Collaboration is permitted; looking for solutions from external sources (books, the web, material from previous years, etc.) is prohibited.

1. A permutation on the set \{1, \ldots, k\} is a one-to-one, onto function on this set. When \(p \) is a permutation, \(p^t \) means the composition of \(p \) with itself \(t \) times. Let

\[
\text{PERM-POWER} = \{ \langle p, q, t \rangle : p = q^t \text{ where } p \text{ and } q \text{ are permutations on } \{1, \ldots, k\} \text{ and } t \text{ is a binary integer} \}.
\]

Show that \(\text{PERM-POWER} \in P \). (Note that the most obvious algorithm doesn’t run within polynomial time. Hint: First try it where \(t \) is a power of 2.)

2. Prove that the following language is undecidable:

\[
A = \{ \langle M \rangle : M \text{ is a TM that runs in time } 2^{O(n)} \}.
\]

3. Let \(\text{coNP} \) be the class of languages whose complement is in \(NP \). Show that \(P \subseteq NP \cap \text{coNP} \). Show that if \(P = NP \) then \(P = \text{coNP} \).

(Warning: \(\text{coNP} \) is not the complement of \(NP \).)

4. Let

\[
\text{DOUBLE} - SAT = \{ \langle \phi \rangle : \phi \text{ is a boolean formula that has at least two satisfying assignments} \}.
\]

Show that \(\text{DOUBLE} - SAT \) is \(NP \)-complete.