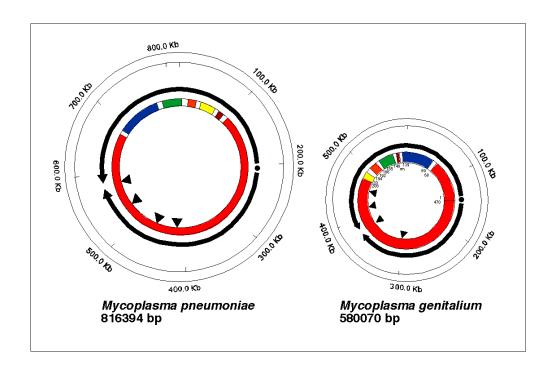

WholeCellViz: data visualization for whole-cell models

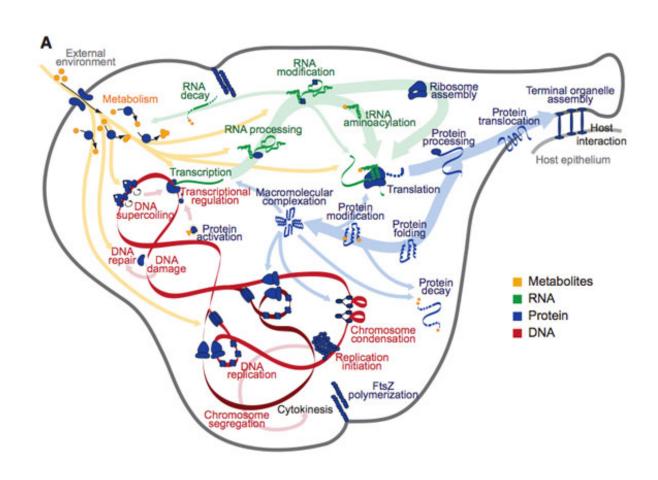
http://www.theatlantic.com/technology/archive/2012/07/to-model-the-simplest-microbe-in-the-world-you-need-128-computers/260198/

M. Genitalium



Mycoplasma genitalium

- First isolated in 1981¹
- Genital and reproductive tract disease
- Frequency
 - more common than *N. gonorrhoeae* but less common than *C. trachomatis*
 - coinfection with C. trachomatis not uncommon¹⁻³


¹Mena L, 2002; ²Falk L, 2010; ³Anagrius C, 2005

Small Genome

525 genes (580 kb) nucleotide base pairs

Whole Cell Simulation

Simulation

Theory

A Whole-Cell Computational Model Predicts Phenotype from Genotype

Jonathan R. Karr,^{1,4} Jayodita C. Sanghvi,^{2,4} Derek N. Macklin,² Miriam V. Gutschow,² Jared M. Jacobs,² Benjamin Bolival, Jr.,² Nacyra Assad-Garcia,³ John I. Glass,³ and Markus W. Covert^{2,*}

Stanford University, Stanford, CA 94305, USA

http://dx.doi.org/10.1016/j.cell.2012.05.044

Cell 150, 389-401, July 20, 2012 @2012 Elsevier Inc. 389

¹Graduate Program in Biophysics

²Department of Bioengineering

³J. Craig Venter Institute, Rockville, MD 20850, USA

⁴These authors contributed equally to this work

^{*}Correspondence: mcovert@stanford.edu

www.wholecellsimdb.org

WholeCellSimDB

This package provides all code for WholeCelIDB. Please visit http://wholecelldb.stanford.edu to browse the database. Please see the user guide for usage instructions, and the developer's guide for installation instructions.

Download Links

Name	File Type	Platform	Updated
WholeCellDB			
WholeCellSimDB.html (URL)	binary	Any	Jun 16, 2014
Description: WholeCellSimDB			
Source code			
WholeCellSimDB-git-repo.html (URL)	code	Any	Jun 16, 2014
Description: WholeCellSimDB code (Git repository)			
Documentation Links			
User tutorial			
<u>User tutorial.html</u> (URL)			Jun 16, 2014
Description: User tutorial			
Developer's guide			
Developer's guide.html (URL)			Jun 16, 2014
Description: Developer's guide			
Source code documentation			
Source code documentation.html (URL)			Jun 16, 2014
Description: Source code documentation			
Data model			
Data model.png (URL)			Mar 20, 2014
Description: Data model			

Please cite these papers

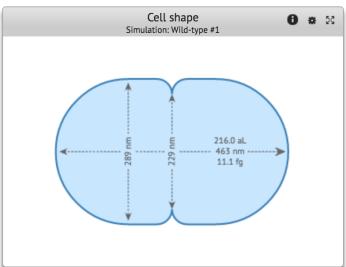
• Karr JR*, Phillips NC*, Covert MW. WholeCellSimDB: a hybrid relational/HDF database for wholecell model predictions. Database. (2014) [Download]

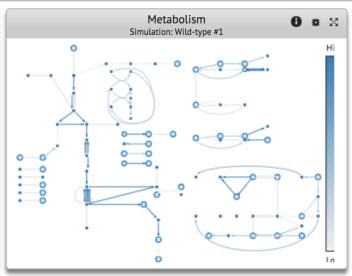
Data

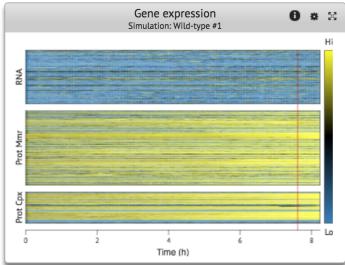
https://simtk.org/project/xml/downloads.xml? group_id=714#package_id1307

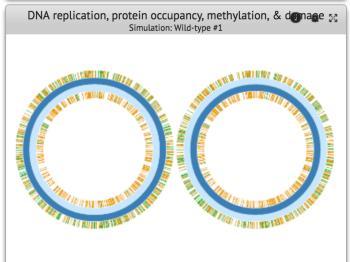
Visualization

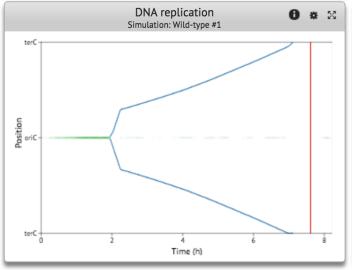
http://wholecellviz.stanford.edu/

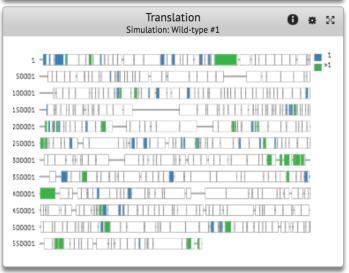

About

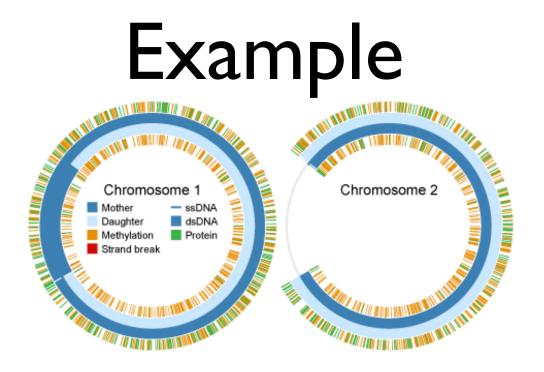

WholeCellViz is a web-based software program for visually analyzing whole-cell simulations. WholeCellViz enables visual analysis of several all aspects of cell physiology including:

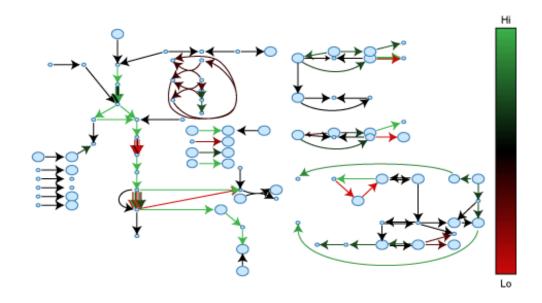

- The cell mass, volume, and shape,
- · The copy number of every metabolite, RNA, and protein,
- · The flux of every metabolic reaction,
- The status of every molecular machine DNA polymerase, RNA polymerase, ribosome, FtsZ ring, and
- · The copy number, superhelicity, integrity, and DNA binding status of every chromosome.


Example views


Cell growth | Cell cycle | Replication
Omics | Synthesis | Population | Knockouts



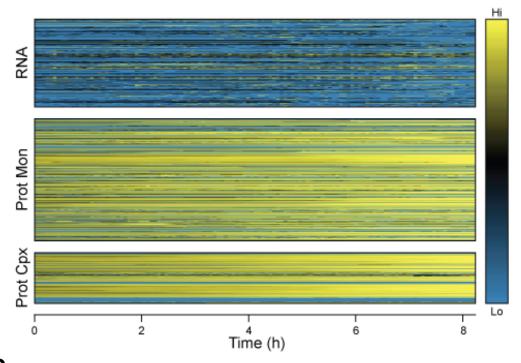




DNA replication, protein occupancy, methylation, & damage.

This visualization displays the polymerization (blue), protein DNA binding (green), methylation (orange), and strand break (red) status of the M. genitalium chromosomes.

Mother DNA is colored dark blue. Daughter DNA is colored light blue.


Example

Metabolism

This visualization depicts the fluxes of several metabolic reactions (green indicates high flux, red indicates low flux) and the concentrations of several metabolites (node size)

Example

Gene expression

This visualization displays the expression of every RNA and protein gene product. High expression is colored yellow; low expression is colored blue.

What Else?

Example views

Cell growth | Cell cycle | Replication
Omics | Synthesis | Population | Knockouts

Table 1 WholeCellViz visualizations

Visua lizatio n	Figure	URL
Cell shape	1a	http://wholecellviz.stanford.edu/CellShape
Cell shape (3D)	2a	http://wholecellviz.stanford.edu/CellShape3D
Chromosome (linear)	2c	http://wholecellviz.stanford.edu/Chromosome1
Chromosome (circular)	1d	http://wholecellviz.stanford.edu/Chromosome2
Chromosome (space-time)	1e	http://wholecellviz.stanford.edu/ChrSpaceTime
Cytokinesis	Zb	http://wholecellviz.stanford.edu/Cytokinesis
Gene expression	1c	http://wholecellviz.stanford.edu/GeneExp
Immature protein expression	2d	http://wholecellviz.stanford.edu/NascentProtExp
Immature RNA expression	2e	http://wholecellviz.stanford.edu/NascentRnaExp
Metabolism	1b	http://wholecellviz.stanford.edu/Metabolism
Mature protein expression	2f	http://wholecellviz.stanford.edu/MatureProfExp
Mature RNA expression	2g	http://wholecellviz.stanford.edu/MatureRnaExp
Replication initiation	2h	http://wholecellviz.stanford.edu/Rephit
Translation	1f	http://wholecellviz.stanford.edu/Translation

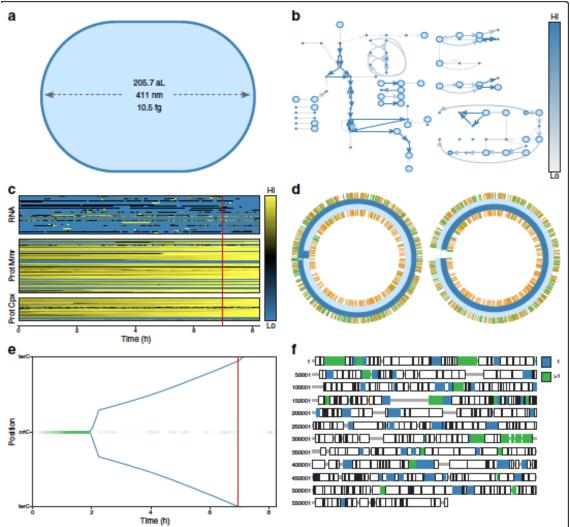
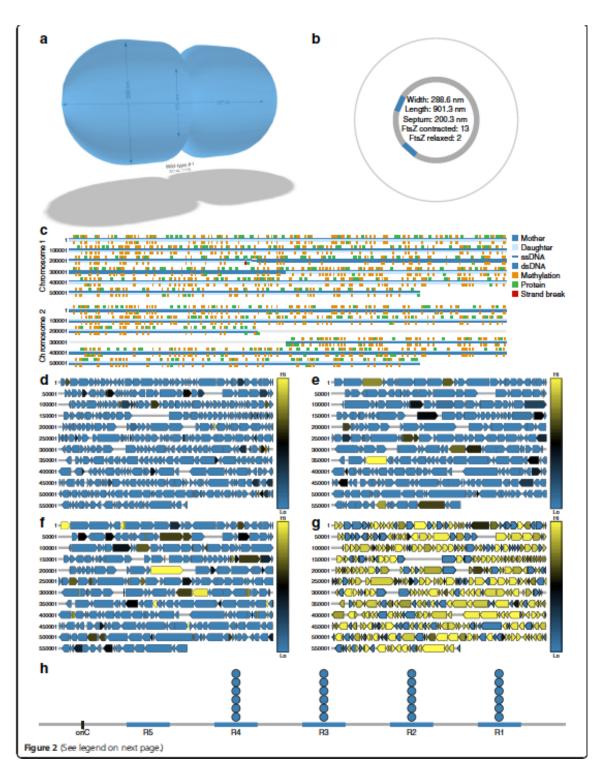



Figure 1 Cell cycle dynamics view of one wild-type in silico cell at 7 h post-cell cycle initiation. This view includes six animations which highlight the dynamics of the predicted metabolic fluxes and RNA and protein expression over the cell cycle. In particular, the view shows the onset of DNA replication, and the subsequent bidirectional movement of DNA polymerase on the chromosome. The view also highlights the onset of cytokinesis following the completion of DNA replication. (a) instantaneous shape of M. genitalium as it initially elongates and later pinches at the septum, forming two daughter cells. (b) Metabolic map illustrating metabolite concentrations and reaction fluxes. Each metabolite is normalized to its mean concentration, and each reaction is normalized to its mean flux. Dark blue arrows indicate high reaction flux, light blue arrows indicate low reaction flux. Large circles indicate high metabolite concentrations; small circles indicate low metabolite concentrations.
(c) Heatmap of the copy number of each RNA, protein monomer, and protein complex species. Each gene product is normalized to its mean copy number. Yellow indicates high expression; blue indicates low expression. (d) Instantaneous polymerization (blue), methylation (orange), stand break (red), and protein-binding status of the M. genitalium chromosomes. (e) Space-time plot illustrating the instantaneous chromosomal locations of the replication initiator DnaA and DNA polymerase. (f) Map of the protein-coding genes indicating protein synthesis. Each gene is colored according to the length of its longest nascent polypeptide. Green represents genes with one active ribosome, blue represents genes with multiple active ribosomes. An interactive version is available at http://wholecellvz.stanfordedu/cellCycle.

(See figure on previous page)

Figure 2 Additional WholeCell'0z visualizations. Visualizations highlight one wild-type in silico cell at various time points. (a) Instantaneous shape of M. gariitalium as it initially elongates and later pinches at the septum, forming two daughter cells. (b) Instantaneous Post Contractile ring size. Fits? Ings literatively contract at the cell septum to pinch the cell membrane during cytokinesis. (c) Instantaneous polymerization (blue), methylation (orange), strand break (red), and protein-binding status of the M. gentalum chromosomes. (d-g) Heatmaps of the copy number dynamics of immature proteins (d), immature RNA (e), mature proteins (f), and mature RNA (g). Each gene product is normalized to its maximal expression. Yellow indicates high expression; blue indicates low expression. (h) Occupancy of the oriC functional DnaA boxes which recruit DNA polymerase to the oriC to initiate replication.

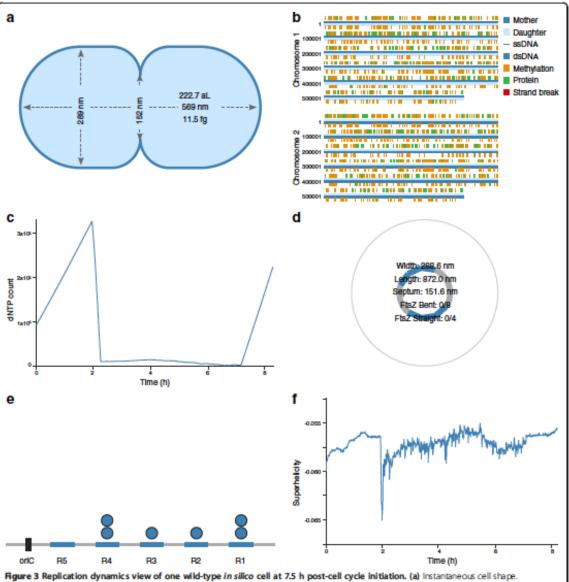


Figure 3 Replication dynamics view of one wild-type in silico cell at 7.5 h post-cell cycle initiation. (a) Instantaneous cell shape.

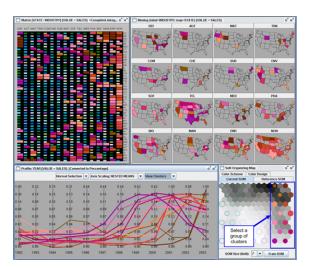
(b) Instantaneous polymerization (blue), methylation (orange), strand break (red), and protein-binding status of the M. genitalium chromosomes.

(c) Intracellular dNTP copy number dynamics. (d) Instantaneous FtsZ and cell septum sizes. (e) Instantaneous oriC DnaA box occupancy.

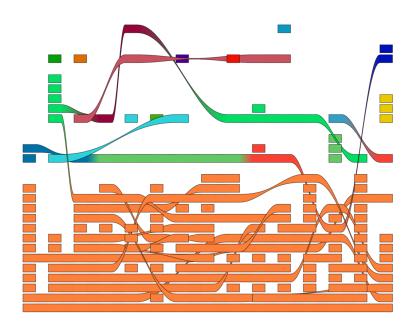
(f) Superhelicity dynamics. An interactive version is available at http://wholecellvizstanfordedu/replication.

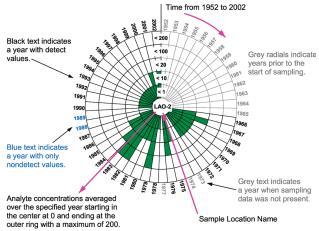
The Project

It's About Time:
Giving Data More Meaning & Context
with Temporal Visualization Approaches


September 16, 2014

value changes over time events




SECTION 2: DATA VISUALIZATION PURPOSES

TEMPORAL HEATMAP

24

Data

https://simtk.org/project/xml/downloads.xml?group_id=714#package_id1307

Publication release

September 6, 2012

WholeCellViz is a web-based software program for visually analyzing whole-cell simulations.

Download Links

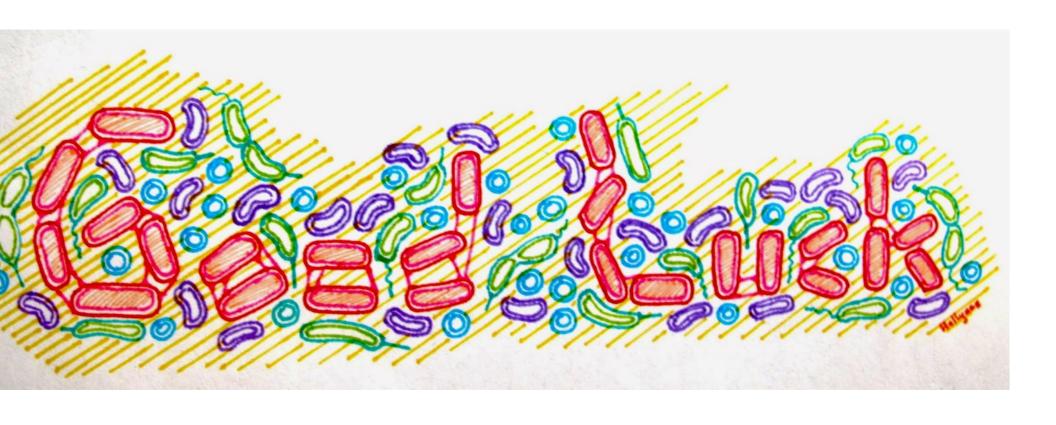
Name	File Type	Platform	Updated
WholeCellViz			
WholeCellViz.html (URL)	binary	Any	Jun 16, 2014
Description: WholeCellViz			
Source code (current)			
WholeCellViz-Git-repo.html (URL)	code	Any	May 23, 2013
Description: WholeCellViz code (current) (Git repo)			
Source code (publication release)			
SourceCode.zip (9338 kB)	code	Any	Jul 26, 2013
Description: Source code (publication release)			
Documentation Links			
Tutorial			
Tutorial.html (URL)			Jun 16, 2014
Description: Tutorial			
Developers' guide			
DevelopersGuide.pdf (243 kB)			Jan 25, 2013
Description: Developers' guide			
MIT license			
license.txt (1 kB)			Jul 18, 2013
Description: MIT license			

Please cite these papers
 Lee R*, Karr JR*, Covert MW. WholeCellViz: Data visualization for whole-cell models. BMC Bioinformatics 14, 253 (2013) [Download]

Must Do

Option I

And Again



To check effectiveness

Option 2

Choose 2 Views

- Pick any two
- Correlate
- Model
- Gambol:)
- Code and Create a New Visualization
- No second user study is needed.

