configuration files. The application is written only against a client
library, which communicates with the configuration server that does
not have to be touched by the developer. The server also launches
and controls the distributed rendering clients provided by the appli-
cation. Thus the application itself can run unmodified on any con-
figuration from a simple workstation to large scale graphics clus-
ters, multi-GPU workstations and Virtual Reality installations.

3 NEW FEATURES

3.1 Hybrid Multi-GPU Clusters
Achieving efficient scalable parallel rendering for interactive visu-
alization applications on medium-sized graphics clusters remains
a challenging problem. Framerates of up to 60Hz require a care-
fully designed and fine-tuned parallel rendering implementation
that fits all required operations into the 16ms time budget avail-
able for each rendered frame. Furthermore, modern commodity
hardware embraces more and more a NUMA architecture, where
multiple processor sockets each have their locally attached mem-
ory and where auxiliary devices such as GPUs and network inter-
faces are directly attached to one of the processors. Such so called
fat NUMA processing and graphics nodes are increasingly used to
build cost-effective hybrid shared/distributed memory visualization
clusters. We present important optimizations to achieve highly in-
teractive framerates on such hybrid multi-GPU clusters, such as
asynchronous readbacks, automatic thread placement and a novel
algorithm for the optimization of 2D load-balancing reusing region
of interest information from the compositing stage for refined load
distribution, decribed in more detail in [3].

3.2 Tile and Subpixel Compounds
We present two new decomposition schemes: tile and subpixel
compounds.

Tile compounds are a variant of sort-first decomposition, as clas-
sified by [8]. They decompose the rendering in screen-space, where
each rendering unit pulls and processes regular tiles of the final
view. Tile compounds are ideal for purely fill-limited applications
such as volume rendering and raytracing. The inversion from the
traditional push model (master precomputes sort-first tiling) to a
pull model leads to a near-ideal load balance for typical display
resolutions and tile sizes.

Subpixel compounds decompose the rendering of multi-
sampling algorithms such as anti-aliasing and depth-of-field ren-
dering. Without code modifications in the application, subpixel
compounds transparently provide software full-scene anti-aliasing
(FSAA). Applications can also be modified to support any multi-
sampling algorithm with an arbitrary number of samples, e.g,
depth-of-field which continually adds samples when the application
is idle.

3.3 Automatic Configuration
Automatic configuration is based on the GPU-SD library [5] for dis-
covering local and remote GPUs. Based on this information, a typi-
cal configuration is dynamically compiled, which greatly facilitates
the management of visualization resources. The auto-configuration



(a) (b) (c) (d)
Figure 1: Various Equalizer use cases: (a) display wall, (b) immersive CAVE (c) scalable rendering and (d) stereo projection with overlap.

uses the same format as the static configuration files, and can there-
fore be used to create template configurations.

The default local configuration discovers all installed GPUs in a
system, and supports Windows, Mac OS X and Linux. The remote
configuration relies on a daemon announcing locally discovered
GPUs using zeroconf networking and a zeroconf discovery mod-
ule to collect information on all GPUs announced by daemons.

3.4 Advanced Virtual Reality Support
We present support for advanced virtual reality installations and ap-
plication features, such as support for head-mounted displays, mul-
tiple observers with separate tracking data and eye separation, as
well as dynamic focus distance support.

The focal distance defines at which range the left and right eye
converge into the same image. Objects placed at the focal distance
do not have a stereo divergence. In typical implementations, the
focal distance is equal to the distance of the physical projection
wall, which causes discomfort when the observer is looking at an
object behind or in front the physical wall. We have implemented
support for changing the focal distance at runtime, e.g, to always
focus the nearest object in the observer’s view direction.

4 NEW APPLICATIONS

We will present real-world applications based on our parallel ren-
dering framework, demonstrating some use cases implemented on
top of a generic rendering framework.

4.1 RTNeuron
RTNeuron [6] is a neuroscientific visualization application de-
signed for the interactive visualization of detailed cortical circuit
simulations. RTNeuron features several graphics techniques and al-
gorithms tailored to the specific geometrical characteristics of neu-
rons to allow the efficient rendering of neuronal circuits where sim-
ulation data is mapped onto the membrane meshes. Some of these
features have to do with levels of detail, view frustum culling and
correct alpha-blending.

To enable the visualization of very large circuits (> 10,000 neu-
rons) at interactive speeds, RTNeuron makes use of Equalizer to
implement two well known parallel rendering strategies, sort-first
with load balancing and sort-last with a static decomposition of the
scene. For sort-last two different modes are provided: round-robin
distribution of neurons between the rendering nodes, and for trans-
parent rendering, a spatial partition of the scene based on a heuristic
kd-tree. Apart from parallel rendering, RTNeuron is also aware of
the VR features provided by Equalizer and supports stereoscopic
visualization in powerwalls and VR facilities alike.

4.2 osgScaleViewer
The osgScaleViewer is a scalable, cluster-ready viewer application
based on the widely used OpenSceneGraph and Equalizer. It sup-
ports rendering multiple views of the same scene graph, using soft-
ware or hardware swap synchronization, parallel, multi-threaded
and distributed rendering as well as scalable rendering to aggregate
the power of multiple GPUs for one or multiple views.

4.3 Bino
Bino is a stereoscopic movie player, using Equalizer to render 3D
stereo movies, shown in Figure 1 (d). It supports large active and
passive stereo display installations, including edge blending, bezel
compensation, rotated displays and numerous stereo output modes,
including active and passive stereo.

5 CONCLUSION

In this poster, we present a state-of-the art distributed parallel ren-
dering framework, which is designed to be minimally invasive to
facilitate the porting and development of real-world visualization
applications. Equalizer is as generic as possible to support devel-
opment of parallel rendering applications for different data types
and rendering algorithms. Current advances in Equalizer have been
mostly transparent to existing applications, that is, they can benefit
from new fast asynchronous readbacks, subpixel compounds and
automatic thread placement without any code modifications.

ACKNOWLEDGEMENTS

This work was supported in part by the Blue Brain Project, the
Swiss National Science Foundation under Grant 200020-129525
and by the Spanish Ministry of Science and Innovation under grant
(TIN2010-21289-C02-01/02) and the Cajal Blue Brain Project.

We would also like to thank github for providing an
excellent infrastructure hosting the Equalizer project at
http://github.com/Eyescale/Equalizer/.

REFERENCES

[1] P. Bhaniramka, P. C. D. Robert, and S. Eilemann. OpenGL Multipipe
SDK: A toolkit for scalable parallel rendering. In Proceedings IEEE
Visualization, pages 119–126, 2005.

[2] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-
Neira. VR Juggler: A virtual platform for virtual reality application
development. In Proceedings of IEEE Virtual Reality, pages 89–96,
2001.

[3] S. Eilemann, A. Bilgili, M. Abdellah, J. Hernando, M. Makhinya,
R. Pajarola, and F. Schürmann. Parallel rendering on hybrid multi-gpu
clusters. In Proceedings Eurographics Symposium on Parallel Graph-
ics and Visualization, pages 109–117, 2012.

[4] S. Eilemann, M. Makhinya, and R. Pajarola. Equalizer: A scalable
parallel rendering framework. IEEE Transactions on Visualization and
Computer Graphics, May/June 2009.

[5] Eyescale Software GmbH. GPU Service Discovery Library.
http://www.equalizergraphics.com/gpu-sd/, 2012.

[6] J. B. Hernando, L. Pastor, and F. Schürmann. Towards real-time vi-
sualization of detailed neural tissue models: view frustum culling for
parallel rendering. In BioVis 2012: 2nd IEEE Symposium on biological
data visualization, 2012.

[7] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirch-
ner, and J. T. Klosowski. Chromium: A stream-processing framework
for interactive rendering on clusters. ACM Transactions on Graphics,
21(3):693–702, 2002.

[8] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classifica-
tion of parallel rendering. IEEE Computer Graphics and Applications,
14(4):23–32, 1994.


