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Abstract
Topological spatial data can be useful for the classification

and analysis of biomedical data. Neural networks have

previously been used to make diagnostic classifications of

corneal disease using summary statistics as network inputs.

In this study we propose the use of Zernike polynomials to

model the global shape of the cornea and use polynomial

coefficients as attributes for decision tree classification of

a sample of normal patients and patients with corneal

distortion caused by keratoconus using C4.5. We then

optimize model performance by adding boosting and bagging

as enhancements to model generation. Finally, we compare

these methods of model optimization with feature selection

using principal component analysis. The advantages of

this approach are a classification model based upon surface

features that consider global shape information as well as

more interpretable model output.

1 Problem Specification.
Aberrations of corneal shape that are only a few microns
in size can cause severe visual distortions and defocus
[?]. Since the shape of the cornea is known to have
a great affect on vision, it would be useful to discover
clinically relevant aberrations of corneal shape that are
predictive of disease or visual dysfunction. Clinicians
rely on videokeratography, a procedure that provides a
topographic map of the outer surface of the eye for di-
agnosis and management of diseases affecting the shape
of the cornea [?]. Descriptive statistical summaries were
the earliest attempt to quantify videokeratography data
[?]. More recently, Smolek et al. have used these statis-
tical indices as features for a neural network classifica-
tion of corneal shape [?]. However,this approach ignores
global features that is difficult to interpret clinically.

Corneal surface features measured by clinical
videokeratography have previously been modeled with
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good accuracy using Zernike polynomials [?]. We hy-
pothesized that the resulting polynomial coefficients
would be useful attributes for a decision tree classifica-
tion model of normal and abnormal corneal shape. We
further hypothesized that this approach would be ac-
curate, and that this method could provide a clinically
meaningful description of corneal shape.

Keratoconus is a progressive non-inflammatory
corneal disease know to distort corneal shape, often
leading to corneal transplantation [?]. Since one of the
earliest signs of keratoconus is a distortion of corneal
shape we selected eyes previously diagnosed with this
disease and a control sample of non-diseased eyes to
test our hypotheses.

2 Experimental Design

Videokeratography data is often provided as an eleva-
tion or curvature map of the surface of the cornea rep-
resenting nearly 7000 individual data points.

Several good ordering algorithms (nested dissection
and minimum degree) are available for computing P [3],
[7]. Since our interest here does not focus directly on
the ordering, we assume for convenience that P = I ,
or that A has been preordered to reflect an appropriate
choice of P .

Our purpose here is to examine the nonnumerical
complexity of the sparse elimination algorithm given in
[1]. As was shown there, a general sparse elimination
scheme based on the bordering algorithm requires less
storage for pointers and row/column indices than more
traditional implementations of general sparse elimina-
tion. This is accomplished by exploiting the m-tree, a
particular spanning tree for the graph of the filled-in
matrix.

Theorem 2.1. The method was extended to three di-
mensions. For the standard multigrid coarsening (in
which, for a given grid, the next coarser grid has 1/8 as
many points), anisotropic problems require plane relax-
ation to obtain a good smoothing factor.

Our purpose here is to examine the nonnumerical


