1. Let C be a language. Prove that C is Turing-recognizable iff a decidable language D exists such that $C = \{x | \exists y ((x, y) \in D)\}$

Solution:
We need to prove both directions. To handle the easier one first, assume that the decidable language D exists. A TM recognizing C operates on input x by going through each possible string y and testing whether $(x, y) \in D$. If such a y is ever found, accept; if not, just continue searching.

For the other direction, assume that C is recognized by TM, denoted by M. Define the language D to be $\{(x, y) \mid M \text{ accepts } x \text{ within } |y| \text{ steps}\}$. Language D is decidable since one can run M for y steps and accept iff M has accepted. If $x \in C$, then M accepts x within some number of steps, so $(x, y) \in D$ for some sufficiently long y, but if $x \notin C$ then $(x, y) \notin C$ for any y.

2. Let $T = \{(M) \mid M \text{ is a TM that accepts } w^R \text{ whenever it accepts } w\}$ (w^R is the reverse of w). Show that T is undecidable. Is T recognizable?

Solution:
T is unrecognizable. We prove it by contradiction. Assume M_T is a recognizer of T, we can construct a recognizer of $\overline{A_{TM}}$.

$M' = $ “On input (M, w):

1. Construct a TM M_w: “On input x:

 (a) If x=w^r, REJECT;
 (b) If x=w, run M on w and return the same result;
 (c) Else, REJECT.”

2. Run M_T on (M_w), return the same.”

Correctness:
M' accepts $(M, w) \iff M_T$ accepts $(M_w) \iff M$ does not accept $w \iff (M, w) \in \overline{A_{TM}}$.
Therefore, T is unrecognizable.

3. Let

$$M = \{(a, b, c, p) : a, b, c \text{ and } p \text{ are binary integers, such that } a^b \equiv c \mod p\}$$

Show that $M \in P$.

Solution:
The most obvious algorithm multiplies a by itself b times then compares the result to c, modulo p. That uses $b-1$ multiplications and so is exponential in the length of b. Hence this algorithm doesn’t run in polynomial time. Here is one that does:

“On input (a, b, c, p), four binary integers:
• Let \(r := 1 \).
• Let \(b_1, \ldots, b_k \) be the bits in the binary representation of \(b \).
• For \(i := 1, \ldots, k \):
 – If \(b_i = 0 \), let \(r := r^2 \mod p \).
 – If \(b_i = 1 \), let \(r := ar^2 \mod p \).
• If \((c \mod p) = (r \mod p) \), accept; otherwise reject.”

The algorithm is called repeated squaring. Each of its multiplications and modular operations can be done in polynomial time in the standard way, because the \(r \) is never larger than \(p \). The total number of multiplications is proportional to the number of bits in \(b \). Hence the total running time is polynomial.

4. Prove that the following language is undecidable:

\[A = \{ \langle M \rangle : M \text{ is a TM with running time } O(n) \} \]

Solution:
We give a mapping reduction from \(H_{TM} \) to it as follows.
Given an instance \(\langle M, w \rangle \) of \(H_{TM} \), construct the following TM \(M_0 \):

\[M_0 = \text{“On input } x \text{ of length } n:\]

• Ignore \(x \)
• Run \(M \) on \(w \).
• If \(M \) accepts \(w \), accept.
• If \(M \) rejects \(w \), reject.

The reduction is correct: If \(M \) halts on \(w \), then the running time of \(M_0 \) is a constant, and \(O(n) \) in particular. If \(M \) loops on \(w \), then \(M_0 \) loops on every input and is not in \(A \).

ALTERNATIVE solution, mapping reduction from \(A_{TM} \).

\[M_1 = \text{“On input } x \text{ of length } n:\]

• Ignore \(x \)
• Run \(M \) on \(w \).
• If \(M \) accepts \(w \), accept.
• If \(M \) rejects \(w \), loop.

\(\langle M, w \rangle \in A_{TM} \iff M_1 \text{ accepts } \iff M_1 \text{ runs in constant time } \Rightarrow M_1 \in A. \)

5. Prove that the following language is undecidable:

\[A = \{ \langle M \rangle : L(M) \in \text{TIME}(n) \} \]

Solution:
\[L_1 = \{1\}^* \in \text{TIME}(n) \implies A \neq \emptyset \]
\(A_{TM} \) is not decidable. Let \(R \) be its recognizer, clearly its running time is infinite \(\implies \langle R \rangle \notin A \implies A \neq \{ \langle M \rangle \} \). Hence the property is non-trivial. It is clearly a property of the language of \(M \). By Rice’s theorem, we know that \(A \) is undecidable.