1. (7.38) Show that if $P = NP$, a polynomial time algorithm exists that produces a satisfying assignment when given a satisfiable Boolean formula. (Note: The algorithm you are asked to provide computes a function, but NP contains languages, not functions. The $P = NP$ assumption implies that SAT is in P, so testing satisfiability is solvable in polynomial time. But the assumption doesn’t say how this test is done, and the test may not reveal satisfying assignments. You must show that you can find them anyway. Hint: Use the satisfiability tester repeatedly to find the assignment bit-by-bit.)

Solution:
Assuming $P = NP$, we have a polynomial time algorithm deciding SAT. To produce a satisfying assignment for a satisfiable formula ϕ, substitute $x_1 = 0$ and $x_1 = 1$ in ϕ and and test the satisfiability of the two resulting formulas ϕ_0 and ϕ_1. At least one of these must be satisfiable because ϕ is satisfiable. If ϕ_0 is satisfiable, pick $x_1 = 0$; otherwise ϕ_1 is satisfiable, pick $x_1 = 1$. That gives the value of x_1 in a satisfying assignment. Make that substitution permanent and determine a value for x_2 in a satisfying assignment in the same way. Continue until all variables been substituted.

2. Let $DOUBLE-SAT = \{\langle \phi \rangle | \phi$ is a boolean function that has at least two satisfying assignments$\}$.

Show that $DOUBLE-SAT$ is NP-complete.

Solution:
On input ϕ, a nondeterministic polynomial time machine can guess two assignments and accept if both assignments satisfy ϕ. Thus $DOUBLE-SAT$ is in NP. We show $SAT \leq_P DOUBLE-SAT$. The following TM, F, computes the polynomial time reduction f.

$F = \text{“On input } \langle \phi \rangle$, a Boolean formula with variables } x_1, x_2, \ldots, x_m:$

1. Let $\phi' = \phi \lor (x \land \overline{x})$, where x is a new variable
2. Output $\langle \phi' \rangle$.

If $\phi \in SAT$, then ϕ' has at least two satisfying assignments that can be obtained from the original satisfying assignment of ϕ by changing the value of x. If $\phi' \in DOUBLE-SAT$, then ϕ is also satisfiable, because x does not appear in ϕ. Therefore $\phi \in SAT$ iff $f(\phi) \in DOUBLE-SAT$.

3. (7.26) Let ϕ be a 3cnf-formula. An \neq-assignment to the variables of ϕ is one where each clause contains two literals with unequal truth values. In other words, an \neq-assignment satisfies ϕ without assigning three true literals in any clause.

1. Show that the negation of any \neq-assignment to ϕ is also an \neq-assignment.
2. Let $\neq SAT$ be the collection of 3cnf-formulas that have an \neq-assignment. Show that we obtain a polynomial time reduction from 3SAT to $\neq SAT$ by replacing each clause c_i
\[(y_1 \lor y_2 \lor y_3)\]

with the two clauses

\[(y_1 \lor y_2 \lor z_i)\] and \[(\bar{z}_i \lor y_3 \lor b)\]

where \(z_i\) is a new variable for each clause \(c_i\) and \(b\) is a single additional new variable.

3. Conclude that \(\neg\text{SAT}\) is NP-complete.

Solution:

1. In an \(\neg\)-assignment each clause has at least one literal assigned 1 and at least one literal assigned 0. The negation of an \(\neg\)-assignment preserves this property, so it too is an \(\neg\)-assignment.

2. To prove that the given reduction works, we need to show that if the formula \(\phi\) is mapped to \(\phi'\), then \(\phi\) is satisfiable (in the ordinary sense) iff \(\phi'\) has an \(\neg\)-assignment. First, if \(\phi\) is satisfiable, we can obtain an \(\neg\)-assignment for \(\phi'\) by extending the assignment to \(\phi\) so that we assign \(z_1\) to 1 if both literals \(y_1\) and \(y_2\) in clause \(c_i\) of \(\phi\) are assigned 0. Otherwise we assign \(z_1\) to 0. Finally, we assign \(b\) to 0. Second, if \(\phi'\) has an \(\neg\)-assignment we can find a satisfying assignment to \(\phi\) as follows. By part (a) we may assume the \(\neg\)-assignment assigns \(b\) to 0 (otherwise, negate the assignment). This assignment cannot assign all of \(y_1, y_2\) and \(y_3\) to 0, because doing so would force one of the clauses in \(\phi'\) to have all 0s. Hence, restricting this assignment to the variables of \(\phi\) gives a satisfying assignment.

3. Clearly, \(\neg\text{SAT}\) is in NP. Hence, it is NP-complete because \(3\text{SAT}\) reduces to it.

4. (7.29) A coloring of a graph is an assignment of colors to its nodes so that no two adjacent nodes are assigned the same color. Let \(3\text{COLOR} = \{< G >: \text{the nodes of } G \text{ can be colored with three colors such that no two nodes joined by an edge have the same color}\}\). Show that \(3\text{COLOR}\) is \(NP\)-complete.

Solution:

The proof is a simple reduction from \(\neg\text{SAT}\). We are given a set of clauses \(C_1, \ldots, C_m\) each with three literals, involving the variables \(x_1, \ldots, x_n\), and we are asked whether there is a truth assignment on the variables such that no clause has all literals true, or all literals false. We shall construct a graph \(G\), and argue that it can be colored with colors \(\{0, 1, 2\}\) if and only if all clauses can take diverse values. Triangles play an important role again: a triangle forces us to use up all three colors on its nodes. Thus, our graph has for each variable \(x_i\) a triangle \([a, x_i, \neg x_i]\); all these triangles share a node \(a\) (it is the node at the top colored “2” in Figure 1).

Each clause \(C_i\) is also represented by a triangle, \([C_{i1}, C_{i2}, C_{i3}]\) (bottom of Figure 1). Finally, there is an edge connecting \(C_{ij}\) with the node that represents the \(j\)th literal of \(C_i\). This completes the construction of the graph \(G\) (see Figure 1 for example).

We claim that \(G\) can be colored with colors \(\{0, 1, 2\}\) if and only if the given instance of \(\neg\text{SAT}\) is satisfiable. In proof, suppose that the graph is indeed 3-colorable. We can assume, by changing color names if necessary, that node \(a\) takes the color 2, and so for each \(i\) one of the nodes \(x_i\) and \(\neg x_i\) is colored 1 and the other 0. If \(x_i\) takes the color 1 we think that the variable is true. Otherwise it is false. How can the clause triangles be colored? If all literals in a clause are true, then the corresponding triangle cannot be colored, since color 1 cannot be used; so the overall graph is not 3-colorable. Similarly if all literals are false. This completes the proof of one direction. For the other direction, suppose that a satisfying (in the \(\neg\text{SAT}\) sense) truth assignments exists. We color
Figure 1: The reduction to 3-COLORING

node a by color 2, and the variable triangles in the way that reflects the truth assignment. And for any clause, we can color the clause triangle as follows: We pick two literals in it with opposite truth values (they exist, since the clause is satisfied) and color the vertices corresponding to them with the available color among \{0, 1\} (0 if the literal is true, 1 if it is false); we then color the third node 2.