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Figure 1: (a) A simplicial 3-complex, and the graph-based representation of the immediate (b) boundary relations Rp,p−1 and (c) partial co-
boundary relations R∗p,p+1 among its simplices, which are encoded in the Incidence Simplicial (IS) data structure [7] . We call them mangroves,
and they are the basis of our Mangrove Topological Data Structure (Mangrove TDS) framework.

ABSTRACT

We introduce the Mangrove Topological Data Structure (Mangrove
TDS) framework for modeling simplicial complexes. It is based
on a graph-based representation of the data structures, called man-
groves, which ensures an extensible representation of a data struc-
ture for simplicial complexes. Mangroves can be easily customized
for any modeling need, including the efficient representation of
non-manifold shapes, and of those simplices, not directly encoded
in a mangrove, that we call ghost simplices. We discuss here the
properties of this framework, and current and future developments.

1 INTRODUCTION

Simplicial complexes are extensively used to discretize digital
shapes in many applications, including computer graphics, solid
modeling, finite element analysis and simulation, scientific visual-
ization, and geographic data processing. Simplicial complexes al-
low modeling non-manifold shapes containing parts of different di-
mensions, and not necessarily embedded in the 3D Euclidean space.
Informally, a manifold is a connected subset of the Euclidean space
such that every neighborhood of any of its points is homeomorphic
to an open ball. Shapes, which do not satisfy this property, are usu-
ally called non-manifold.

In the literature, a large variety of topological data structures
have been proposed for cell and simplicial complexes [6]. Such
data structures are formalized through topological relations, which
capture the connectivity information of the cells (or simplices) in
the complex they represent. They are classified on the basis of their
domain (i.e., manifold or non-manifold) and of the dimension for
the complex. In particular, there are representations, designed for
complexes of a specific dimension, and with a specific embedding
space, usually E 3. Finally, there are incidence-based data struc-
tures, which encode all the cells of the complex and a subset of their
incidence relations, and adjacency-based data structures, which en-
code only vertices and top cells, e.g., cells which are not on the
boundary of other cells, plus a subset of adjacency relations.

There is the need of a generic framework for the fast design and
prototyping of topological data structures in order to perform quan-
titative comparisons of storage costs and efficiency in answering
queries and performing updates, and to be able to simplify the de-
velopment of any data structure without rewriting it from scratch.
According to [13], a framework for the fast prototyping of topo-
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logical data structures for simplicial or cell complexes should allow
replacing the internal representation of the complex so as selecting
the most suitable and efficient one for a specific task, i.e., it must
provide a flexible representation. Thus, a topological data structure
should be a dynamic plugin to be used without modifying the sys-
tem internally. In addition, it should be as simple as possible to
use and extend the system with a short learning curve. Another im-
portant issue when dealing with representations for non-manifold
shapes is the ability to detect non-manifold singularities efficiently.
Note that recognizing whether a cell is a non-manifold singularity
is decidable only for d-complexes, with d ≤ 6 [11].

2 THE MANGROVE TDS FRAMEWORK

The Mangrove Topological Data Structure (Mangrove TDS) frame-
work is a tool for the fast prototyping of topological data structures
encoding simplicial complexes. This framework is one of the first
tools, which completely satisfy the three design goals, discussed
above. The Mangrove TDS framework describes data structures for
a simplicial d-complex Σ as a graph-based representation, which
we call a mangrove. A node nσ in the mangrove corresponds to a
simplex σ in Σ, and an arc (nσ ,nσ ′) describes a topological relation
between σ and σ ′. Thus, a topological data structure is described
by a set of nodes (e.g., simplices directly encoded) and by a set of
arcs (e.g., topological relations, restricted to these simplices). For
each simplex σ , we encode only the endpoints of the arcs outgoing
from nσ . We say that a mangrove is global if all the simplices in
Σ are directly encoded, otherwise it is restricted. Figures 1(b) and
1(c) show, respectively, the graph-based representation of the topo-
logical relations in the Incidence Simplicial (IS) data structure [7].
The IS data structure encodes, for each p-simplex σ , boundary re-
lation Rp,p−1(σ), i.e., (p−1)-faces of σ , and partial co-boundary
relation R∗p,p+1(σ), i.e., one (p+ 1)-simplex for each connected
component in the link of σ .

A mangrove provides a generic representation of any topologi-
cal data structure without restrictions on the type and dimension of
the complex. The key idea of our approach consists of customiz-
ing the content of a mangrove in order to encode the specific data
structure. In this way, the internal representation of a complex is
extensible, and can be dynamically replaced in order to choose the
most efficient one for a specific task. The answers to most of the
queries are obtained through breadth-first traversals of the graph
describing the data structure. This makes our system easy to use
and to extend. Currently, we have implemented six data struc-
tures [3], among which three are dimension-independent, namely



Table 1: Properties of systems for modeling cell and simplicial complexes.

OpenMesh [1] OpenVolumeMesh [9] VCGLib [14] CGAL [5] Mangrove TDS
Type of Complexes cell cell simplicial any simplicial

Dimension of Complexes 2 up to 3 up to 3 any any
Internal representation incidence-based incidence-based adjacency-based several any
Flexible representation no no no yes (modules) yes (plugins)

Recognition of non-manifolds only at vertices not efficient complete complete efficient

the Incidence Graph [8], the IS data structure and the Generalized
Indexed Data Structure with Adjacencies (IA∗) [4], a compact ex-
tension of the Indexed data structure with Adjacencies (IA) [6] for
non-manifolds. These two latter data structures support the effi-
cient recognition of non-manifold singularities (see [3] for further
details). Note that the IS data structure is described by a global
mangrove, while the IA∗ data structure by a restricted one.

The Mangrove TDS framework provides an implicit represen-
tation of simplices not directly encoded in restricted mangroves,
which we call the ghost simplices. In a restricted mangrove, any
p-simplex σ is either a top p-simplex, or the i-th p-face of the k-th
m-simplex σ ′ in Σ, with p < m. Thus, a ghost simplex σ is im-
plicitly represented as a tuple (m,k, p, i), which is a GhostSimplex-
Pointer reference for σ . This reference is not unique, since several
top simplices may be incident at σ . Hence, we improve the expres-
sive power of restricted mangroves, allowing the attachment of at-
tributes to all simplices, not just to vertices and top simplices. Thus,
a restricted mangrove becomes basically equivalent to a global one,
but with a reduced storage cost. Our tests show that GhostSimplex-
Pointer references introduce a large speed-up for retrieving topo-
logical relations [3]. To the best of our experience, our framework
is the first tool, which provides these references explicitly.

We have implemented topological queries for extracting all the
possible topological relations in the complex as well as for detect-
ing non-manifold singularities for all the data structures, mentioned
above [3]. The implementation of the common infrastructure of our
framework, and of all the data structures is contained in the Man-
grove Topological Data Structure (Mangrove TDS) Library [2], re-
leased under a GPL license.

3 DISCUSSION

As we have seen, a mangrove captures connectivity information
provided by topological relations, and can be easily customized for
any modeling need. To the best of our experience, the Mangrove
TDS framework is one of the first tools, which efficiently represent
non-manifold shapes, and those simplices, which are not directly
encoded in a data structure (ghost simplices). Our framework is
extensible, in the sense that it is possible to add new data structures
without messing with the structure of the system.

A few frameworks with these properties have been proposed and
implemented in the literature. Most of them exploit a monolithic
representation of a shape, which cannot be dynamically replaced,
unless to completely rewrite it [1, 14, 9], or change the current soft-
ware module [5]. In [3] we have been shown that the internal rep-
resentations of some frameworks [1, 9] are equivalent to data struc-
tures, like the Half-edge [10] and the Incidence Graph [8], which
do not efficiently support the recognition of non-manifold singular-
ities [6]. In addition, some frameworks [1, 14, 9] can manipulate
only 2- and 3-complexes. Table 1 summarizes properties of some
of these frameworks. Clearly, our framework offers a fair solution
to some of these drawbacks in the existing frameworks.

Our current implementation of the Mangrove TDS Library [2]
does not support editing operators on mangroves. We are devel-
oping editing operators, like the Vertex-Pair Collapse (VPC) [12],
to enable topological modifications of simplicial complexes, which

allows defining multi-resolution models for non-manifold shapes.
We are also planning to develop editing operators, like stellar and
bistellar operators, which preserve the homology of the underlying
shape (e.g., its Betti numbers). Such operators are useful to improve
efficiency of homology computation on simplicial shapes.

In our future work, we plan to extend our framework to deal
with structured quadrilateral and hexahedral meshes, due to their
increasing relevance in geometry processing, animation, and nu-
merical simulations. The IS and IA* data structures can be easily
extended to quad and hexahedral meshes, since boundary relations
are constant on such meshes as well, and this assumption is what
makes such data structures compact in the case of simplicial com-
plexes. Finally, we are also planning to exploit our framework for
applications to shape analysis and reconstruction in high dimen-
sions, due to the compactness of some representations, like the IA∗
data structure.
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