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ABSTRACT
Checkpointing and replaying is an attractive technique that
has been used widely at the operating/runtime system level
to provide fault tolerance. Applying such a technique at the
application level can benefit a range of software engineering
tasks such as testing of long-running programs, automated
debugging, and dynamic slicing. We propose a checkpoint-
ing/replaying technique for Java that operates purely at the
language level, without the need for JVM-level or OS-level
support. At the core of our approach are static analyses that
select, at certain program points, a safe subset of the pro-
gram state to capture and replay. Irrelevant statements be-
fore the checkpoint are eliminated using control-dependence-
based slicing; the remaining statements together with the
captured run-time values are used to indirectly recreate the
call stack of the original program at the checkpoint. At the
checkpoint itself and at certain subsequent program points,
the replaying version restores parts of the program state that
are necessary for execution of the surrounding method. Our
experimental studies indicate that the proposed static and
dynamic analyses have the potential to reduce significantly
the execution time for replaying, with low run-time overhead
for checkpointing.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids; F.3.2 [Logics and Meaning of Programs]:
Semantics of Programming Languages—Program Analysis

General Terms
Algorithms, Languages
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1. INTRODUCTION
Checkpointing/replaying is a well-known technique which

can replay a program execution from an intermediate point
which was captured at a checkpoint. Originally developed
to support fault tolerance in distributed computing, this ap-
proach has also been used to facilitate debugging of oper-
ating systems (e.g., [9, 13]) and of parallel and distributed
software (e.g., [21]).

In this paper we are interested in replaying a previous ex-
ecution of a program. In this earlier capturing execution,
program state is recorded at the checkpoint. During the
replaying execution, starting from the checkpoint, the run-
time behavior is the same as the behavior of the capturing
execution. Such functionality can benefit a number of soft-
ware engineering tasks. For example, in software testing,
one could perform checkpointing at the boundaries of com-
ponents of interest during a system test, and use the results
for defining unit tests and for testing of evolving software;
several authors have proposed techniques based on this idea
[20, 27, 19, 10]. As another example, checkpointing and re-
playing can reduce the cost of dynamic slicing [14] of long-
running programs. Existing evidence [35] indicates that a
fault is usually located within a short dependence distance
from the point where it manifests itself. With regular check-
pointing for a long-running program, once a failure occurs,
one could roll back to the latest checkpoint, instrument only
between the checkpoint and the manifestation point, and
slice this part of the execution. If the fault is not found, the
process could move back to the previous checkpoint, and
slice only the interval between the two checkpoints, etc.

In addition to replaying precisely the captured execution,
our technique can be easily adapted for producing varia-
tions of the captured behavior, for the purposes of auto-
mated debugging or regression testing. For example, delta
debugging [33, 34, 7] requires comparing program states of
a passing run and a failing run, and reexecuting the passing
run numerous times, with values of some variables replaced
with the corresponding values in the failing run, in order
to automatically locate the infected transitions. For large
programs, however, it may be prohibitively expensive for
the delta-debugging algorithm to work on the entire execu-
tion. One could functionally partition the execution of the
program, and take a checkpoint at the end of each parti-
tion. Delta-debugging could then be applied partition-by-
partition. When a partition is rerun, program state will
be restored at its closest preceding checkpoint. Therefore,
the partition of interest can be executed efficiently multiple
times without having to run the prior partitions.



Open problems. Mainstream research on checkpointing
is typically focused on operating/runtime system support
for C programs [22, 30, 28, 18]. Due to the emergence of
extremely large Java programs (such as web and applica-
tion servers), applying such techniques to Java can provide
important benefits for various software engineering tasks.
One possible checkpointing technique is to record all live
objects inside the JVM to disk, and then load them back
to memory during the replaying phase. This implementa-
tion can be unacceptably expensive — recording and loading
could be even more costly than running the program. Fur-
thermore, this approach requires modifications to the JVM,
which creates numerous obstacles for real-world deployment
of this technology. User-driven language-level checkpointing
for Java has been proposed in [15], requiring classes to im-
plement a Checkpointable interface, and to provide a record
method to perform the actual recording. However, in prac-
tice, programmers could be reluctant to write such a non-
trivial method for each class. Furthermore, this approach
does not work for preexisting library classes.

Capture and replay techniques (e.g., [20, 19]) can be used
for recording and restoring a set of interactions between a
subsystem and the rest of the application. This work consid-
ers the interactions between components (i.e., spatial parti-
tions of the program execution). The focus of our work are
interactions between the program states before and after the
checkpoint (i.e., temporal partitions of program execution).

Summary of our approach. We propose a checkpoint-
ing/replaying technique for Java that operates purely at
the language level, without the need for any JVM-level or
OS-level support. Unlike system-level checkpointing which
records the entire program state (including, for example,
program counter, call stack, etc.) and then restores this
state during replay, our technique achieves checkpointing
and replaying entirely through instrumentation of the pro-
gram code. Given a single-threaded Java program and a
checkpoint specified by the user, we employ several static
analyses to compute a set of control-decision-making points
(CDMPs), insert instrumentation code at these points, and
output the bytecode for two versions of the program: a
checkpointing version and a replaying version. The instru-
mentation in the checkpointing version records relevant run-
time information, while the instrumentation in the replaying
version uses this information to replay the execution.

At each CDMP before the checkpoint, the checkpointing
version captures a minimum set of run-time values that con-
tribute to making the control-flow decision at that CDMP.
At the checkpoint itself, the instrumentation captures a set
of local variables, static fields, and heap object graphs that
could potentially affect the subsequent execution, similarly
to [10]. After the checkpoint, our approach also captures
parts of the state at certain call sites whose earlier execu-
tion affected the flow of control leading to the checkpoint.

The capture operations at CDMPs before the checkpoint
produce run-time values that are used in the replaying ver-
sion to recreate, indirectly, the run-time call stack of the
original program at the checkpoint, without directly manip-
ulating the call stack or the program counter. To achieve
this, we perform backward slicing in the original program
solely based on control-flow dependencies. The code gen-
eration for the replaying version eliminates all statements
except for CDMPs in the slice. As a result, when the re-
playing version runs, the checkpoint can be reached quickly,

as if the execution directly started from it. The replaying al-
gorithm restores the relevant captured values at each CDMP
to force the execution to take the correct control flow.

At the checkpoint, the replaying version restores the sub-
set of the program state that could affect the subsequent ex-
ecution in the method containing the checkpoint. After the
checkpoint, additional “restore”operations are performed af-
ter returns at call sites that (directly or transitively) call
the method containing the checkpoint, in order to recover
additional parts of the program state that are necessary for
execution of the surrounding method.

To achieve efficiency, we employ static analyses that iden-
tify, at each instrumentation point, the subset of the pro-
gram state that should be captured/replayed for the exe-
cution of the rest of the method that contains the point.
The technique is safe because when the execution reaches
the checkpoint and any subsequent instrumentation point,
all values that will be used afterward are correctly restored.

Our approach is context-sensitive because it allows a user
to specify an“interesting”call chain that leads to the method
that contains the checkpoint; only the corresponding run-
time instances of the checkpoint are used for capture and
replay. We define a pattern language for describing the call
chain; in this manner, the user can define calling-context-
sensitive checkpoints. Methods in the call chain are repli-
cated to guarantee that the instrumentation in these meth-
ods does not influence their invocations from other contexts
(i.e., from methods not in the chain).

We generalize the approach to support taking checkpoints
for multiple execution regions in the program. The approach
has been implemented in our JCP (Java Checkpointing)
framework, based on the Soot analysis toolset [31]. We per-
formed an experimental evaluation of the technique on a set
of Java programs. Our preliminary results indicate that (1)
the analyses efficiently generate instrumentation and select
a small subset of the state, and can scale to large Java ap-
plications such as Soot itself; (2) the checkpointing version
introduces low run-time overhead (e.g., on average 1.8% for
six different runs of Soot); and (3) the replaying version has
the potential to significantly reduce the execution time of
long-running programs.

Contributions. The main contributions of this work are:

• A checkpointing/replaying technique based on static
analyses that determine program points at which cap-
ture/replay should occur, identify a safe subset of the
program state at these points, and generate the check-
pointing version and replaying version by slicing and
instrumenting the original program.

• A generalization to support checkpoints at multiple ex-
ecution regions, and an optimization technique based
on call chain merging for these regions.

• A checkpointing/replaying framework JCP.

• An experimental study of the static analyses and the
running times of the checkpointing version and the re-
playing version. These initial results indicate that our
approach should be investigated further as a promising
candidate for efficient checkpointing and replaying.

2. EXAMPLE AND DEFINITIONS
Running example. We will use the Soot analysis frame-

work [31] to illustrate our technique. The code in Figure 1
is extracted from classes soot.Main and soot.PackManager.



1 class G { ...
2 static G instance = new G();
3 Options op;
4 static G v() { return instance; }
5 Options soot_options_Options() {
6 if (op == null) op = new Options();
7 return op;
8 }
9 }
10 class Options { ...
11 static Options v() {
12 G g = G.v();
13 return g.soot_options_Options();
14 }
15 boolean parse(String[] args) { ... }
16 }
17 class Main { ...
18 void processCmdLine(String[] args) {
19 ... Options.v().parse(args) ...
20 }
21 void run(String[] args) {
22 processCmdLine(args); // phase 1
23 loadNecessaryClasses(); // phase 2
24 Set wp_packs = getWpacks();
25 Set body_packs = getBpacks();
26 if (Options.v().whole_jimple()) { // phase 3
27 getPack("cg").apply();
28 // --- checkpoint ---
29 getPack("wjtp").apply();
30 getPack("wjop").apply();
31 getPack("wjap").apply();
32 }
33 retrieveAllBodies(); // phase 4
34 for (Iterator i = body_packs.iterator();
35 i.hasNext();) { // phase 5
36 String s = (String)body_packs.next();
37 getPack(s).apply();
38 }
39 ...
40 }
41 static void main(String[] args) {
42 Main m = new Main();
43 if (args.length !=0)
44 m.run(args);
45 }
46 }

Figure 1: Soot startup example.

Soot is a popular program analysis toolset for Java that con-
tains a large number of static analyses which can be used
for a variety of compiler optimization and software engi-
neering tasks. Starting from main, Soot parses the com-
mand line (phase 1), resolves the necessary classes loaded
during JVM bootstrapping (phase 2), optionally runs whole-
program packs (phase 3), retrieves all method bodies (phase
4), and runs body packs, each one of which performs a spe-
cific intraprocedural analysis on the body of every loaded
method (phase 5). Whole-program analyses are usually time
consuming, especially in the presence of large libraries. For
example, running a points-to analysis in the call graph pack,
invoked by line 27, typically takes more than half an hour
for large programs (including the time to read bytecode from
disk and to build the intermediate representation). If user-
defined body packs invoked at line 37 need the results of
this analysis (e.g., points-to sets or a precise call graph),
they have to wait until all whole-program packs finish.

Because user-defined body packs are dependent on the re-
sults produced by time-consuming preceding computations,
the complexity of testing and debugging of these packs dra-
matically increases. Suppose one would like to take a check-
point immediately after the execution of the call graph pack
(at line 28), so that when the program is rerun, the execu-
tion can skip the points-to analysis and quickly flow to the

pack of interest. Using this specific example, we will show
how such checkpointing and replaying can be achieved.

Definition 1. A crosscutting call chain (CC-chain) is a
user-specified call chain that leads to the method that con-
tains the checkpoint; this method will be referred to as the
checkpoint container (CP container). A CC-chain can be
specified by users using a pattern language (described later).

� Example. Given the checkpoint in Figure 1, the corre-
sponding CC-chain is main(44)→ run(28), where (44) spec-
ifies the call site in main that calls run, and (28) specifies
the checkpoint. The CP container is method run. �

Definition 2. A pre-X region, where X is either a call site
in the CC-chain or the checkpoint itself, includes all state-
ments in the method containing X that could potentially be
executed before X during one run of the method. This re-
gion contains all and only control-flow graph (CFG) nodes
n such that X is reachable from n in the method’s CFG.
Similarly, the post-X region includes all statements in the
method containing X that could potentially be executed af-
ter X during one run of the method. The post-X region
contains all and only CFG nodes reachable from X.

� Example. The pre-44 region in main includes the state-
ments at lines 42 and 43. The pre-28 region (i.e., pre-
checkpoint region) in run includes all statements before line
28. The post-44 region is empty, and the post-28 region in-
cludes all statements after line 28. If the checkpoint were
between lines 36 and 37, the pre-checkpoint region would in-
clude all statements before line 38, and the post-checkpoint
region would include all statements after line 34. �

Definition 3. A control decision making point (CDMP) is
either a call site in the CC-chain or a predicate. A predicate
CDMP is such that either the checkpoint or some call site on
the CC-chain is (directly or transitively) control-dependent
on that predicate. Intuitively, CDMPs are the only program
points that can affect the control flow leading to the check-
point under the calling context specified by the CC-chain.
For example, the CDMPs for Figure 1 are {26, 43, 44}.

3. STATIC ANALYSES
The complication in performing checkpointing/replaying

at the language level lies in the inability to manipulate the
complete program state at the checkpoint (e.g., the program
counter and the call stack). This makes it impossible to re-
sume the execution directly from the checkpoint during the
replaying phase. An alternative approach is to generate a
replaying version of the program by removing statements
before the checkpoint, so that when one runs this version,
the execution can quickly reach the checkpoint as if the exe-
cution was directly resumed from the checkpoint. Thus, the
first problem we face is how to prune the execution before
the checkpoint in order to reach that checkpoint correctly
and efficiently. The second problem, of course, is how to re-
cover enough state at the checkpoint so that the subsequent
execution proceeds correctly.

To solve the first problem from above, we remove all com-
putation before the checkpoint, while keeping the control
flow unchanged. Thus, we preserve only the CDMPs, due
to the following reasons. First, if a call site in CC-chain is
removed, the CP container will not be called. Essentially,
we need to preserve the call sites in the CC-chain in order
to recreate the run-time call stack. Second, if a predicate
that directly or transitively guards a call site in the CC-
chain (or guards the checkpoint itself) is removed, the con-



main(String[] args) {
//@replay

 if(args.length != 0) {
//@replay

      m.run(args);
}

run(String[] args) {
//@replay

  if(Options.v().whole_jimple()) {
//@replay

 //everything unchanged after here
        getPack("wjtp").apply();
        getPack("wjop").apply();
        getPack("wjap").apply();
  }
  retrieveAllBodies();
  for (...) { ... }
}

Figure 2: Replaying version for Figure 1.

trol flow could be changed. For example, if the checkpoint
is contained in a loop, and we were to remove the loop pred-
icate, the loop would iterate only once. By preserving the
loop predicate code in the replaying version, and using the
sequence of run-time predicate values recorded during the
capturing execution, we can reproduce precisely all run-time
instances of the checkpoint.1 Strictly speaking, predicates
outside of loops do not need to be captured and replayed;
however, we chose to preserve them because this simplifies
code generation for complex CFGs.

Given a program and a user-defined CC-chain, our static
analysis computes the CDMPs using a reverse dominance
frontier algorithm [8] and generates the replaying version by
essentially performing interprocedural control-dependence-
based backward slicing from the checkpoint, and preserving
only CDMPs from the slice. Figure 2 shows the resulting
code, with all irrelevant statements removed. However, run-
ning this code will fail because of uninitialized variables,
such as args and m. Relevant values from the capturing run
should be recovered at CDMPs, shown by //@replay in the
figure, in order to make the appropriate control decisions.

Our tool generates a checkpointing version of the program
by instrumenting the original program at the CDMPs to cap-
ture the values of variables that are required to be restored
during the replaying phase. A key question becomes what
variables have to be recorded/restored at each CDMP and
the checkpoint so that the replaying version can be correctly
executed? The checkpointing version can write these vari-
able values to disk at a CDMP, so that the replaying version
can read them at the same execution point in the order that
they are recorded. Our goals are (1) to select a small sub-
set of variables to record and restore in order to reduce the
disk I/O overhead, similarly to [10], and (2) to make the
execution of the replaying version behave the same as the
execution of the original version after the checkpoint.

3.1 Environments for Instrumentation Points
We will refer to the variables that need to be captured or

replayed at a certain program point as the environment for
that point. For a predicate, the environment contains only
the boolean condition variable. The execution can correctly
make a control decision when the variable is restored. For a
call site in the CC-chain, the environment contains the run-
time type of the receiver object if this is an instance method
call, or nothing if this is a static method call. During the
replaying version, before the call site is reached, we instanti-
ate the recorded type (by using sun.misc.Unsafe), and pass
default values as actual parameters at the call site (e.g., null
for reference types, and 0 for primitive types), so that the

1When the checkpoint is within a loop, non-CDMP statements
located between the loop predicate and the checkpoint are re-
moved, because their execution is unnecessary for recreating the
program states at successive run-time instances of the checkpoint.

correct target method can be invoked.
The most complex case occurs when computing the en-

vironment for the checkpoint itself. Because all statements
after the checkpoint in the original version are also in the re-
playing version, we have to record and restore a sufficent sub-
set of the program state at the checkpoint to ensure that ev-
ery subsequent statement can be executed correctly. There
are three kinds of memory locations that constitute the envi-
ronment for the checkpoint: local variables (including formal
parameters), the static fields in all classes currently loaded
in the JVM, and objects allocated on the heap. The naive
approach of recording all these memory locations is infea-
sible. Instead, we impose the following restrictions in the
selection, in order to reduce the size of the recorded state.

First, we select a local variable only if it is written in
the pre-checkpoint region and read in the post-checkpoint
region. Formal parameters are considered to be written at
the beginning of the method. Capturing a local variable of
primitive type simply records the variable’s value. For vari-
ables of reference types, the entire object graph reachable
from the variable is captured, as discussed in Section 3.2.

� Example. For the checkpoint in Figure 1 there are thir-
teen local variables: formal args , declared locals wp packs ,
body packs , i, s, as well as compiler-generated locals for
intermediate results. However, only body packs should be
recorded because this is the only variable that is written in
the pre-checkpoint region and will still be used in the post-
checkpoint region. �

We use the same idea to select static fields. However,
it is necessary to interprocedurally inspect all methods in
the CC-chain to determine which static fields should be se-
lected. The algorithm in Figure 3 is used for this selection.
Before running the algorithm, a conservative whole-program
Mod/Use analysis is executed to compute, for each method,
all static fields that it could potentially read and write. For
computing the Mod effects, we classify a static field as“writ-
ten” if either its value is directly changed, or any heap object
that is (directly or transitively) reachable from it is mutated.
For Use effects, a static field is “read” only if its value is di-
rectly read. These results are contained in maps use map
and def map respectively.

The analysis for computing use map and def map is built
on top of a points-to analysis and an escape analysis, and
is context-sensitive and flow-insensitive. It considers the
strongly-connected components (SCC) in the call graph and
performs a bottom-up traversal of the SCC-DAG. For each
SCC, a fixed-point computation is used to handle recursion.
The analysis employes the call graph and the points-to rela-
tionships generated by Spark [16], which is a points-to anal-
ysis engine available as part of Soot.

For each method m, the analysis maintains a set Cm of
all objects from which a mutated object can be reached. If
the points-to set of a static field f contains any object from
Cm , f should be included in set def map.get(m). When
a caller of m is processed, we only propagate the objects
from Cm that can directly escape m and be referenced by
m’s caller; this approach resembles escape analysis, but we
need to track only escaping through formal parameters and
return values. The analysis is based on the observation that
at the level of m, it is not necessary to consider all static
fields: it is enough to focus only on the static fields whose
objects are referenced in m, and check if these objects can
be found in Cm. Due to space limitations, we do not provide



1: Select Static F ields(Map use map, Map def map)
2: Set pre = ∅ /* set of statements */
3: Set post = ∅ /* set of statements */
4: /* step 1: compute statement set */
5: for i = 1 to length(cc-chain) do
6: let cs be the i-th call site in cc-chain
7: pre = pre∪ pre-cs-region
8: post = post ∪ post-cs-region
9: end for

10: Set usf = ∅ /* used static fields */
11: Set dsf = ∅ /* defined static fields */
12: /* step 2.1: update the written set dsf */
13: for all statements p ∈ pre do
14: if p is a call site then
15: for all methods m that p could invoke do
16: dsf = dsf ∪ def map.get(m)
17: end for
18: end if
19: if p writes f or an object reachable from f then
20: dsf = dsf ∪ {f}
21: end if
22: end for
23: /* step 2.2: update the read set usf */
24: for all statements p ∈ post do
25: if p is a call site then
26: for all methods m that p could invoke do
27: usf = usf ∪ use map.get(m)
28: end for
29: end if
30: if p reads f then
31: usf = usf ∪ {f}
32: end if
33: end for
34: return usf ∩ dsf

Figure 3: Algorithm for static fields selection.

the technical details of the analysis algorithm; conceptually,
it works in a manner similar to escape analysis [3, 32].

After use map and def map are computed, the algorithm
from Figure 3 is used to select the static fields that need to be
captured. The algorithm first computes all statements that
could potentially execute before the checkpoint (contained
in pre), and all statements that could potentially execute
after the checkpoint (contained in post). Each call site cs in
the CC-chain is inspected, updating pre and post with the
pre-cs-region and post-cs-region, respectively.

The second step is to inspect each statement in pre and
post , and check if it could potentially write (for pre) or read
(for post) a static field. If a statement has a direct write
effect on a static field f or an object reachable from f , f
is included in dsf (“defined static fields”). Adding f to usf
(“used static fields”) is necessary only if the statement di-
rectly reads f . For call sites, the precomputed use map or
def map are used to update usf or dsf with the set of static
fields that all possible target methods could read or write.
The algorithm returns the intersection of usf and dsf.

� Example. Suppose in Figure 1 we have precomputed
that processCmdLine has both a write effect on static field
G.instance (because line 6 in soot options Options modifies
the G object reachable from the field) and a read effect on it
(because line 4 reads the value of the field). Therefore, both
def map and use map contain the pair (processCmdLine ,
{G.instance}). After step 1 of the algorithm, pre and post

class A { class B {
void main() { Set s;
Set hs = new HashSet(); B(Set arg) {s = arg;}
B b = new B(hs); void m() {
// --- capt/repl(b) B r0 = this;
b.m(); r0.s = new HashSet();
// --- extra capt/repl // --- checkpoint
if(hs == b.s) { // --- capt/repl(r0)

... r0.s.add("");
}}} }}

Figure 4: Post-checkpoint capture and replay.

are {42, 43, 22–27} and {29–39}, respectively. These state-
ments do not have direct effects on static fields. However,
line 22 calls processCmdLine, and therefore G.instance is
included in dsf. Suppose that method getPack (omitted in
Figure 1) had a read effect on G.instance. Due to the calls to
getPack in post , G.instance would be included in usf. The
intersection of dsf and usf results in {G.instance}, which is
the set of static fields that should be recorded/replayed. �

3.2 Post-Checkpoint Capture and Replay
When a primitive-type local variable or static field is cap-

tured, the corresponding value is written to disk. For a
reference-type value, the corresponding heap object is writ-
ten by capturing its primitive-type fields, and then recur-
sively writing the heap objects pointed-to by the reference-
type fields. The implementation details of the object writer
and reader can be found in Section 5.

We use a hash map to record all objects (reachable from
captured variables) that have already been written. When
writing an object that is directly pointed to by a variable
or is transitively reachable from that variable, if the object
can be found in the table, we simply write a reference to
the existing object (i.e., the address of the object in the
table). Hence, the potential aliasing relationships are still
maintained when objects are later read from disk.

Replaying only at CDMPs and the checkpoint is not enough
to guarantee correct execution after the CP container re-
turns. For example, consider the program fragment in Fig-
ure 4. We capture/replay variables before call site b.m(),
which is a CDMP, and at the checkpoint. After call b.m()
returns, the replaying execution fails because local hs is not
restored. To solve this problem, we need to additionally
capture/replay variables immediately after each call site in
the CC-chain — in this case, after b.m() in main. The vari-
ables that need to be captured/replayed include only the
local variables that will be used in the rest of the method.

When writing a local variable, two situations could occur.
First, it is possible that all objects in its object graph do not
exist in the log file. Hence, we write the entire new object
graph to the log. When the object graph is read later during
the replaying phase, every object in the graph has exactly
the same content as it had in the capturing phase. Second,
suppose that an object o in the graph has already been writ-
ten (either at the checkpoint or by the post-callsite capture
somewhere deeper in the CC-chain). Therefore, when the
recursion in the object writer reaches this object, it simply
writes a reference to it, and does not consider its fields. This
leads to two subcases. First, if in the capturing phase o has
not been updated between the time it was written to disk
and the current point, the state of o seen here during the
replaying phase is up-to-date. Second, suppose that in the
capturing phase o has been updated somewhere between the



time it was written to disk and the current point. Hence,
during capture, the reference to o we write at the current
point refers to an old object. In fact, this does not create
consistency issues: during the replaying phase, the reference
to o obtained from the log file maps to a reference to an ob-
ject which has already been loaded at some earlier moment
of time, and this object has automatically been updated to
its correct state by the execution of the post-checkpoint code
in the original program.

3.3 Additional Issues
If a method in the CC-chain has multiple callers, we have

to replicate the method so that the capture/replay oper-
ations do not affect the invocation of this method from a
caller not in the chain. Hence, we can instrument only the
replicated method and leave the original one unmodified.

It is possible for a single checkpoint to have multiple run-
time instances — for example, if the checkpoint or some
call site on the CC-chain is inside a loop. Since the loop
condition will be included in the set of captured CDMPs, the
replaying phase replicates the iterative behavior, and reaches
the checkpoint multiple times. In the capturing phase, when
the checkpoint is reached for the i-th time, the necessary
state at this particular moment is recorded on disk, and later
used during the replaying phase for that same i-th run-time
instance of the checkpoint.

One limitation of the proposed technique is that it does
not guarantee the correctness of the execution due to depen-
dencies on external resources. For example, suppose that
the post-checkpoint execution depends on the state of ex-
ternal resources such as files, databases, etc. Such external
state is not part of the application state that is captured
by our approach, and the replaying version cannot be guar-
anteed to replicate the execution of the original program.
Existing open-source serialization libraries may be useful for
handling I/O streams and external stateful entities such as
files. Another limitation is that executions that directly use
unique-per-execution values such as the system clock or ob-
ject hash codes cannot be replicated precisely. In addition,
our current implementation considers only single-threaded
programs; future work will have to address the handling of
execution interleaving for multi-threaded programs. Finally,
if code modifications are later introduced in the replaying
version by the programmer (e.g., for debugging purposes),
they cannot create new cross-checkpoint dependencies —
for example, if in the original program a local variable is not
read after the checkpoint, this variable cannot be read in the
post-checkpoint region in the replaying version.

4. MULTIPLE EXECUTION REGIONS
When debugging or testing a long-running program, pro-

grammers may be interested in multiple execution regions.
For example, Soot contains several packs of analyses and
transformations, including a whole-program pack and a body
pack. If programmers are interested in the these two packs,
they may want to replay only their executions. This cannot
be achieved by taking a single checkpoint in the program.
In this section we generalize our approach to allow taking
checkpoints for multiple execution regions.

An execution region is designated by a starting point and
an ending point, which are specified by two CC-chains. The
region includes all statements executed after the staring point
and before the ending point. The single checkpoint described

earlier is a special case of an execution region, with the start-
ing point being the checkpoint and the ending point being
the last statement of the program. We use the same control-
dependence-based slicing algorithm to remove statements in
front of the starting point of the first region, after the end-
ing point of the last region, and between the ending point of
one region and the starting point of the next region. Hence,
the execution of each region is directly connected to that of
the next region. If a region has an overlap with an excep-
tional trap, we have to preserve the trap handler so that the
exceptions thrown from the trap can be correctly handled.
We need to capture/replay variables only at the CDMPs of
the starting chain of each region, because the ending chain
is solely used to indicate the region boundary.

The complication of using multiple execution regions is
that we have to replicate all methods in the two chains of
each region, so that capturing/replaying for each region does
not influence the execution of another region. For example,
suppose there are two chains main → a → b and main →
c → a → b. If a can be called from another method d, which
is not in the chains, we have to replicate a and b twice, to
ensure that (1) replaying in the first chain does not influence
the execution of the second chain, and (2) replaying in both
chains does not influence the invocation of a from d.

However, naively replicating every method in the chains
can easily lead to an explosion in program size, especially if
execution regions are specified with long chains. An impor-
tant observation is that call chains often are quite similar to
each other. For example, if two chains are main → a → b →
c and main → a → b → d, it is enough to replicate a and b
once. Furthermore, if a has just a single caller main, we do
not need to replicate any methods.

Based on this observation, we use an algorithm that merges
the call chains in the following manner. Using top-down
traversal, the algorithm inspects each level of the call chains.
Suppose that two chains contain the same method m at the
same level. If this happens at the first level, we just merge
the two chains into a tree with root m. Otherwise, if m’s
parents in the two chains have already been merged, the two
m nodes are also merged. The algorithm produces a forest
with merged chains. As a result, the number of replicated
methods can be significantly reduced.

5. IMPLEMENTATION TECHNIQUES
We have implemented the proposed approach in our JCP

framework based on Soot. This section briefly discusses sev-
eral implementation techniques.

Serializer and loader. Although the Java libraries pro-
vide classes ObjectInputStream and ObjectOutputStream for
object reading and writing, several restrictions prevented us
from using them directly. We built our own ObjectReader
and ObjectWriter by modifying these two classes. (Oth-
ers have addressed this issue by employing existing serial-
ization libraries [10].) For example, we removed the check
for existence of non-arg constructors. When an object is
loaded and its class does not have a non-arg constructor,
sun.misc.Unsafe is used to allocate heap space without call-
ing any constructors. As another example, we replaced the
original recursive implementation with a worklist algorithm,
because deep recursion can cause stack overflow.

Writing an object to disk and then reading it back destroys
its hash code (if the object’s class does not declare a hash-
Code method) because the hash code is based on the object’s



internal address in the JVM. This affects data structures re-
lying on object hash codes, such as Hashtable and HashMap.
When an object is read from disk, we detect objects of types
Hashtable and HashMap, including their subtypes, and han-
dle this problem similarly to the default implementation in
the Java libraries. After all (transitive) fields of the object
are read and appropriately set, we retrieve each entry and
insert it into a new Hashtable or HashMap object. Eventu-
ally, we replace the internal table in the original object with
the table in the new object. Our experiments indicate that
this operation takes almost 30% of the total time needed to
recover the state from disk.

Checkpoint specification language. We provide a pat-
tern specification language for region specification; the gram-
mar of this language is shown below:

region := pt ’&’ pt
pt := Line_ID ’,’ Class_Name ’,’ chain | EMPTY
chain := me | chain ’;’ me | ’*’
me := Class_Name ’.’ method_decl |

Class_Name ’.’ method_decl ’:’ Line_ID
method_decl := Method_Name |

Method_Name ’(’ Param_List ’)’

An ampersand & is used to split the starting point and the
ending point of a region. For example, we can specify the
checkpoint in Figure 1 using the pattern

28, Main, Main.main(String[]):44;Main.run(String[]) &

which means that the starting point of the region is at
line 28 in class Main and the ending point is at the end
of the program. The CC-chain is Main.main(String[]) →
Main.run(String[]), and the call site in main that calls run
is at line 44. The parameter list of the method and the call
site line ID can be omitted, if the method name is unique in
the class, and the call site is unique in the method. A wild
card (*) can be used to specify a chain of arbitrary length,
if that chain is unique in the program.

6. EXPERIMENTAL STUDY
To evaluate our proposal for language-level checkpoint-

ing/replaying, we performed a variety of experiments, fo-
cusing on the effectiveness and efficiency of the static anal-
yses, and on the run-time performance of the checkpointing
version and the replaying version. In particular, our experi-
ments consider the following research questions:

• How effective are the static analyses in reducing the
number of variables that are captured/replayed?

• How many new statements are introduced to the cap-
turing version, and how many irrelevant statements
are removed from the replaying version?

• What is the cost of the static analyses?

• What run-time overhead does the instrumentation in-
troduce in the capturing version, and how much per-
formance speed-up is gained in the replaying version?

We performed two studies: one focused on the static anal-
yses and the other one on the run-time performance. The
first study used the 15 Java programs shown in Table 1. For
each program, the table shows the number of classes, meth-
ods, statements in Soot’s intermediate representation, and
non-comment non-blank lines of code. For soot-2.2.3, the
numbers also account for the polyglot and jasmin libraries.

In the experiments we used multiple execution regions (as
described in Section 4). For all programs except soot, we de-
fined between one and four regions. The regions were chosen

Program #Classes #Methods #Stmts #LOC

socksproxy 24 261 4439 2592
socksecho 25 295 5305 3044
jtar-1.21 65 319 7123 8997
compress 41 327 7535 4548
jb-6.1 45 548 7538 4418
db 32 317 7567 4641
jlex-1.2.6 26 162 8250 5591
javacup-0.10j 41 408 9753 5621
violet 127 666 9930 6569
raytrace 54 458 10306 5962
jflex-1.4.1 75 568 15614 9635
jess 180 973 17927 10189
sablecc-2.18.2 260 2241 26573 21503
muffin-0.9.3 278 2351 38139 27652
soot-2.2.3 2738 227333 322356 116458

Table 1: Analyzed programs.

based on what we judged to be boundaries of major func-
tionalities of the program, respecting the restrictions out-
lined in Section 3.3. Because we were not familiar with the
internals of these programs, it was quite time consuming to
manually inspect the source code to decide what could be
an appropriate region; for this reason, the number of chosen
regions was relatively small. For soot, with which we are
fairly familiar, we ran the analyses five times. The set of
regions was extended with new regions for each successive
run; for the last run, there were a total of ten regions. Each
region crossed over a Soot implementation of a static anal-
ysis (e.g., the class hierarchy analysis cg.cha and the static
inliner wtop.si).

The second study investigated the run-time performance
of the versions of soot-2.2.3. This is by far the largest appli-
cation in our data set; because it is a long-running program
(e.g., more than an hour in our experiments), it is represen-
tative of the applications for which checkpointing is likely to
be most desirable and useful.

6.1 Study 1: Static Analyses
Table 2(a) shows the number of specified execution regions

#R and the number of capturing/replaying instrumentation
points #IP. Table 2(b) shows the total number of cloned
methods #CM and the percentage RedCM of method repli-
cation reduction achieved by the call chain merging approach
outlined in Section 4, based on the total number of meth-
ods in the input chains: RedCM = (#total −#CM )/#total .
Clearly, call chain merging can significantly reduce the num-
ber of methods that need to be replicated. For example, for
soot(5), many of the regions crossed entire packs (e.g., the
call graph building pack cg and the whole-program Jimple
transformation pack wjtp). As a result, the starting and
ending chains of these regions were essentially the same:
main → run → runPacks . Our approach merged these
chains and completely avoided replication for these regions.

Table 2(b) shows the number #LO of local variables (in-
cluding formal parameters) captured/replayed in all regions;
column RedLO is the reduction from the total number of lo-
cals in all regions to #LO. In general, a relatively small
number of locals were captured/replayed for each program.
One possible reason is that most methods that we inspected
were close to the top of the call graph (due to our lack of
in-depth understanding of the internals of the programs),
and the checkpoints that were defined were relatively close
to the start of the call chain, resulting in the small number



Program (a) (b) (c) (d)
#R #IP #CM RedCM #LO RedLO #SF RedSF %Lib #RemSt #InstrSt Time (s)

socksproxy 3 11 1 92.9% 27 91.3% 316 70.0% 100% 3754 1077 136+118
socksecho 3 14 0 100% 57 71.8% 404 60.6% 100% 1276 1129 117+136
jtar-1.21 2 4 0 100% 4 91.7% 119 81.9% 100% 12 267 123+135
compress 1 6 2 75% 18 84.2% 95 51.0% 81.1% 2069 59 90+19
jb-6.1 3 5 0 100% 27 80.7% 249 60.8% 90.8% 1649 533 70+19
db 2 5 1 90% 20 60.8% 97 75.3% 79.4% 1203 237 81+18
jlex-1.2.6 3 8 0 100% 12 97.6% 231 53.6% 100% 1425 698 65+38
javacup-0.10j 4 9 4 80.0% 176 56.9% 460 53.3% 66.1% 7861 1117 70+29
violet 4 9 1 90% 64 86.0% 690 50.8% 100% 235 1587 150+210
raytrace 3 10 2 92.3% 135 65.0% 2 99.7% 0% 3139 190 111 + 109
jflex-1.4.1 2 8 3 75% 24 92.3% 246 70.5% 93.5% 12292 623 160+180
jess 3 8 3 78.6% 36 67.3% 92 77.2% 84.8% 4314 287 100+30
sablecc-2.18.2 4 11 0 100% 76 86.3% 350 53.1% 84.6% 228 811 80+51
muffin-0.9.3 3 20 0 100% 57 85.2% 366 66.7% 92.9% 12242 998 142+127

soot-2.2.3(1) 1 2 0 100% 2 98.4% 125 50.3% 64.8% 52687 268 553+1597
soot-2.2.3(2) 2 4 0 100% 6 98.6% 263 64.0% 61.6% 176548 568 576+1522
soot-2.2.3(3) 4 15 4 82% 68 91.7% 538 54.1% 60.0% 212274 1254 528+1584
soot-2.2.3(4) 6 29 8 92.2% 198 80.7% 814 56.2% 59.7% 275293 1947 542+1414
soot-2.2.3(5) 10 35 19 92.6% 420 75.3% 1366 53.4% 59.3% 303275 3104 539+1604

Table 2: Static analyses: (a) regions and instrumentation points (b) replicated methods; captured local
variables and static fields (c) removed and inserted statements (d) analysis running time.

of instrumentation points. For programs where the start-
ing/ending points of a major program functionality were lo-
cated close to main (e.g., in soot there were only two call-
graph-edge hops between main and runPacks), the check-
points were likely to be close to main and the number of
local variables to be recorded could be expected to be small.
For programs where checkpoints were taken in methods far
from main, the number of local variables could be fairly
large. Of course, the variables listed in #LO may directly
or transitively reference a large number of heap objects that
also need to be recorded.

Table 2(b) also shows the number of captured/replayed
static fields #SF and the reduction RedSF from the total
number of static fields that could be accessed directly or
transitively by main to #SF. %Lib is the percentage of fields
from #SF that were declared in the Java libraries. The
values of RedSF were greater than 50% for all programs,
which shows that the analyses effectively reduced the num-
ber of static fields that needed to be captured. As expected,
most of the selected static fields were declared in library
classes. To ensure the correctness of our approach, we had
to record/replay all these fields. In reality, the majority of
these fields most likely do not affect the execution of the
application code. For example, a call to System.out.println
reads 259 static fields, and writes many of them. If there are
two such statements in the program, one before the check-
point and the other after it, we have to record and replay
the intersection of the reading set and writing set, which is
still a large set. Clearly, future work should address this
issue. Note that for raytrace, only two static fields were
selected; after manual inspection, we determined that the
chosen regions did not call any library methods.

Table 2(c) shows the number #RemSt of statements that
were removed in the replaying version, in methods on the
call chain and in application methods that were invoked di-
rectly or transitively by removed call sites, as well as the
number #InstrSt of statements that were inserted by JCP
at all instrumentation points. For all programs except jtar
and sablecc, the number of removed statements was much
larger than the number of statements that were introduced.

Run #Objects Space %Heap Timec (s) Timer (s)

1 4610958 36.2M 36.3% 4695.3 4643.5
2 65648481 745M 73.2% 4712.2 4410.5
3 65648481 745M 73.2% 4688.4 4387.3
4 77739311 806.4M 70.0% 4770.1 511.5
5 77767256 806.5M 63.5% 4972.8 533.1
6 75668735 795.3M 72.8% 4661.6 411.5

Table 3: Run-time performance for soot.

For jtar, the regions were close to the beginning of the pro-
gram, and there were few statements executed before the
checkpoint. For sablecc, the statements that were removed
between regions did not contain many call sites.

Column Time shows the running time of the analyses, sep-
arated into two components. The first part is the running
time of Spark (recall from Section 3 that we used Spark’s
output), and the second part is the time used by our analy-
ses to compute the checkpointing version and the replaying
version. The analysis running time depends on the size of
the program and the locations of the checkpoints. The ma-
jor component (on average 84%) of the running time was
the computation of the Mod/Use effects for static fields. In
future work we plan to refine the algorithm with a variety
of static analysis techniques (e.g., memoization, equivalence
analysis [17], precomputed library summaries [25], etc.)

6.2 Study 2: Run-Time Performance
Our second study considered the run-time performance of

the original version, the checkpointing version, and the re-
playing version. In this experiment, we ran soot with soot
itself as the input, enabling phases cg.spark, wjtp, wjop.ji,
wjap.uft, jtp, and jop.cp [29]. We ran soot six times; for
each run, we took a checkpoint at the end of a different
phase, closer and closer to the end of the program. The lo-
cations of the six checkpoints were (1) before whole-program
packs, (2) after cg, (3) after wjtp, (4) after wjop, (5) after
wjap, and (6) after body packs.

The execution time of the original version was 4665.7 sec-
onds. For each run, Table 3 shows the number #Objects
of objects that are recorded/restored; the amount Space of
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Figure 5: Normalized execution times.

used disk space; the ratio %Heap between Space and the
size of the entire heap; the time Timec of the checkpointing
version, including all bookkeeping and I/O; and the time
Timer of the replaying version, including all recovery code
and I/O. Figure 5 shows the normalized execution times for
runs of the checkpointing version and the replaying version
(the basis at 100% is the original version). Clearly, the ex-
ecution of the capturing version was close to the original
version: the average run-time overhead was 1.8%.

The replaying time was reduced significantly when the dis-
tance between the checkpoint and the end of the program
became shorter. These preliminary results indicate that the
proposed technique is a promising candidate for testing, de-
bugging, and dynamic slicing of long-running applications;
in particular, it may be able to assist a programmer to fo-
cus on functionality that is executed after some expensive
computations. These savings could be important even if the
static analyses for generating the capturing/replaying ver-
sions have non-trivial cost (which is the case for soot, as
indicated by the last column in Table 2). The expectation
is that the replaying version will be executed multiple times
(e.g., with multiple tests from a test suite; for several de-
bugging runs in manual debugging; for repeated execution
during delta debugging), and the one-time cost of running
the analyses will be amortized over multiple replaying runs.

Note that a large number of objects were saved/loaded for
the last five runs, and large files were generated on disk. In
these runs, static field soot.G.instance was always selected
for capturing and replaying. Soot uses this field as a global
object manager, through which most heap objects could be
reached. Mutating almost any object leads to the selection
of soot.G.instance, and saving this field requires writing of
the majority of heap objects.

In future work, we plan to use additional long-running
programs to evaluate the performance of the capturing ver-
sion and the replaying version. It is particularly interest-
ing to consider the relationships among the number of ob-
jects captured and replayed, the locations of checkpoints,
and program-specific characteristics.

7. RELATED WORK
Checkpointing/replaying at the system level. Check-

pointing/rolling back is an old technique [1] that was orig-
inally use for fault tolerance for distributed systems [11].
There is a large body of later work that addresses the ef-
ficiency of taking checkpoints [2]. Virtual machine logging
and replaying is used to detect intrusions [9] and to debug
the guest operating systems [13]. For multi-processed sys-
tems or multi-threaded programs, special care needs to be
taken to replay non-deterministic executions [26].

Checkpointing at the application level. Application-

level checkpointing has recently gained popularity for de-
bugging and testing [24, 22], dynamic slicing [36], and race
detection [5, 6]. There is also work on deterministic replay of
multi-threaded programs [23, 4]. User-driven language-level
checkpointing techniques have been proposed for recording
data of interest by instrumenting a program at checkpoints
[15, 12]. Our approach also falls into this category of work.
However, these existing techniques focus only on record-
ing data, without considering the replaying problem. We
employ static analyses to compute a set of program points
along the execution path to the checkpoint, and a conserva-
tive subset of program state at each point, so that capturing
this state can ensure the correct replay of the execution.

Capture and replay. Capture and replay is a lightweight
technique that simulates the behaviors of “uninteresting”
components by capturing and replaying the interactions be-
tween them and the component of interest. It is a special
form of the checkpointing/replaying technology, with check-
points being specified at component boundaries. Capture
and replay has been used to debug relevant components by
isolating the interactions between them and the rest of the
system [20, 19]. Our approach is orthogonal to this work,
as we focus on partitioning the execution with respect to
temporal properties (before/after programmer-specified ex-
ecution moments), while [20, 19] considers structural par-
titioning (inside vs. outsize of an interesting component).
Our approach may be more convenient when the structure
of the program does not directly reflect its functional be-
havior. For example, in manual debugging, the programmer
may be interested in separating the correct phases of the ap-
plication from the incorrect ones, and defining checkpoints
based on the temporal boundaries between these phases.
The test refactoring approach from [27] describes a capture-
and-replay technique similar to [20, 19], in which system
tests are converted to unit tests that are more focused and
efficient. The approaches in [20, 27, 19] can be regarded as
action-based, while our technique is state-based [10].

The work closest to ours is the carving-and-replay frame-
work from [10] for generating differential unit tests from sys-
tem tests. This approach considers program states that need
to be saved or loaded before and after calls to a method of
interest, and preserves only a subset of the state by applying
state projections. To achieve quicker replay, the projections
may result in reduced fault detection or unexecutable tests;
these tradeoffs define a general framework for carving and re-
playing. Because checkpointing requires precise replication
of the captured execution, in general we cannot exploit such
tradeoffs, and instead we employ the interprocedural analy-
ses described in Section 3 to reduce the size of the recorded
state. The state recorded in [10] is based on the heap graphs
reachable from the formal parameters of the method of in-
terest; in our approach, objects reachable from locals and
static fields also need to be taken into account. Since we
want to replay the entire program and not just the unit un-
der test, our approach recreates the state of the run-time
call stack that leads to and continues from the checkpoint.

8. CONCLUSIONS AND FUTURE WORK
We propose a context-sensitive checkpointing and replay-

ing technique that works at the language level without OS
or JVM support. Our approach uses static analyses to iden-
tify instrumentation points, determine the partial state that
should be captured/replayed at each instrumentation point,



and generate the checkpointing version and the replaying
version. An initial experimental study indicates that sig-
nificant savings could be achieved for the replaying version,
with small run-time overhead for the capturing version.

Clearly, there is a wide range of open questions for future
work. The analysis of static fields can be improved in terms
of cost and precision. As Table 2 indicates, static fields
from library classes are of particular interest. One possi-
bility is to use precomputed summary information about
the libraries, based on [25]. Additional precision refine-
ments are also worth investigating, as well as the use of
context-sensitive points-to analyses. The run-time support
for object reading and writing can be improved (e.g., by
using non-blocking I/O, memory-mapped buffers, or serial-
ization libraries used in previous work [10]). Finally, ex-
tensive studies on long-running computation- and memory-
intensive applications are needed, in order to investigate
the generality of our initial results. Numerous factors —
such as call chain length, nesting in loops, characteristics
of the state that “flows” through the checkpoint, compo-
nent/functionality/phase boundaries — are obviously of great
importance for the usefulness of the proposed techniques,
and they should be investigated carefully in future studies.
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