Lecture 3 Part I

SQL: Defining & Basic Querying
SEQUEL Structured English QUEry Language

SQL Structured Query Language
SQL - Parts of the Language

- **Data Definition Language (DDL)**
 - create table
 - create index

- **Data Manipulation Language (DML)**
 - select (retrieve)
 - update
 - insert
 - delete
create table EMP

 (EMPNO integer not null,
 NAME varchar(40) not null,
 DNO integer,
 JOB varchar(20),
 MGR integer,
 SAL decimal(10,2),
 COMMISSION decimal(5,2),
 primary key (EMPNO),
 foreign key (DNO) references DEPT,
 foreign key (MGR) references EMP)

create DOMAIN job_type varchar(20)
DDL continued

create table DEPT
 (DNO integer not null,
 DNAME varchar(20) not null,
 LOC varchar(20),
 primary key (DNO))

Add a new column for the number of employees, called NEMPS, of integer type, to the table DEPT.

 alter table DEPT
 add NEMPS integer

Drop the EMP table.

 drop table EMP
DDL - Indexes

Create an index for location in DEPT.
\texttt{create index XDEPTLOC on DEPT(LOC)}

Create an index for EMPNO, the primary key, in EMP table.
\texttt{create unique index EMP on EMP(EMPNO)}

Drop the department location index.
\texttt{drop index XDEPTLOC}
SQL - Data Manipulation Language (DML)

- select (retrieve)
- update
- insert
- delete
Select - Basic Form

Cartesian product followed by select and project.

\[
\text{select} \quad \text{project-list} \\
\text{from} \quad \text{Cartesian-product-list} \\
\text{where} \quad \text{select-condition(s)}
\]

Abstract example: Given tables \(R(A,B)\) and \(S(B,C)\)

\[
\text{select} \quad R.A, R.B, S.C \\
\text{from} \quad R, S \\
\text{where} \quad R.A > 10
\]

\textit{BUT - Duplicates NOT eliminated}
Select as a JOIN

Cartesian product followed by
select (“join” & “select” conditions) and project.

select project-list
from Cartesian-product-list
where join-condition
and select-condition

Abstract example: Given tables R(A,B) and S(B,C)
select R.A, R.B, S.C
from R, S
where R.B = S.B /* join condition */
and R.A > 10 /* “select” condition */
Using EMP and DEPT
From Relational Algebra to SQL

- List the names, employee numbers, department numbers and locations for all clerks.

```sql
select NAME, EMPNO, E.DNO, LOC
from EMP E, DEPT D
where E.DNO = D.DNO /* join condition */
and JOB = 'Clerk' /* “select” condition */
```

Note use of alias in from clause.
• Duplicates in project - must use explicit **distinct**

List the different department numbers in the EMP table (eliminate duplicates).

```
select distinct DNO
from EMP
```

• Specify sort order

List employee number, name, and salary of employees in department 50.

```
select EMPNO, NAME, SAL
from EMP
where DNO = 50
order by EMPNO
```
• Union

List the numbers of those departments which have an employee named ‘Smith’ or are located in ‘Columbus’.

```
select DNO
from EMP
where ENAME = 'Smith'
union
select DNO
from DEPT
where LOC = 'Columbus'
```

Duplicates ARE eliminated by default.

union all - leaves duplicates
Functions and Groups

• Find the average salary of clerks.

  ```sql
  select avg(SAL)
  from EMP
  where JOB = 'Clerk'
  ```

• How many different jobs are held by employees in department 50?

  ```sql
  select count(distinct JOB)
  from EMP
  where DNO = 50
  ```
Functions and Groups, continued

• List the departments (DNO) and the average salary of each.

```
select DNO, avg(SAL)  
from EMP E, DEPT D  
where E.DNO = D.DNO  
group by DNO
```
Groups (contd.)

• List the departments (DNO, DNAME) in which the average employee salary < $25,000.

 select DNO, DNAME
 from EMP E, DEPT D
 where E.DNO = D.DNO
 group by DNO, DNAME
 having avg(SAL) < 25000

• List departments that employ more than 10 clerks.
 select DNO
 from EMP
 where JOB = 'Clerk'
 group by DNO
 having count(*) >10
Nested Select: No analog in Relational Algebra

• List names of employees in departments 25, 47 and 53.

 select NAME
 from EMP
 where DNO in (25, 47, 53)

• List names of employees who work in departments in Ann Arbor.

 select NAME
 from EMP
 where DNO in (select DNO
 from DEPT
 where LOC = 'Ann Arbor')
Big Summary

• For all departments in Columbus with average salary > $25,000, list the department’s number, name, and average salary ordered by average salary in descending order.

```sql
select DNO, DNAME, avg(SAL)
from EMP, DEPT
where EMP.DNO = DEPT.DNO
and LOC = 'Columbus'
group by DNO, DNAME
having avg(SAL) > 25000
order by 3 desc
```
Lecture 3 Part II

Advanced SQL Operators
 Exists and Not Exists

• List names of employees who work in departments in Ann Arbor.

\[
\text{select NAME}
\text{from EMP}
\text{where exists}
 \left(\text{select * from DEPT}
 \text{where EMP.DNO = DEPT.DNO}
 \text{and LOC = 'Ann Arbor'} \right)
\]
Exists and Not Exists, continued

• List names of employees who do not work in departments in Ann Arbor.

```
select NAME
from EMP
where not exists
  ( select *
    from DEPT
    where EMP.DNO = DEPT.DNO
    and LOC = 'Ann Arbor' )
```
Substrings in Queries

• List those departments whose names start with the letter C.

```
select DNAME
from DEPT
where DNAME like 'C%'
```
Arithmetic in Select Clause. Renaming Attributes.

- Show the result of giving everyone in departments in Columbus a 10% pay raise.

```sql
select EMPNO, NAME, 1.1 * SAL as NEWSAL
from EMP, DEPT
where EMP.DNO = DEPT.DNO
and LOC = 'Columbus'
```
Other Data Manipulation Language (DML) Commands

- **Insert** employee named ‘Jones’ with employee number 535 in department 51. Other attributes are null.

```sql
insert
[into] EMP(EMPNO, NAME, DNO)
values (535, ‘Jones’, 51)
```
• **Add** to the CANDIDATES relation all employees whose commission is greater than half their salary.

CANDIDATES(EMPNO, NAME, DNO, SAL)

```sql
insert [into] CANDIDATES
    select EMPNO, NAME, DNO, SAL
from EMP
where COMM > 0.5 * SAL
```
• **Delete** from EMP the employee with employee number 561.

  ```sql
  delete EMP
  where EMPNO = 561
  ```

• **Delete** from the DEPT table the departments having no employees.

  ```sql
  delete DEPT
  where ( select count(*)
  from EMP
  where DNO = DEPT.DNO ) = 0
  ```
A note on nested queries

delete DEPT
where (select count(*)
 from EMP
 where DNO = DEPT.DNO) = 0

delete DEPT
where DNO not in (select distinct (DNO)
 from EMP)

• 2nd way is more efficient than 1st
• **Update** the EMP table by giving a 10% raise to all those whose employee number appears in the CANDIDATES table.

```sql
update EMP
set SAL = SAL * 1.1
where EMPNO in
    ( select EMPNO
      from CANDIDATES)
```
Null Values

All of the following conditions are always false.

null > 25 null < 25 null = 25 null <> 25
null >= 25 null <= 25 null = null null <> null

However we can use the following:

select NAME
from EMP
where SAL < 35000
or SAL is null
Views

• In SQL
 – A named, derived table (a virtual table).
 – Derived from base tables and/or other views.

• In Three-schema Architecture (pp. 27-29)
 – External View
 • A collection of several tables, some views, other base tables.
• Create a view called D50 containing the employee number, name and job of those employees in department 50.

```sql
create view D50
as
select EMPNO, NAME, JOB
from EMP
where DNO = 50
```
Views: Changing Attribute Names

• Create a view called PROGS consisting of the EMPNO, name and salary of all programmers. Include the locations of their departments.

```sql
create view PROG(EMPNO, NAME, SALARY, HOMEBASE)
as select EMPNO, NAME, SAL, LOC
from EMP, DEPT
where EMP.DNO = DEPT.DNO
and EMP.JOB = 'Programmer'
```
Using and Dropping a View

• Using the PROGS view, find the average salary of programmers in Columbus.

```
select avg(SAL)
from PROGS
where HOMEBASE = 'Columbus'
```

• Drop the view PROGS.

```
don view PROGS
```