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Abstract—We have defined and implemented atomic and dimension-independent simplification operators on a graph-based repre-
sentation of Morse complexes, and we have defined and implemented a multi-resolution model for Morse complexes built through
such simplification operators.

1 INTRODUCTION

Morse theory [9] offers a natural and intuitive way of analyzing the
structure of a scalar field f and of compactly representing it through
decompositions of the domain M of f into meaningful regions asso-
ciated with its critical points, called Morse and Morse-Smale com-
plexes. A descending (ascending, resp.) Morse complex Γd (Γa) par-
titions manifold M into cells defined by integral lines converging to
(originating at, resp.) critical points of f . For a survey of algorithms
for computing Morse and Morse-Smale complexes, see [1, 4]. In our
work, we use the algorithm in [10] which is based on discrete Morse
theory and has been recently used in the community [5]. Our imple-
mentation starts from a decomposition of the domain of the scalar field
f into a simplicial complex.

Morse and Morse-Smale complexes built on current large-size data
sets can be quite large, and the noise in the data often produces over-
segmentations. Simplification of these complexes can be achieved by
applying the cancellation operator [8]. Cancellation has been used to
build hierarchical models for representing Morse complexes in 2D and
3D [7].

2 SIMPLIFICATION OPERATORS ON MORSE COMPLEXES

In [2], we have defined atomic and dimension-independent simplifi-
cation and refinement operators on Morse complexes, which form a
minimally complete set of operators for creating and updating Morse
and Morse-Smale complexes. The remove simplification operator col-
lapses two saddles of consecutive index that are connected through
a unique integral line, and such that one of them is connected to
at most one saddle of the same index as the other one. Operator
removei,i+1(q, p, p′) applies when i-saddle q is connected to exactly
one other (i+1)-saddle p′ different from p. It collapses i-saddle q and
(i+1)-saddle p into (i+1)-saddle p′. In the descending complex Γd , it
collapses i-cell q and (i+1)-cell p into a unique (i+1)-cell p′ incident
in q and different from p. An example of remove1,2(q, p, p′) on a 2D
descending Morse complex is illustrated in Figure 1: 1-cell q is deleted
and 2-cell p is merged into 2-cell p′. Operator removei,i−1(q, p, p′) is
completely dual.

We encode the topology of the descending and ascending Morse
complexes Γa and Γd , respectively, through the Morse Incidence
Graph (MIG) [3] (see Figure 1 for a 2D example). An MIG is a
dimension-independent multigraph G = (N,A) such that (i) there is
a one-to-one correspondence between the nodes in N and the i-cells of
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Fig. 1. The descending 2D Morse complex Γd for function f (x,y) =
cosxcosy (a) and the corresponding MIG (b). An example of
remove1,2(q, p, p′) on Γd (c), and on the MIG (d). After remove1,2(q, p, p′),
nodes p and q and the incident arcs are deleted. Arcs (p,r j) are re-
placed with arcs (p′,r j), 1≤ j ≤ 3.
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Fig. 2. The field behavior for the xMaxTree data set (a). The MIG at full
resolution (b), the MIG after 10K (c) and after 16K simplifications (d).

Γd , (and thus the (n− i)-cells of Γa) (called i-nodes), and (ii) there are
k arcs joining an i-node p with an (i+1)-node q if and only if i-cell p
appears k times on the boundary of (i+1)-cell q in Γd .

A remove operator on an MIG G = (N,A) eliminates the two
nodes corresponding to the two critical points p and q. A
removei,i+1(q, p, p′) is feasible on G if there is a unique arc (p,q) in A,
and there is a unique (i + 1)-node p′ ∈ N different from (i + 1)-node
p and connected to i-node q. The effect of the remove operator on the
MIG is completely local, since it deletes the arcs incident in q and the
arcs incident in p and in (i+2)-nodes in the MIG, and it modifies the
arcs incident in p and in i-nodes in the MIG which become incident in
p′.

The cancellation operator [7, 8] eliminates an i-saddle q and an (i+
1)-saddle p that are connected through a unique integral line. There
is no limit on the number of saddles connected to q and of the same
index as the other saddle (i.e., p′ is not unique). Let T be the set of
(i + 1)-nodes connected to q. The effect of the cancellation of p and
q on the MIG consists of deleting nodes p and q and all arcs incident
in either of them, and creating arcs connecting each i-node previously
connected by an arc to (i+1)-node p with each node in T .

Thus, a cancellation deletes two nodes from the MIG, but, unlike
remove, it may increase the number of arcs. Some strategies have been
proposed to bound the number of arcs introduced by a cancellation
[6].



Name N Simpl Nodes Arcs Cost Time
Aneurism - 24082 156098 1.1 -

cancellation 2000 20082 125524 1.03 762.0
remove 2000 20082 97684 0.82 204.17
Bucky - 2645 9412 0.06 -

cancellation 350 1945 6494 0.05 0.85
remove 350 1945 3586 0.03 0.47

F16 - 32866 146549 1.04 -
cancellation 4000 24866 102847 0.9 300.08

remove 4000 24866 71646 0.6 196.82
Sf2c - 8826 22778 0.14 -

cancellation 1500 5826 12645 0.12 3.69
remove 1500 5826 9365 0.09 3.18
Sheep - 83089 684487 4.8 -

cancellation 10000 63089 502714 3.8 18477.3
remove 10000 63089 379491 3.1 5742.32
VisMale - 16766 64695 0.38 -

cancellation 2000 12766 40501 0.36 36.86
remove 2000 12766 31549 0.29 31.31

Table 1. Comparison between cancellation and remove.

3 EXPERIMENTAL RESULTS

We have developed a simplification algorithm for Morse complexes
including operators on the dimension-independent MIG based on the
remove operators. We associate a value P(p,q) to any feasible remove
operator, deleting two critical points p and q, as the absolute differ-
ence in function values at p and q, and we perform simplifications in
order of increasing P(p,q) values. We have performed experiments on
the simplification of Morse complexes by using six data sets describ-
ing 2D scalar fields, and eight data sets describing 3D scalar fields on
a 3.2GHz processor with 2 GBytes of memory. We have used differ-
ent threshold values on P(p,q): 1% of the maximum P(p,q) value
for light noise removal, 10% for stronger noise removal, and 20% or
greater for consistently reducing the complexity of the MIG. The stor-
age cost of the simplified MIG using these three different thresholds is
equal to 95%, 65% and 35% of the cost of the MIG at full resolution.

In Table 1, we show the results obtained by comparing the remove
operator with the cancellation operator. For each data set, we show
in the first row the number of nodes and arcs in the full resolution
MIG. In the second and third rows, we show the statistics related to
cancellation and remove operators, respectively: the number of sim-
plifications applied, the number of nodes and arcs in the simplified
MIG, the cost of the data structure encoding the MIG (in Mb), and
the time (in sec) needed to perform the simplifications. The number of
arcs in the graph simplified with cancellation always exceeds the num-
ber of arcs in the graph simplified with the same number of remove.
Such behavior influences the efficiency of the whole algorithm, dou-
bling the time needed to manage and enqueue a larger number of arcs
(and thus, a greater number of possible simplifications) for large data
sets. The cost of the MIG is reduced by 10% ∼ 20% by using remove
instead of cancellation.

We have applied our simplification algorithm on a 3D xMasTree
data set (see Figure 2 (a)), which represents a tomography of a Christ-
mas tree. The MIGs at full-resolution, and after 10K and 16K simpli-
fications are shown in Figures 2 (b), (c) and (d), respectively.

4 THE MULTI-RESOLUTION MORSE INCIDENCE GRAPH

We have defined the inverse insert refinement operator which undoes
the effect of the remove simplification operator, and we have designed
and implemented a multi-resolution model for the MIG representation
of the Morse complexes, that we call the Multi-Resolution Morse Inci-
dence Graph (MMIG) [3]. An MMIG is built from the full-resolution
MIG by applying a sequence of remove operators. It consists of the
base MIG GB, representing the Morse complexes at the coarsest reso-
lution, the set of insert refinement modifications, inverse to the remove
applied in the simplification phase, and a dependency relation between
refinement modifications, which has been shown to be a partial order
relation. From an MMIG, it is possible to extract representations of
the Morse complexes at any intermediate (uniform or variable) resolu-

tion by considering a subset of refinements that is closed with respect
to the partial order.

We have implemented two data structures for storing the MMIG,
that we call the implicit and the explicit data structures, respectively.
In the implicit data structure, the direct dependencies of a modification
µ are encoded in two arrays, ancestors and descendants, and a vector
pq-ancestors of two bit elements of the same size as ancestors. pq-
ancestors[ j] encodes whether a modification µ depends on node p, on
node q or on both in ancestors[ j]. Thus, the sets of nodes that will
be connected to q or p are implicitly encoded. In the explicit data
structure, three lists are created for each modification µ , storing the
actual pointers to the above mentioned sets of nodes. The implicit data
structure occupies 3 to 10 times less space than the explicit one. The
extraction algorithm is from 33% to 50% faster when using the explicit
data structure.
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