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Abstract—Frequent Itemset Mining (FIM) is a classic data
mining topic with many real world applications such as market
basket analysis. Many algorithms including Apriori, FP-Growth,
and Eclat were proposed in the FIM field. As the dataset size
grows, researchers have proposed MapReduce version of FIM
algorithms to meet the big data challenge. This paper proposes
new improvements to the MapReduce implementation of FIM
algorithm by introducing a cache layer and a selective online
analyzer. We have evaluated the effectiveness and efficiency of
SmartCache via extensive experiments on four public datasets.
SmartCache can reduce on average 45.4%, and up to 97.0% of the
total execution time compared with the state-of-the-art solution.

I. INTRODUCTION

Frequent Itemset Mining (FIM) [1] is a classic data mining
topic whose goal is to extract out itemsets that appear above
a certain threshold from data input. FIM is famous for its
important role in market basket analysis. It provides foundation
to association rule learning, because association rule’s prop-
erties such as confidence, lift, and conviction are defined on
top of frequent itemset’s support value. Many algorithms such
as Apriori [2], FP-Growth [3], and Eclat [4] were proposed
to identify frequent itemsets in the last two decades. These
algorithms take a fable as their input. In the market business
context, the table can be a market transaction log. Each
row represents one customer transaction in the market, and
each column represents one item the customer had purchased.
The output is a collection of itemsets that represent popular
combinations of items.

The market transaction scale, however, increases dramat-
ically in recent years. For example, Amazon sold 306 items
per second at maximum on Cyber Monday in year 2012, and
sold 27 millions items in total on that day [5]; Taobao is
an online transaction website in China, and its sales reached
5.7 billions of US dollars on November 11th, 2013 [6]. One
single node cannot hold the data input in such scale altogether
in the memory. What aggravates memory shortage problem
is that, in the worst case, FIM algorithm can generate 2"
number of itemsets where n is the number of distinct items.
These problems entail a distributed, data parallel, and scalable
solution to FIM algorithms.

To address the above challenges, researchers have tried to
adapt traditional FIM algorithms to the widely used cloud
computing framework MapReduce [7] and its open source
implementation Hadoop [8]. This is because MapReduce
framework could leverage the computation power and stor-
age capacity of many distributed commodity machines. More
specifically, in MapReduce framework, a Map task processes
one portion of data, called split, and passes the intermediate
results to one or more Reduce tasks, which generate the
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final output. Some existing MapReduce implementations of
FIM algorithm [9], [10] are direct translation from Apriori
algorithm — they need the same number of MapReduce phases'
as the number of loops in Apriori algorithm. In particular, the
first MapReduce phase generates frequent itemsets with length
one; the second MapReduce phase calculates the candidate
itemsets from first phase’s output, and then generates frequent
itemsets with length two. The above process repeats until all
frequent itemsets are found. This is a lengthy and expensive
translation of Apriori algorithm. A two-phase MapReduce
algorithm MRApriori [11] for FIM is proposed afterwards: in-
frequent itemsets in a split are filtered out in the corresponding
Map task in the first phase, then all local frequent itemsets
are union’ed together as global candidate itemsets, finally the
second phase continues to filter out infrequent itemsets from
candidates.

MRApriori algorithm, however, suffers from expensive
scanning overhead problem in the second phase. If an itemset
is frequent in one split after local FIM algorithm’s counting,
it will be treated as a candidate, but it has to be re-counted in
every split in phase 2, including the split that has counted it
before. The reason of this counting information loss is that the
information is challenging to be used. A frequent itemset in
one split does not imply that it is frequent in other splits. Since
only frequent itemsets are reported, the sum of all reported
counting values does not reflect the total occurrences of this
itemset. Therefore, MRApriori chose to ignore all counting
information from phase 1.

In this paper, we propose a new solution, called Smart-
Cache, which continues to use the two-phase structure, but
could avoid unnecessary scanning overhead in the second
phase. SmartCache’s effectiveness comes from our key obser-
vation: if one itemset is very close to, although not above, the
threshold, it might exceed the threshold in other splits. This
indicates that it can be beneficial to store more itemsets to
avoid repetitive counting in the second phase.

In SmartCache, we first introduce a cache layer. This layer
saves the counting information generated from phase 1 to
HDEFS [12] files, which are used by phase 2 to speed up
its execution. Second, we design an online analyzer module
to decide the cost-effective number of itemsets’ counting
information to be saved. The reason we need this module is
because phase 1’s minimum support (different from the user-
provided global minimum support), which roughly reflects the
amount of counting information to save, has a substantial
influence to the total execution time. A low overhead, online

!n this paper, phase means a MapReduce job, not Map or Reduce phase.



module is needed to find an optimal value for this variable.

We evaluate SmartCache with extensive experiments on
four publicly accessible and popular datasets pumsb, accidents,
T40110D100K, and kosarak [13]. The experiment results show
that SmartCache can reduce on average 45.4%, and up to
97.0% end-to-end execution time compared with the state-of-
the-art solution.

In summary, our contributions are threefold:

e We proposed a new MapReduce solution, called
SmartCache, for the classic Frequent Itemset Mining
problem. SmartCache is effective and has significant
performance improvement over existing solutions;

e We designed a regression based online analyzer
to find the optimal value for phase 1’s minimum
support, which is a variable that decides how many
itemsets to save and further decides the I/O overhead;

e We conducted extensive experiments on four public
and representative datasets, and compared SmartCache
with two most recent works about the end-to-end
execution time.

This paper is organized as follows. We first give the
background information in Section II. Section III discusses
a motivating example. Section IV discusses SmartCache in
details. Experiment results are given in Section V. We have
a discussion section in Section VI, and conclude our paper in
Section VIIL

II. BACKGROUND: TRADITIONAL AND DISTRIBUTED
FIM ALGORITHMS

Frequent Itemset Mining algorithm’s input is a dataset that
consists of many transactions, or rows. Each row includes
many items. Itemset is a set of items. Absolute support of
one itemset is its number of occurrences. Support of one
itemset is absolute support of this itemset divided by the
number of rows. Once the minimum support is given, a
frequent itemset is defined as an itemset whose support is
bigger than or equal to it. For example, if the dataset contains
two rows: 1) Diaper, Toast, Beer; 2) Diaper, Beer, and if
the minimum support is 60%, then the frequent itemsets will
be {Diaper}, {Beer}, and {Diaper, Beer}, whose absolute
support values are all 2, and support values are all 100%.

There are three classic FIM algorithms that run in single
node. Apriori [2] algorithm’s main logic is a loop, where
loop ¢ generates frequent itemsets with length ¢. Loop ¢ + 1
calculates the candidate itemsets from output of loop ¢ by using
the following property: any subset in one frequent itemset
must also be frequent. FP-Growth [3] algorithm establishes
an FP-Tree by two passes of the dataset. Frequent itemsets
are extracted from this data structure. Eclat [4] algorithm
transposes the dataset into a new table where each row means
one item’s sorted transaction ID list. Frequent itemsets are
found by intersecting two transaction lists.

Parallel FP-Growth (PFP) algorithm [14], which is imple-
mented in Apache Mahout [15] scalable machine learning
library, applies FP-Growth algorithm into Hadoop framework.
However, as mentioned in paper BPFP [16], it suffers from
load unbalance problem. In [17], the authors propose BigFIM

method. While it is shown to outperform PFP and BPFP,
BigFIM uses more than two phases of MapReduce jobs to
compute. As will be shown in Section V, SmartCache has
significant improvement over this solution.

Othman et al. [11] describes two ways of translating
Apriori algorithm into MapReduce jobs. The first way is
exhausting all possible itemsets in Map task, and letting the
Reduce task filter out itemsets that are under minimum support.
This approach is used by [18]. It suffers from an exploded
intermediate results between Map and Reduce tasks. The
second way is a direct translation from Apriori algorithm.
It makes every loop inside Apriori algorithm a MapReduce
job. This approach is used by [9], [10]. It also has a large
amount of data to shuffle between Map and Reduce tasks [11].
Additionally, it has to pay for the extra MapReduce framework
scheduling overhead. To address these issues, they proposed a
better algorithm MRApriori, which uses two-phase structure.

There are two methods to further optimize MRApriori.
First, we can prune the global candidate itemsets from phase 1
by some arithmetic properties of distributed FIM, then we
can save the scanning overhead in phase 2. This approach is
used by [19]-[21]. However, this approach assumes that each
split’s row size is known to each Reduce task in phase 1.
This assumption can be achieved by either adding an extra
MapReduce job ahead of algorithm, or piggybacking extra
code in phase 1’s Map task. The former causes an unnecessary
MapReduce job overhead. The latter is not trivial to be
extended to multiple Reduce tasks because a Map task has
to broadcast its split size to every Reduce task. This broadcast
task can be done by customizing hash partition function, but
there is no universal way to get the function since a number
of Map tasks and split size varies across different executions.
Our method does not require this assumption. Second, we can
re-use the itemset’s frequency calculated in phase 1, such that
phase 2 does not need to compute it again. This idea was
partially explored by [21], whose solution is called Zahra et
al. solution in our paper. However, their mechanism is static.
Many itemsets’ frequency values that could be re-used are not
saved. Much space is left for improvement, as we will explain
in Section III and compare it with SmartCache in Section V.

III. A MOTIVATING EXAMPLE

In this section, we will first briefly describe how MR Apriori
algorithm works, and describe what improvement Zahra et
al. solution did to MRApriori algorithm, then explain why
there is improvement space to Zahra et al. solution, and finally
motivate our solution SmartCache.

Algorithm 1 MRApriori - Phase 1

1: procedure MAP(split, min_sup)

2: L < APRIORI(split, min_sup)

3 for all (itemset, abs_sup) € L do

4: EMITINTERMEDIATE(itemset, abs_sup)
5: end for

6: end procedure

7. procedure REDUCE(itemset, list abs_sups)

8: EMIT(itemset, 1)

9: end procedure

Algorithm 1 and algorithm 2 show the two phases



Algorithm 2 MRApriori - Phase 2

1: procedure MAP(split, candidates)

2 for all itemset € candidates do

3: abs_sup < SCANCOUNT(itemset, split)
4: EMITINTERMEDIATE(itemset, abs_sup)
5 end for

6: end procedure

7. procedure REDUCE(itemset, list abs_sups, min_sup,
total_rows)

8: sum < 0

9: for all val € abs_sups do

10: sum < sum + val

11: end for

12: if sum > min_sup * total_rows then
13: EMiIT(itemset, sum)

14: end if

15: end procedure

in MRApriori algorithm. These two phases are executed
in sequential order. min_sup represents minimum support.
abs_sup represents absolute support. list abs_sups means that
variable abs_sups contains a group of abs_sup from Map
tasks. candidates is the output from phase 1. total_rows,
which is calculated in phase 12, means the total number of
rows for the entire dataset.

Phase 1’s Map task accepts the whole split as input, and
runs the local FIM algorithm on it. This algorithm could be
Apriori or FP-Growth. For correctness they make no difference
because what we need is that the local algorithm can return
local frequent itemsets. The Map task outputs each local
frequent itemset as key, and its local occurrence as value.
Phase 1’s Reduce task directly outputs each itemset it got from
Map task. The reason that Reduce task outputs one as itemset’s
value (line 8 in alg. 1) is because we cannot tell whether the
sum of values is smaller than or equal to this itemset’s real
global occurrences at this stage. For example, if one itemset
A is frequent in split 1 and its occurrence is 101, and itemset
A is not frequent in split 2 and its occurrence is 99, then 99
will be dropped within split 2 locally, the sum of all reported
values will be 101, which has no indication of itemset A’s real
occurrence. After this Reduce task, we get an output that has
global candidate itemsets, which form a superset of the final
frequent itemsets. The reason is that if the itemset is global
frequent, it must be local frequent for at least one split. This
mathematical property, which MRApriori’s correctness relies
on, can be proved by contradiction. Global candidate itemset
are saved into DistributedCache in HDFS, because all of the
phase 2’s Map tasks need this as input.

Phase 2’s Map task takes the same split and the global
candidate itemsets as input. For each itemset, it scans the split
row by row to count the occurrences, and outputs the itemset
as key, the occurrences as value. Phase 2’s Reduce task sums
up all the values for each itemset, and does the final filtering.
Itemset can only stay if its support is bigger than or equal to
the given minimum support.

One inefficient part of MRApriori algorithm is that the

2Note total_rows variable is computed in phase 1 and used by phase 2,
so this is different from letting every Reduce task in phase 1 know each split
size. Its pseudo code is omitted here for brevity.

counting information in phase 1’s Map task is wasted. Itemset’s
occurrence has to be counted again in phase 2’s Map task, and
this is an expensive scanning operation. For example, if there
are five Map tasks in phase 1, and three of them reported one
itemset as frequent, then in phase 2, these three Map tasks will
still need to count this itemset’s occurrence again. Saving these
intermediate itemsets’ counting information so that phase 2’s
Map task does not need to count again becomes the guideline
for both Zahra et al. solution and our solution SmartCache.
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Fig. 1: Execution time comparison among MRApriori, Zahra et
al. solution, and solutions that use lower phase 1’s minimum
support values. The dataset is pumsb and minimum support
is 85%. Zahra et al. solution saves all itemsets that pass
85% threshold; the third bar saves all itemsets that pass 65%
threshold; and the fourth bar saves all itemsets that pass 60%
threshold. Every Reduce task takes less than 1.3 seconds, so
they are omitted in this figure. plminsup represents phase 1’s
minimum support.

Zahra et al. solution proposed to re-use these counting
information. Figure 1 shows phase 1’s Map task execution
time, phase 2’s Map task execution time, and total execution
time when the input dataset is pumsb and minimum support
is 85% (we use this real workload (pumsb,85%) for all the
figures in Section III and Section IV). From Figure 1, we
can see that saving intermediate itemsets’ counting information
from phase 1’s Map task can reduce the end-to-end execution
time remarkably, about 76.3% compared with MRApriori
(Figure 1 also tells us that this execution time reduction indeed
comes from phase 2’s Map task’s execution time reduction),
but we can also see that there is space for further improvement.

The important difference in our solution from Zahra et
al. solution is that the latter is static while ours is dynamic.
Zahra et al. solution, the same with MRApriori, uses minimum
support as one of the input parameters in phase 1. However,
we treat phase 1’s minimum support as a variable, which can
be made smaller than minimum support. The reason lies in
our key observation: even though one itemset does not exceed
the minimum support threshold locally, if it is close enough
to this threshold, likely it will exceed other splits’ threshold.
Therefore, saving its counting information is worth trying.
Since we do not change the global candidate itemsets, it is
still a superset of the final frequent itemsets, the correctness of
algorithm does not get affected. We can see from Figure 1 that
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if we lower phase 1’s minimum support to 65%, more itemsets’
counting information will be saved, then it could bring even
more benefits, about 91.5% time reduction compared with
MRApriori, and 64.1% time reduction compared with Zahra
et al. solution.

However, lowering phase 1’s minimum support without
restraint is not favorable. We define the intermediate itemsets’
counting information saved by phase 1’s Map task as cache?,
and define scanning avoidance ratio as the percentage of
itemsets in global candidate itemsets that can be found in
cache. This ratio can be calculated in phase 2’s Map task.
Figure 2 shows that the scanning avoidance ratio does not
go higher after phase 1’s minimum support is below 80%.
Figure 3 shows that the cache size goes up non-linearly, which
is because that FIM algorithm inherently generates 2" itemsets
(n is the number of distinct items) in the worse case. For
example, if {a,b,c} is accepted as a frequent itemset, then
{a},{b}.{c}.{a,b}.{a,c},{b,c} are also frequent itemsets. A
huge cache size incurs high I/O overhead because we need

3cache means a HDFS file in this paper.
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Fig. 4: Execution time as a function of phase 1’s minimum
support. Inputs are (pumsb, 85%).

to write it into HDFS in phase 1 and read it from HDFS in
phase 2. Figure 1 shows that if we lower phase 1’s minimum
support from 65% to 60%, phase 1’s Map task time increases
by 201% because of extra computation and writing overhead.
Phase 2’s Map task time increases by 319% because of extra
reading overhead. The total execution time increases by 177%.
The above analysis tells us that lowering phase 1’s minimum
support without restraint may even be harmful to performance.

To study how the execution time would change with
phase 1’s minimum support, we have tuned this variable to be
different values. Figure 4 shows our result. For completeness
purpose, we also tuned phase 1’s minimum support to be
above minimum support. From Figure 4, we can see as
phase 1’s minimum support goes lower, the performance first
becomes better, because of higher scanning avoidance ratio;
and then becomes worse, because of high I/O overhead. A
large performance gap, which starts from above 1,400 seconds
to below 100 seconds, shows up. In practice, there is no simple
principle for users to guess the optimal variable value directly,
and users usually do not have enough time to manually try
every possible minimum support. Therefore, an online, low
overhead solution that can find a variable value close to optimal
one is desired.

IV. OUR APPROACH: SMARTCACHE

Figure 5 shows the workflow and software architecture for
SmartCache. Besides its original output, which contains global
candidate itemsets G'1, phase 1’s Map task also goes through
a SmartCache data path. This new path has three components:
local FIM algorithm interceptor, online analyzer, and cache
generator.

Local FIM algorithm interceptor lowers the FIM algo-
rithm’s minimum support parameter, and uses the memory to
hold all the returned itemsets; online analyzer analyzes these
itemsets in real time, and identifies which itemsets to save;
cache generator writes the identified itemsets into HDFS file,
which is read by Map task in phase 2 as a readonly cache, for
example, C'1 or C2 in Figure 5. Whenever we want to count
the occurrences of one global candidate itemset, we first look
it up in the cache. If it is there, we save one round of scanning
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overhead. After introducing our solution’s architecture, the
core problem is how to design an effective online analyzer,
or concretely, how to decide how many itemsets should be
saved into cache. As we have mentioned in Section III, it is
not intuitive to make this decision.

It is ideal if we can establish a model about the cost
and benefit, specifically, the cost of writing extra data into
HDEFS in phase 1 and reading these data from HDFS in
phase 2, the benefit of saving the second phase’s execution
time. However, since the size of intermediate itemsets is not
linear with phase 1’s minimum support, as shown in Figure 3,
it is hard to predict the cost function. Since the first phase’s
Map tasks are independent with each other, it is not easy to
predict how many saved itemsets will be used in the second
phase. Hence, it is hard to predict the scanning avoidance ratio
in phase 2. Because of the above reasons, setting up a precise
or even approximate cost and benefit model is challenging, if
not impractical.

Our solution SmartCache can decide how many itemsets
to save into cache online. We achieve this goal by detecting
when cache size starts to grow non-linearly, and only saving
itemsets before the turning point. First, we lower the minimum
support in phase 1 by slack (between 0 and 1), then there is
a slack range, which starts from minimum support and ends
at minimum support * slack. The slack range is divided into
buckets number of buckets. We change the local algorithm to
intercept the new itemset discovery operation, such that itemset
is thrown into one bucket by its own support value. Note that
this change can be applied to any local FIM algorithm. After
the local FIM algorithm finishes, all the itemsets are saved
into memory, and organized in buckets. Then we sum up each
bucket size one after another, and get a cumulative bucket
size distribution. We do a simple linear regression analysis
for it. From each bucket, we get a R-Square [22] value (R-
Square value, which is between 0 and 1, measures how linear
the data are in linear regression, the closer to 1, the more
linear the data are. We get this value by using Apache statistics
library [23]). Whenever it is below R_Square_threshold, we
stop here and save the previous buckets’ itemsets into HDFS.
The intuition is that we think the bucket size is starting to grow
non-linearly. To sum up, SmartCache has three parameters:
slack, buckets, R_Square_threshold. Based on our experience,
we propose their values to be 0.7, 20, and 0.8, respectively
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Fig. 6: SmartCache online analyzer’s working logic in detail.
It shows the cumulative bucket size trend, and the R-Square
value trend. The statistics are from one Map task in phase 1.
Inputs are (pumsb, 85%).

(please refer to Section V-B3 for sensitivity studies on these
parameters).

Figure 6 shows one practical example when SmartCache’s
online analyzer is working. Each bar corresponds to one
bucket, and there are 20 buckets in total. The ith bar’s height
means the sum of bucket’s itemsets number from the 1st bucket
to the ¢th bucket. Each bar corresponds to one R-Square value,
it falls below 0.8 in bucket 13, so we put itemsets from
bucket 1 to 12 into HDFS, and leave itemsets from bucket 13
to 20 behind. From this figure we can see that, starting from
bucket 13, the cumulative size grows non-linearly. It means that
our algorithm correctly detected the turning point for number
of itemsets, or the turning point for I/O overhead.

Algorithm 3 and algorithm 4 have summarized SmartCache
idea in pseudo code. plminsup represents phase 1’s minimum
support. In phase 1, we modify the local FIM algorithm such
that whenever a new frequent itemset (relative to plminsup)
is discovered, it is either stored into L if its support is
bigger than or equal to min_sup, or thrown into a bucket
based on its support value (line 3 in alg. 3) if its support
is between min_sup and plminsup. After the local FIM
algorithm finishes, we calculate the cumulative size distribution
for the buckets (line 4 to 7 in alg. 3). Then we do the linear
regression analysis to find the turning point (line 8 to 15 in
alg. 3), and write specified itemsets’ counting information to
HDEFS cache file (line 16,18,19 and line 20 to 24 in alg. 3).
In phase 2, a candidate itemset is checked in cache first, the
expensive scanning operation is only needed when it is not
in cache. In the whole process, we do not change the data
shuffled from phase 1°s Map task to Reduce task (line 16,17,19
in alg. 3), so the global candidate itemsets remain the same
with MRApriori.

Figure 7 shows the end-to-end time improvement of Zahra
et al. solution and SmartCache, and the optimal point from
our tuning. We can see from this figure that Zahra et al.
solution can get 76.3% reduction in execution time compared
with MRApriori, while SmartCache can get 91.8% reduction.
Compared with Zahra et al. solution, SmartCache can get



Algorithm 3 SmartCache - Phase 1

1: procedure MAP(splzt mMin_sup)

2: plminsup < min_sup * slack

3 L, B[1, buckets] < FPGROWTH’(split, plminsup)
4: S [O] «—0

5: for i < 1, buckets do

6: S[i] < S[i — 1]+ S1zZE(B]i])

7 end for

8: for i < 1, buckets do

9: ADDDATA(%, S[i])

10: r < GETRSQUARE()

11: if » < R_Square_threshold then

12: limit i —1

13: break

14: end if

15: end for

16: for all (itemset,abs_sup) € L do

17: EMITINTERMEDIATE(itemset, abs_sup)
18: WRITE(itemset, abs_sup)

19: end for
20: for i < 1,limit do
21: for all (itemset, abs_sup) € Bli] do
22: WRITE(itemset, abs_sup)
23: end for
24: end for

25: end procedure

26: procedure REDUCE(itemset, list abs_sups)
27: > Omitted, the same with MRApriori
28: end procedure

Algorithm 4 SmartCache - Phase 2

1: procedure MAP(split, candidates)

2 cache < READ()

3 for all itemset € candidates do

4 if itemset € cache then

5: abs_sup < GET(cache, itemset)

6 EMITINTERMEDIATE(itemset, abs_sup)
7 continue

8: end if

9: abs_sup <+ SCANCOUNT(itemset, split)
10: EMITINTERMEDIATE(itemset, abs_sup)
11: end for

12: end procedure

13: procedure REDUCE(itemset, list abs_sups, min_sup,
total_rows)

14: > Omitted, the same with MRApriori

15: end procedure

65.4% reduction in execution time. Besides, SmartCache is
close to the optimal point (the lowest point in Figure 4), in
this example SmartCache takes 15.9% more execution time
than the optimal point.

Note that the figures’ statistics in Section III and Section IV
are from a real workload (pumsb,85%). More experiment
results are provided in Section V.

V. EVALUATION

The end of Section IV shows SmartCache’s improvement
on one dataset with one minimum support {pumsb, 85%), this
method is also effective for other {dataset, minimum support)

1600
1472.6

1400 -

1200 -

1000 -

800 -

Execution time (second)

400 - 349.2 *

200 | 120.8 N
55.9

jeesasss]
MRAprioy;  Zahra et 4 S"’a"fCache Optima
Phase 2 execution time XXXXXi

Phase 1 execution time 1
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combinations. In this section, we describe our experiment setup
and present more of our experiment results*.

A. Experiment setup

Our testbed has three 64-bit virtual machines with the
identical configuration. Each virtual machine has two VCPUs,
12GB memory, and uses 2.6.32 version Linux kernel. We
use Hadoop version 2.2.0, which is based on YARN [24]
architecture. We use replication ratio 3 for HDFS. Speculation
for Map task and Reduce task is disabled. Since we want to
make sure that two Map Tasks are not scheduled to the same
node, each node is configured in a way that only one YARN
container can run in it. We achieve this by setting YARN Node-
Manager’s memory size to be 8GB, and container’s minimum
size also to be 8GB. Each task inside the container uses all
the 8GB memory. We use 2 Map tasks and 1 Reduce task,
because YARN ApplicationMaster has to use one container.
Both phases do not use Reduce function as Combine function
in the Map task side, because it is not necessary for phase 1,
and correctness in phase 2 will be compromised if used. Before
starting the experiment, we divide the input dataset into two
splits with roughly equal number of rows, if the total row
number is odd, then one split has one more row than the other.
The purpose of this division is to try to minimize the load
unbalance factor’s influence. In practice, SmartCache does not
need any assumption about the number of rows inside each
split. Each execution time shown in this paper is the average
of five runs.

As mentioned in Section IV, SmartCache has three tunable
parameters slack, buckets, R_Square_threshold. Based on our
experience, we propose them to be 0.7, 20, and 0.8. Even
though when R-Square value falls down below 0.95, we
can say the data are already not linear, we choose 0.8 as
R_Square_threshold because we want to save as many itemsets
as possible for saving scanning overhead, but to avoid saving
huge amount of itemsets at the same time, in other words, to
strike a balance between saving computation and reducing I/O
overhead.

4Figure 1,2,3,4 in Section III and Figure 6,7 in Section IV are also got
under the same experiment setup.



[ [ pumsb ] accidents | T40ITODIOOK | kosarak |
Number of 49046 | 340,183 100,000 990,002
Trows
daamber of 2,113 468 942 41,270
istinct items
AV§rage number of 74 338 396 8.1
items per row
Item’s min ID 0 1 0 1
Item’s max ID 7,116 468 999 41,270
Studied 90%, 80%, 1.3%, 1%, 0.265%,
minimum support 85% 60% 0.7% 0.205%

TABLE I: Datasets’ basic characteristics and minimum support
values we have studied.

Four datasets pumsb, accidents, T40110D100K, kosarak
are chosen from an online public repository [13], which
is specially designed for Frequent Itemset Mining research.
Table I shows these four datasets’ basic characteristics and the
minimum support values we have studied. We can see that
these four datasets’ rows are from almost 50,000 to above
990,000; distinct items numbers are from almost 500 to above

40,000; average number of items per row varies from 8.1 to
74.
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Fig. 8: Datasets’ density analysis. Each point d(z,y) in the
figure means that in all length-1 itemsets, there are y% of
them whose support values are bigger than or equal to z.

Even though there are some existing works that measure
the density of datasets for FIM, and the four datasets we are
using are classified into different groups in [25], there is no
widely used formal way to define density in literature. Figure 8
provides our perspective for estimating dataset density. Every
dataset has a non-increasing line in the figure. Each point
d(x,y) on the line means that in all length-1 itemsets, there
are y% of them whose support values are bigger than or equal
to x. We use length-1 itemset ratio as a density criterion for
the reason that the higher length-1 itemset ratio, the more
combinations of itemsets will likely be generated, the more
dense the dataset. We can see that kosarak is the most sparse
dataset, and all four datasets have different types of density.

Other than Zahra et al. solution, we have also compared
SmartCache with BigFIM [17], [26]. BigFIM is deployed into
Apache Mahout, which also uses Hadoop version 2.2.0 as the
infrastructure. We set the number of Map tasks to be 2, and the
depth of prefix tree to 3, as recommended in its documentation.

Because fundamentally Apriori is a pluggable component,
and FP-Growth is faster than Apriori based on our experience,
we replace Apriori by FP-Growth (our FP-Growth implementa-
tion is adapted from FPGrowth_itemsets algorithm from [27])
when implementing SmartCache for our experiment conve-
nience. In this paper, we still call the baseline MRApriori,
but the baseline’s local FIM algorithm is also replaced by FP-
Growth for a fair comparison.

B. Experiment results
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Fig. 9: Execution time as a function of phase 1’s minimum
support. Inputs are (T40110D100K, 1%).

1) Overall Results: Every (dataset, minimum support)
combination we studied has a similar performance curve to
Figure 4. We use one more example to support this statement.
From Figure 9 we can learn that in dataset 740110D100K and
minimum support 1%, the total execution time is also affected
by phase 1’s minimum support. The performance first becomes
better, reaches its optimal point at 0.9%, and then becomes
worse. This indicates that every input combination in our study
needs an online algorithm to find the optimal point.

Figure 10a to 10h show all the input combination’s per-
formance comparison results except (pumsb, 85%), which was
already discussed in Section III and Section IV. SmartCache
is effective in all these scenarios. Compared with MR Apriori,
SmartCache reduces execution time by from 35.6% to 98.6%,
on average 76.8%. This is because we add a cache layer to
save scanning overhead in phase 2. Compared with Zahra
et al. solution, SmartCache reduces execution time by from
4.6% to 97.0%, on average 45.4%. This is because our key
observation is taking effect. Compared with BigFIM, Smart-
Cache reduces execution time by from 50.7% to 90.4%, on
average 70.9%. This is partly because SmartCache only uses
two MapReduce phases, while BigFIM uses more than two. In
the recommended configuration, BigFIM uses five MapReduce
phases. Compared with the optimal point, SmartCache takes
from 1.4% to 49.1% more time, on average 9.95%.

Figure 10a shows the experiment results when the input
dataset is pumsb and minimum support is 90%. Zahra et
al. solution reduces 51.5% execution time compared with
MRApriori, while SmartCache reduces 64.1% execution time
compared with MRApriori. Compared with Zahra et al. solu-
tion, SmartCache reduces 26.0% execution time. SmartCache
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Fig. 10: Execution time comparison for different datasets and minimum support values.

takes 49.1% more time than optimal point, and compared with
BigFIM, SmartCache reduces 65.0% execution time.

Figure 10b shows the experiment results when the input
dataset is accidents and minimum support is 80%. Zahra
et al. solution reduces 32.5% execution time compared with
MRApriori, while SmartCache reduces 35.6% execution time
compared with MRApriroi. Compared with Zahra et al. solu-
tion, SmartCache reduces 4.6% execution time. SmartCache
takes only 1.4% more time than optimal point, and compared
with BigFIM, SmartCache reduces 66.3% execution time.

Figure 10c shows the experiment results when the input
dataset is accidents and minimum support is 60%. Zahra
et al. solution reduces 82.9% execution time compared with
MRApriori, while SmartCache reduces 88.4% execution time
compared with MRApriori. Compared with Zahra et al. solu-
tion, SmartCache reduces 32.3% execution time. SmartCache
takes only 2.8% more time than optimal point, and compared
with BigFIM, SmartCache reduces 90.4% execution time.

Figure 10d shows the experiment results when the input
dataset is 740110D100K and minimum suport is 1.3%. Zahra
et al. solution reduces 48.1% execution time compared with
MRApriori, while SmartCache reduces 51.6% execution time
compared with MRApriori. Compared with Zahra et al. solu-
tion, SmartCache reduces 6.6% execution time. SmartCache
takes only 9.7% more time than optimal point, and compared
with BigFIM, SmartCache reduces 50.7% execution time.

Figure 10e shows the experiment results when the input
dataset is T40110D100K and minimum support is 1%. Zahra
et al. solution reduces 37.8% execution time compared with
MRApriori, while SmartCache reduces 86.3% execution time
compared with MRApriori. Compared with Zahra et al. solu-
tion, SmartCache reduces 77.9% execution time. SmartCache
takes only 6.0% more time than optimal point, and compared

with BigFIM, SmartCache reduces 54.1% execution time.

Figure 10f shows the experiment results when the input
dataset is T740110D100K and minimum support is 0.7%. Zahra
et al. solution reduces 84.0% execution time compared with
MRApriori, while SmartCache reduces 96.5% execution time
compared with MRApriori. Compared with Zahra et al. solu-
tion, SmartCache reduces 78.0% execution time. SmartCache
takes only 2.6% more time than optimal point, and compared
with BigFIM, SmartCache reduces 69.1% execution time.

Figure 10g shows the experiment results when the input
dataset is kosarak and minimum support is 0.265%. Zahra
et al. solution reduces 88.8% execution time compared with
MRApriori, while SmartCache reduces 93.4% execution time
compared with MRApriori. Compared with Zahra et al. solu-
tion, SmartCache reduces 41.2% execution time. SmartCache
takes only 4.6% more time than optimal point, and compared
with BigFIM, SmartCache reduces 81.7% execution time.

Figure 10h shows the experiment results when the input
dataset is kosarak and minimum support is 0.205%. Zahra
et al. solution reduces 54.1% execution time compared with
MRApriori, while SmartCache reduces 98.6% execution time
compared with MRApriori. Compared with Zahra et al. solu-
tion, SmartCache reduces 97.0% execution time. SmartCache
takes only 3.4% more time than optimal point, and compared
with BigFIM, SmartCache reduces 90.2% execution time.

2) Runtime Statistical Results: Table II shows three metrics
while running SmartCache in different workloads. Phase 1 final
minimum support shows the turning point SmartCache chose
after its online analysis. Size of saved itemsets shows the cache
size. Phase 2 scanning avoidance ratio shows the effect of this
cache. Each cell has two values because there are two Map
tasks in our testbed. From Table II's second column, we can
see that SmartCache can effectively make its decision indepen-



phase 1 phase 1 phase 2
final size of scanning
minimum saved avoidance
support itemsets ratio
(pumsb, 90%) 76.5%, 77.85% 20MB, 14MB 100%, 100%
(pumsb, 85%) 69.7%, 69.7% 176MB, 147MB 100%, 100%
({accidents, 80% 56%, 56% 96KB, 92KB 100%, 100%
(accidents, 60% 42%, 42% 728KB, 696KB 100%, 100%
(T40I10D100K, 1.3% 1.027%, 0.988% 1.4MB, 1.8MB 100%, 100%
(T40I10D100K, 1%) 0.7%, 0.7% 22MB, 24MB 100%, 100%
(T40110D100K, 0.7% 0.49%, 0.49% SIMB, 52MB 100%, 100%
(kosarak, 0.265%) 0.2014%, 0.2173% 664KB, 524KB 100%, 100%
(kosarak, 0.205%) 0.1435%, 0.1435% 8.8MB, 13MB 100%, 100%

TABLE II: Workload metrics after using SmartCache.

dently based on that split’s specific characteristics. Table II’s
fourth column shows that in these workloads, SmartCache can
achieve 100% scanning avoidance ratio.

SmartCache has a low execution time overhead. From
Figure 10b, 10c, 10d, and 10g, we can see that even though the
Zahra et al. solution is already close to optimal point (within
twice of optimal point), SmartCache is still between Zahra et
al. solution and optimal point. SmartCache also has a low space
overhead. Table II's third column shows that the maximum
cache size is only less than 200MB. Studying cache size under
other datasets and other minimum support values is for our
future work.
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Fig. 11: slack parameter sensitivity study for two datasets and
minimum support values.

3) Sensitivity Study: Figure 11 shows our sensitivity study
result for slack parameter in SmartCache. slack parameter is
responsible for lowering phase 1’s minimum support such that
more itemsets can be considered to be saved into cache or not.
slack parameter also decides the maximum amount of itemsets
that could possibly be saved into cache. We change slack
parameter from 0.95 to 0.50 and decrease it by 0.05 at a time.
From Figure 11a we can see that the execution time is at its
highest point when slack is 0.95. This is because some itemsets
that could contribute to a higher scanning avoidance ratio have
not been saved into cache. The above reason also explains
the Figure 11b’s highest point. In Figure 11a, execution time
reaches its lowest point when slack is lowered to 0.80, and
gets worse afterwards. The execution time increase happens
because of redundant computation and extra I/O overhead. For
Figure 11b, execution time remains stable when slack drops
below 0.90. This is because for this specific dataset, lowering
phase 1’s minimum support to half of minimum support does
not introduce a substantial number of itemsets into cache.
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Fig. 12: R_Square_threshold parameter sensitivity study for
two datasets and minimum support values.

Figure 12 shows our sensitivity study result
for R _Square_threshold  parameter in  SmartCache.
R_Square_threshold parameter is responsible for finding
the turning point after which the number of itemsets start to
grow non-linearly. We change R_Square_threshold parameter
from 1 to 0.55 and decrease it by 0.05 at a time. From
Figure 12a we can see that the execution time is not at
lowest point when R_Square_threshold is 1. This is because
scanning avoidance ratio did not reach its peak point. The
above reason also explains the Figure 12b’s highest point.
In Figure 12a, execution time reaches it lowest point when
R_Square_threshold is lowered to 0.85, and gets worse
afterwards. The execution time increase happens because
unnecessary large amount of itemsets have been introduced
into cache. For Figure 12b, execution time remains stable
when R_Square_threshold drops below 0.95. This is because
for this specific dataset, within the slack range, the camulative
bucket size did not increase significantly across buckets.

VI. DISCUSSION

Our key observation mentioned in Section III leads to
two changes for the local FIM algorithm. First, minimum
support parameter is lowered. This means that local FIM
algorithm needs extra memory to hold the corresponding
itemsets. In production run, we can take the physical memory
size limitation into consideration, and tune the slack parameter.
Second, local FIM’s frequent itemset discovery operation is
intercepted. This interception is independent of local FIM
algorithm’s main logic, so we did not destroy the advantage
of two-phase MapReduce FIM algorithm: we automatically
benefit from a better local FIM algorithm.

The key observation itself can be applied to other frequency
mining algorithm in MapReduce as well, such as Frequent Tree
Mining and Frequent Graph Mining [28]. Even though all the
experiments are done in a three node cluster, we believe the
key observation’s effectiveness is independent of the cluster
size. Trying SmartCache in a larger cluster, which invovles
adjusting the three parameters, is for our future work.

After Hadoop, a large amount of large data processing
frameworks are developed. Some of them can handle large
graphs, such as Pregel [29], GraphLab [30]. Some of them can
handle large data streams, such as MapReduce Online [31],
Yahoo! S4 [32], Twitter Storm [33]. Recently, a memory-
based large data processing framework Spark [34] and Spark
Streaming [35], which stores intermediate results in memory, is



developed. Our solution can guide the design in Spark because
not all intermediate counting information can be cached.

VIL

Researchers have tried to apply the traditional data mining
topic Frequent Itemset Mining into MapReduce framework to
meet the big data challenge. However, the two-phase Map-
Reduce FIM algorithm, which is the most advanced way so far,
suffers from high scanning overhead problem. We identified
new improvement space on top of the state-of-the-art solution,
and proposed a new regression based method to determine the
optimal size of cache. Extensive experiments had been done
on four public datasets. Our solution SmartCache can reduce
on average 45.4%, and up to 97.0% execution time compared
with the state-of-the-art solution.

CONCLUSION

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
and Mai Zheng for their helpful feedback. This research is
partially supported by NSF grants #CCF-0953759 (CAREER
Award) and #CCF-1319705.

REFERENCES

[1] P-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
(First Edition). Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 2005.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules in Large Databases,” in Proceedings of the 20th International
Conference on Very Large Data Bases, ser. VLDB *94. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1994, pp. 487-499.

[3] J.Han, J. Pei, and Y. Yin, “Mining Frequent Patterns Without Candidate
Generation,” in Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD *00. New York,
NY, USA: ACM, 2000, pp. 1-12.

[4] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New Algorithms
for Fast Discovery of Association Rules,” in In 3rd Intl. Conf. on
Knowledge Discovery and Data Mining. AAAI Press, 1997, pp. 283—
286.

[5] “Amazon Was Selling 306 Items Every Second At Its Peak This Year,”
http://www.businessinsider.com/amazon-holiday-facts-2012-12.

[6] “Taobao Total Sales Reached USD 5.7 Billion on One Single Day,”
http://www.chinainternetwatch.com/4691/taobao-bachelors-day/.

[7]1 J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10-10.

[8] “Apache Hadoop,” http://hadoop.apache.org/.

[9] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh, “Apriori-based Frequent Item-
set Mining Algorithms on MapReduce,” in Proceedings of the 6th
International Conference on Ubiquitous Information Management and
Communication, ser. ICUIMC *12. New York, NY, USA: ACM, 2012,
pp. 76:1-76:8.

[10] N. Li, L. Zeng, Q. He, and Z. Shi, “Parallel Implementation of Apriori
Algorithm Based on MapReduce,” in Proceedings of the 2012 13th
ACIS International Conference on Software Engineering, Artificial In-
telligence, Networking and Parallel/Distributed Computing, ser. SNPD
’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 236—
241.

[11] O. Yahya, O. Hegazy, and E. Ezat, “An efficient implementation of
Apriori algorithm based on Hadoop-MapReduce model,” International
Journal of Reviews in Computing, vol. 12, pp. 59-67, 12 2012.

[12] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), ser.
MSST ’10.  Washington, DC, USA: IEEE Computer Society, 2010,
pp. 1-10.

[13] “Frequent Itemset
http://fimi.ua.ac.be/data/.

Mining Dataset Repository,”

[14]

[15]
[16]

(17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

(32]

(33]
[34]

[35]

H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, “PFP: Parallel
FP-Growth for Query Recommendation,” in Proceedings of the 2008
ACM Conference on Recommender Systems, ser. RecSys 08. New
York, NY, USA: ACM, 2008, pp. 107-114.

“Apache Mahout,” https://mahout.apache.org/.

L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang, and S. Feng, “Balanced
parallel FP-Growth with MapReduce,” in Information Computing and
Telecommunications (YC-ICT), 2010 IEEE Youth Conference on, Nov
2010, pp. 243-246.

S. Moens, E. Aksehirli, and B. Goethals, “Frequent Itemset Mining for
Big Data,” in Big Data, 2013 IEEE International Conference on, Oct
2013, pp. 111-118.

L. Li and M. Zhang, “The Strategy of Mining Association Rule
Based on Cloud Computing,” in Proceedings of the 2011 International
Conference on Business Computing and Global Informatization, ser.
BCGIN °11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 475-478.

L. Wang, L. Feng, and P. L. Jing Zhang, “An Efficient Algorithm of Fre-
quent Itemsets Mining Based on MapReduce,” Journal of Information
and Computational Science, vol. 11, no. 8, pp. 2809-2816, 5 2014.

Z. Farzanyar and N. Cercone, “Efficient Mining of Frequent Itemsets in
Social Network Data Based on MapReduce Framework,” in Proceedings
of the 2013 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, ser. ASONAM ’13. New York, NY,
USA: ACM, 2013, pp. 1183-1188.

, “Accelerating Frequent Itemsets Mining on the Cloud: A
MapReduce-Based Approach,” in Data Mining Workshops (ICDMW),
2013 IEEE 13th International Conference on, Dec. 2013, pp. 592-598.

“R-Square in Wikipedia,” http://en.wikipedia.org/wiki/R-square.

“Apache Statistics Library,” http://commons.apache.org/proper/commons-
math/userguide/stat.html.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
Hadoop YARN: Yet Another Resource Negotiator,” in Proceedings of
the 4th Annual Symposium on Cloud Computing, ser. SOCC "13. New
York, NY, USA: ACM, 2013, pp. 5:1-5:16.

F. Flouvat, F. De Marchi, and J.-M. Petit, “A new classification
of datasets for frequent itemsets,” Journal of Intelligent Information
Systems, vol. 34, no. 1, pp. 1-19, 2010.

“BigFIM project,” https://gitlab.com/adrem/bigfim/tree/master.

“SPMF, An Open-Source Data Mining Library,” http://www.philippe-
fournier-viger.com/spmf/.

Y. Wang, S. Parthasarathy, and P. Sadayappan, “Stratification driven
placement of complex data: A framework for distributed data analytics,”
in ICDE, 2013, pp. 709-720.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A System for Large-scale Graph
Processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD *10. New York,
NY, USA: ACM, 2010, pp. 135-146.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed GraphLab: A Framework for Machine Learn-
ing and Data Mining in the Cloud,” Proc. VLDB Endow., vol. 5, no. 8,
pp. 716-727, Apr. 2012.

T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears, “MapReduce Online,” in Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI'10. Berkeley, CA, USA: USENIX Association, 2010, pp. 21-21.

L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
Stream Computing Platform,” in Proceedings of the 2010 IEEE In-
ternational Conference on Data Mining Workshops, ser. ICDMW ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 170-177.

“Twitter Storm,” https://storm.incubator.apache.org/.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets:
A Fault-tolerant Abstraction for In-memory Cluster Computing,” in
Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI'12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 2-2.

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized Streams: Fault-tolerant Streaming Computation at Scale,”
in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, ser. SOSP 13. New York, NY, USA: ACM, 2013,
pp. 423-438.



