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ABSTRACT

Previously published algorithms to construct isosurfaces with sharp
edges and corners require “Hermite” data, the exact intersection
points of grid edges and the isosurface and the exact gradients at
those intersection points. We are interested in constructing iso-
surfaces with sharp edge and corners from regular grid of scalar
data without any information about intersection points or gradi-
ents at those intersection points. We decompose the problem into
two parts: 1) Compute gradients at grid vertices from scalar data;
2) Compute an isosurface with sharp edges and vertices from a reg-
ular grid of scalar and gradient values. We focus on the second
problem, computing an isosurface from scalar and gradient data.
We also describe a method for visualizing and evaluating the accu-
racy of a reconstructiong of sharp features.

Index Terms: I.3.5 [Computational Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling; G.3
[Mathematics of Computing]: Probability and Statistics

1 INTRODUCTION

Algorithms to construct isosurfaces with sharp edges and corners
are described in [1, 2, 3, 4, 5] and various other papers. These al-
gorithms all rely upon “Hermite” data, the exact intersection points
of grid edges and the isosurface and the exact gradients at those
intersection points. While some of the papers suggest construct-
ing Hermite data from a regular grid of scalar values by computing
gradients at grid vertices and applying linear interpolation, none of
the papers present experimental results of such a procedure. As
we show, a simple approach based on linear interpolation will not
work.

We separate the problem of computing isosurfaces with sharp
features from scalar data into two parts: 1) Compute gradients at
grid vertices from scalar data; 2) Compute an isosurface with sharp
edges and vertices from a regular grid of scalar and gradient values.
Both parts are challenging.

In this extended abstract, we address the second problem of com-
puting an isosurface with sharp features from scalar and gradient
data. We show that computing Hermite data from gradient data re-
quires a gradient based calculation, not interpolation, and that Her-
mite data can be bypassed completely by directly computing iso-
surface vertices from selected gradients. We also show that model-
ing sharp isosurface features sometimes requires placing isosurface
vertices outside their related cube, using the Linf metric to place
vertices on sharp edges, and placing multiple isosurface vertices in
some cubes.

2 ISOSURFACE CONSTRUCTION

Our basic approach is similar to the dual contouring algorithm as
outlined in [2]. The isosurface is composed of a set of quadrilaterals
corresponding to edges intersected by the isosurface. Each isosur-
face vertex corresponds to a grid cube. The intersection points of
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the cube edges and the isosurface determine a set of tangent planes.
Using quadric error measures, the isosurface vertex is located as the
point which is “close” to each of these tangent planes.

Figure 1: Linear interpolation vs Gradient based calculation

2.1 Gradient based Computation

Kobbelt et. al. [3] propose using interpolation for computing gra-
dients on grid edges. However, as shown in Figure 1, linear inter-
polation fails miserably when the gradient field is not smooth. The
correct intersection point is totally different from the one predicted
by linear interpolation. The gradient at the intersection point is a
copy of the gradient at one endpoint, not a combination of the two
gradients.

Using the gradients, we can compute the correct intersection
point of the isosurface and the grid edge. We applied the dual con-
touring algorithm of [2] using intersection points computed using
linear interpolation and using intersection points based on gradient
calculations. Figure 2a compares isosurfaces computed from the
two intersection calculations and shows the problems with linear
interpolation.

Instead of computing the location of the isosurface vertex from
edge intersection points, we can compute the location of the iso-
surface vertex directly from gradients at the cube vertices. A grid
vertex vi at point pi with scalar value si and gradient gi determines

a scalar field fi(x) = (x− pi) · gi + si. The level set f−1
i (σ) is a

plane in R
3 which approximates f−1(σ) near pi.Using quadric er-

ror measures, construct the planes f−1
i (σ) for the cube vertices (or

some subset of the cube vertices) and locate the isosurface vertex at
a point which is close to each of these planes f−1

i (σ).

2.2 Clamping to the cube

Algorithms in [1, 2, 3] restrict an isosurface vertex to its corre-
sponding cube c. When the point which minimizes the distance
to the tangent planes lies outside cube c, the point coordinates are
clamped to lie on the boundary of c. We found that this restriction
leads to ’ridges’ along edges (Figure 2b). In these cases it is nec-
essary to place the isosurface vertex outside c (Figure 2e) to model
sharp edges. The isosurface vertex is generated by c but lies in some



(a) Linear interpolation (b) Clamped to cube (c) No L∞

(d) Grad based estimation (e) Vert allowed outside (f) Using L∞

Figure 2: Comparisons.

other grid cube c
′. We allow the point to lie in c

′ only if c
′ does not

itself generate any isosurface vertices, i.e., the span of c
′ does not

contain the isovalue.

2.3 L2 vs L∞ norm

Let c be a grid cube with a corresponding isosurface vertex vc.
When the selected gradients of c point in exactly two distinct di-

rections (up to small perturbations), the planes f−1
i (σ) determine

a line l. This line l locally approximates a sharp edge of the level
set f−1(σ), Let p be the point on l which is closest to the center
of c under the L2 norm. We usually locate the isosurface vertex vc

for c at point p. However, p may lie in some cube c
′ 6= c. If cube

c
′ generates its own isosurface vertex, then p is not an appropriate

location for vc. In this case, we compute the closest point p̃ on l to
the center of c under the L∞ metric. While p is usually in a cube
c
′ sharing a face with cube c, point p̃ is in a cube c̃ which shares

only an edge with c. We attempt to locate vc at p′. As shown in
Figure( 2c, 2f) using p̃ as an alternative location avoids ridges in
the sharp edge.

2.4 Multiple isosurface vertices

The simple dual contouring algorithm creates a single isosurface
vertex per intersected cube. Restricting each cube to a single iso-
surface vertex, creates non-manifold regions in the isosurface near
sharp features. As in [4], we use G. Nielson’s dual contouring
algorithm to allow multiple isosurface vertices for certain cube-
isosurface intersection patterns. For certain “ambiguous” intersec-
tion patterns, there is a choice of where or whether to place multi-
ple vertices. We resolve these ambiguities so that cubes containing
sharp features have only one isosurface vertex while adjacent cubes
may have more than one.

3 ALGORITHM

A (very) rough outline of our algorithm is as follows:

1. Resolve ambiguous cube-isosurface intersection patterns;

2. For each isosurface vertex vc in cube c:

(a) Select a subset of c’s vertices and gradients;

(b) Position vc based on the planes determined by the se-
lected gradients;

(c) Allow vc to lie in some cube c
′ 6= c as long as c

′ is
empty;

a) b) c) d)

Vertex degree Algorithm Restricted No L∞ Single isov

1 2 73 7 20

2 784 542 775 782

3 2 302 15 24

>3 0 63 0 60

1, 3 or >3 4 438 797 104

Table 1: Vertex degrees of graph of sharp edges of an annulus iso-
surface with central axis in direction (1,1,1). a) Results from our
algorithm. b) Isosurface vertices are restricted to their correspond-
ing grid cubes. c) L∞ norm is never used for positioning an isosur-
face vertex on a grid line. d) Each grid cube generates at most one
isosurface vertex.

(d) Use both the L2 and the L∞ metric to position vc along
a sharp line;

3. Construct an isosurface quadrilateral for each grid edge inter-
sected by the isosurface.

4 MEASURING SHARP FEATURES

To visualize sharp features in an isosurface, we compute the di-
hedral angle between adjacent isosurface polygons and report the
common edge whenever the dihedral angle is less than a specified
threshold (140◦). We also report any edge incident on three or more
isosurface polygons. Drawing the reported edges either alone or on
the isosurface (Figure 2) allows us to quickly visualize and identify
missing or incorrect sharp edges and vertices.

The set of isosurface edges with small dihedral angle can be
viewed as a graph embedded in R

3. To measure the representa-
tion of sharp features in an isosurface, we compute and output the
number of vertices of degrees one, two, three or four and higher in
this graph. (See Table 1 for an example.) Isosurfaces which have
poor representations of sharp features tend to produce numerous
graph vertices of degrees one, three or four and higher.

Table 1 shows the number of vertices with various degrees in
the graph of sharp isosurface edges. For the given isosurface all
vertices of this graph should have degree two. Comparison of the
number of vertices with degrees other than two (4 vs. 438) shows
that allowing vertices outside cube c(Sect 2.2 ), using L∞ (Sec 2.3
)and multiple iso-vertices(Sec 2.4 ) provides far better results.
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