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ABSTRACT

We present a novel technique for analyzing the geometry of stream-
lines representing large scale flow fields produced in scientific sim-
ulations. We introduce the box counting ratio, a metric related to
the Kolmogorov capacity or box counting dimension, for quantify-
ing geometric complexity of streamlines (or streamline segments).
We utilize this metric to drive a visual analytic framework for ex-
tracting, organizing and representing features of varying sizes from
large number of streamlines. This framework allows the user to
easily visualize and interact with the features otherwise hidden in
large data. We present case studies using combustion and climate
simulation datasets.

1 INTRODUCTION

Modern scientific simulations often produce enormous vector
fields. Analysis and effective visualization of these fields play a
key role in scientific knowledge discovery. Direct exploration of
the field is often not feasible due to sheer data size. However, large
number of streamlines can be computed very fast from the field.
The task of analyzing the streamlines to identify and select the im-
portant ones, which actually represent interesting features of the
field, remains for the user.

We introduce a metric called box counting ratio, related to Kol-
mogorov capacity or box counting dimension, for effective geomet-
ric analysis of streamlines. In fluid dynamics area, box counting
dimension is applied as a standard technique to measure and an-
alyze turbulent flow. Box counting dimension, which is one way
of defining “fractal dimension”, is applicable to streamlines due to
their self-similar behavior near vortex-like points. [3].

Box counting ratio quantifies the geometric complexity of a
streamline with a value between 0 and 3. We primarily exploit
its ability to detect features of varying sizes. We also present a
visual analytic framework which extracts complex segments from
streamlines based on the box counting ratio, transforms them into
high dimensional features and presents them on an interactive 2D
space. Without having to navigate through the cluttered and less
navigation-friendly 3D spatial domain of streamlines, the user can
brush regions of potential interest on this 2D space to see the corre-
sponding streamlines in a linked display.

2 BOX COUNTING RATIO

Fractal dimension measures the extent of space-filling by a fractal
object. Since a fractal replicates itself at different scales, its conven-
tional measurements such as length or area vary with scale. Fractal
dimension captures the limiting value of the rate of growth of such
measurements at an infinitesimally small scale.

Box counting dimension is one way of defining the fractal di-
mension of a set of points. If Nδ (F) is the minimum number of
boxes of edge length δ which cover a set F , then the box counting
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dimension of the set is obtained by:

D = lim
δ→0

log(Nδ (F))

−logδ
(1)

Most physical objects are not fractals at all, or exhibit fractal
behavior only within a range of δ . Thus the above limit does not
truly exist, or it is impossible to compute. Instead, it is practical to
compute log(Nδ (F)) for a set of δ within a given range, fit a line to
the points (log(1/δ ), log(Nδ (F)), and then compute its slope. For a
fractal, the slope converges to its box counting dimension as δ goes
to zero. Interestingly, a related measure can be useful for real non-
fractal data as well. Khoury and Wenger [2] show that complexity
of isosurfaces can be quantified by computing Nδ (F) only for two
values, δ1 = δ and δ2 = 2δ , and then taking their logarithmic ratio.
This related metric is defined as below:

B = log2

Nδ1
(F)

Nδ2
(F)

(2)

In this work, we show that this quantity, which we call box counting
ratio, can be computed for streamlines as well and is useful for
their effective geometric analysis. Details about the work with a
complete reference can be found here [1].

We first compute how many grid cubes of a fixed length δ inter-
sect with the streamline. This value is then computed in a grid of
cubes of length 2δ . The logarithmic ratio of these two counts gives
the box counting ratio of the streamline. Since a streamline can
visit a grid cell multiple times, Amanatides-Woo algorithm [1] is
employed for accurately counting boxes avoiding duplicates. Since
this value has a geometric interpretation, streamlines can be ordered
and filtered based on their box counting ratios (Figure 1).

Figure 1: Distribution of box counting ratio B for Solar Plume.
Right inset. Streamlines satisfying B > 1.6; all of them contain
complex feature(s). Middle inset. Streamlines satisfying 1.35 <
B < 1.6 also have complex segments. Left inset. Few of the mostly
linear streamlines having B ∼ 1.

3 MULTI-SCALE FEATURE DETECTION

The uniqueness of box counting ratio lies in its ability to detect
features at different scales. Unlike box counting dimension of true
fractals, box counting ratio depends on the scale of measurement
(δ ). For linear segments, the scale has no significant effect (ratio



always close to 1). But for winding segments, the space-filling be-
havior is not captured unless δ is large enough to contain multiple
parts of the geometry in one grid cell. Hence, as different δ -pairs
are used on a set of streamlines, grids of larger cells (higher δ ) de-
tect sparser and bigger features.

(a) (b)

Figure 2: Features extracted at different scales of measurement (δ -
pairs (1,2) and (8,16)) clearly have different size and sparseness.

For each resolution pair, we also compute various estimates of
the average size and sparseness of the extracted top-scoring (we
use top 50) features. As long as varying the resolution pair extracts
a considerable number of new features, positive correlation of both
size and sparseness with the scale of measurement is observed.

4 FEATURE EXPLORATION FRAMEWORK

Figure 3: Proposed feature exploration framework.

We propose a novel visual analytic framework (Figure 3) for ex-
ploring features from large streamline data. It first identifies the
complex regions using box counting ratio (localization) and ex-
tracts segments preserving the features (segmentation). Then, fea-
ture vectors are constructed comprising feature location (center of
bounding box), size (diagonal length of bounding box) and box
counting ratio. Finally, the features are projected on an interac-
tive 2D space using principal component analysis. Size-based color
coding enables the user to select features based on size.

5 RESULTS

Case studies from real datasets corroborate the utility of the pro-
posed framework. For large fields, a static visualization with
all streamlines is seldom useful due to clutter (Figure 4). Clut-
ter may not reduce by merely changing viewpoint. Placing
seeds sparsely may reduce it at the cost of missing some fea-
tures. Our proposed linked display approach is particularly use-
ful for presenting features without clutter from dense streamlines.

Figure 4: Solar Plume (126×126×512)
and Ocean (3600×2400×40) datasets.

Figure 5 displays
a triage of the
extracted feature
segments from So-
lar Plume dataset
(courtesy: NCAR)
in the spatial do-
main (top row).
Points are color

coded by feature size on the feature space (bottom row) so that the
user can make size-based selection.

Figure 5: Top. A large number of complex features extracted from
Solar Plume data set. Bottom. Three selected regions on 2D space
and the corresponding features.

Exploring Ocean (courtesy: Mathew Maltrud, LANL) is chal-
lenging due to its large spatial extent. For such cases, we propose
feature links which connect segments from the same streamline.
Feature links help reveal connection between spatially remote fea-
tures. By tracking a long feature link (as in Figure 6 left) which
stands out in the 2D space, the user finds two different sized vor-
tices (Figure 6 right) connected through a long streamline. It would
be cumbersome to identify such connections without such cues.

Figure 6: Exploring Ocean dataset. Left. A large feature cor-
responding to the enclosed points. Right. Smaller feature corre-
sponding to the other end of the link.

6 DISCUSSION AND FUTURE WORK

This work presents a novel metric for identifying and organizing
flow features from large number of streamlines. We achieve rea-
sonably fast performance on an Intel(R) Core(TM) i7-2600 CPU
@ 3.40GHz, 16GHz machine, where box counting ratio computa-
tion of 1000 streamlines (each having 3419 steps on an average)
from Ocean takes only 14 seconds. As future work, we intend to
study the fractal behavior of path lines and stream surfaces.
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