Satisfiability: Does an FD hold?

- Satisfiability of FDs
- Given: FD $X \rightarrow Y$ and relation R
- Output: Does R satisfy $X \rightarrow Y$?
- Algorithm:
 - a. Sort R on X
 - b. Do all the tuples with equal X values agree on their Y values?

Original Database

<table>
<thead>
<tr>
<th>St-Name</th>
<th>Status</th>
<th>Course-Name</th>
<th>Course-#</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ben</td>
<td>senior</td>
<td>db</td>
<td>670</td>
<td>500</td>
</tr>
<tr>
<td>Ben</td>
<td>senior</td>
<td>ds</td>
<td>680</td>
<td>500</td>
</tr>
<tr>
<td>Dan</td>
<td>freshman</td>
<td>db</td>
<td>670</td>
<td>400</td>
</tr>
<tr>
<td>Dan</td>
<td>junior</td>
<td>ds</td>
<td>680</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Checking for above functional dependencies

(St-Name, Status) → (Salary)? YES

<table>
<thead>
<tr>
<th>St-Name</th>
<th>Status</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ben</td>
<td>senior</td>
<td>500</td>
</tr>
<tr>
<td>Ben</td>
<td>senior</td>
<td>500</td>
</tr>
</tbody>
</table>

(St-Name, Status) → (Course-#)? NO

<table>
<thead>
<tr>
<th>St-Name</th>
<th>Status</th>
<th>Course-#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ben</td>
<td>senior</td>
<td>670</td>
</tr>
<tr>
<td>Dan</td>
<td>freshman</td>
<td>670</td>
</tr>
<tr>
<td>Dan</td>
<td>junior</td>
<td>680</td>
</tr>
<tr>
<td>Dan</td>
<td>senior</td>
<td>680</td>
</tr>
</tbody>
</table>
Inference of FD’s

• The set of all FDs on R-a brute force algorithm:
 – Find all possible candidate FDs on attributes of R
 – For each candidate apply the satisfiability algorithm
 – Time consuming!
• Alternative: Inference
 – Some FDs may be inferred from other FDs
 – given: {St-Name, Course-#} → Salary
 – implies: {St-Name, Course-, Status} → Salary

• Basically
 • Start from some set F of FDs
 • Derive all possible FDs from F

Based on Rules of Inference

• The set of all FDs derivable from F is called the closure F⁺ of F

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| F | a (St-Name) → Status
| | b. (St-Name, Course-) → Salary
| F⁺ | 1. (St-Name) → St-Name
| | 2. (Course-, Status) → (Course-, Status)
| | 3. (Course-, Status) → Status
| |
| | i. From (a) (St-Name, Course-) → (Status, Course-)
| | |
| | |

Armstrong’s Rules of Inference

• Reflexive (Intuition: superset implies subset (need not be proper))
 – (Name, Sex) → Name
 – (Name, Sex) → (Name, Sex)
• Transitivity
 – X→Y, Y→Z implies X→Z
• Augmentation (augment both sides of the implication)
 – (Name, Sex) → Name implies
 – (Name, Sex, Age) → (Name, Age)
• Rules are sound and complete
 – Produces only FD’s in the closure
 – Produces all FD’s in closure
Augmenting Armstrong’s rules

- Decomposition
 - Numb \(\rightarrow \) \{Name,Age\} implies Numb \(\rightarrow \) Name
- Union
 - \(X \rightarrow Y \) and \(X \rightarrow Z \) implies \(X \rightarrow YZ \)
- *The above augment basic rules but do not add to power*

Given FDs:

1. \(AB \rightarrow E \)
2. \(BE \rightarrow I \)
3. \(E \rightarrow C \)
4. \(CI \rightarrow D \)

Find a derivation for \(AB \rightarrow CD \):

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(AB \rightarrow E)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>(AB \rightarrow AB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>(AB \rightarrow B)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>(AB \rightarrow BB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>(EE \rightarrow I)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>(AB \rightarrow I)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>(E \rightarrow C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>(AB \rightarrow C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>(AB \rightarrow CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>(CI \rightarrow D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>(AB \rightarrow D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>(AB \rightarrow CD)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dis-Prove by Counter Example

Given FDs:

1. \(AB \rightarrow E \)
2. \(BE \rightarrow I \)
3. \(E \rightarrow C \)
4. \(CI \rightarrow D \)

Question Is \(B \rightarrow CD \) in the closure?

No. The above FDs, but not \(B \rightarrow CD \), are satisfied by

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>e1</td>
<td>d1</td>
<td>e1</td>
<td>d1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>e2</td>
<td>d2</td>
<td>e2</td>
<td>d2</td>
<td></td>
</tr>
</tbody>
</table>

Tuples:

- Tuple 1
- Tuple 2
Algorithm: Computing FD closures

- The closure F^+ of F is the set of FD’s inferred from F.
- Algorithm:
 - $F^+ := F$
 - repeat
 - apply Armstrong’s inference rules on F^+
 - $F^+ := F$
 - Until F^+ is not augmented
 - end

Determining closure of X (attributes) under F (set of FD’s)

- Given F:
 - 1. $AB \Rightarrow E$
 - 2. $BE \Rightarrow I$
 - 3. $E \Rightarrow C$
 - 4. $CI \Rightarrow D$
- Derive $\{A, B\}^+$:
 a. $\{A, B, E\}$ (given X)
 b. $\{A, B, E, I\}$ (FD #2 in F)
 c. $\{A, B, E, I, C\}$ (FD #3 in F)
 d. $\{A, B, E, I, C, D\}$ (FD #4 in F)

Requirements on Decompositions

- **Lossless Decomposition**
- Sometimes not possible
 - $A \subseteq B \subseteq C \subseteq D \subseteq E$
 - Given the following fd’s
 - $A \Rightarrow BCDE$
 - $CD \Rightarrow E$
 - $CE \Rightarrow B$
 - 3NF would dictate
 - Either $\{A, B, C, D\}$ & $\{C, D, E\}$
 - Or $\{A, B, C, E\}$ & $\{C, E, B\}$
 - In either case you lose a functional dependency
Dependency Preserving 3NF

- Objective: Introduce a dependency-preserving decomposition algorithm 3NF
- The subset F_X of the closure F^+ which uses only attributes of X is the projection of F on X
- A decomposition of R into $R(X)$ and $R(Y)$ is dependency preserving if $F^+ = (F_X \cup F_Y)^+$
- Trick is to use the minimal cover of F to drive decomposition

Minimal Cover

- F is a minimal set of FDs if each $X \rightarrow Y$ is
 - $F = \{A \rightarrow BE, AB \rightarrow DE, AC \rightarrow G\}$
 - Canonical: $|Y| = 1$ (use decomposition)
 - $A \rightarrow B, A \rightarrow E, AB \rightarrow D, AB \rightarrow E, AC \rightarrow G$
 - Left-reduced: X can’t be replaced by a subset
 - $A \rightarrow B A \rightarrow E, AC \rightarrow G$
 - $A \rightarrow D$ (How?)
 - Non-redundant: $X \rightarrow Y$ can’t be removed

Dependency-Preserving 3NF Decomposition Algorithm

- Find minimal cover
- Put FDs agreeing on the left-hand-side in the same schema
- Have extra schema for unaccounted attributes
- Example
 - $R = \{A, B, C, D, E, G, I, J\}$
 - $A \rightarrow B$
 - $A \rightarrow E$
 - $A \rightarrow D$
 - $AC \rightarrow G$
 - Resulting Schemas
 - $ABDE$ ACG IJ

Note this is not the decomposition you would get using 3NF normalization, but this is in 3NF
Lossless Joins

- A Decomposition is a set of projections of relational schemas
- A natural join should return the original table

\[
\begin{array}{c|c|c}
R & A & B & C \\
\hline
a1 & b1 & c1 \\
a2 & b2 & c2 \\
a3 & b1 & c3 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\pi_{A\delta}(R) & \pi_{B\gamma}(R) & A & B & C \\
\hline
a1 & b1 & c1 \\
a2 & b2 & c2 \\
a3 & b1 & c3 \\
\end{array}
\]

Not Lossless!

\[
\pi_{A\delta}(R) \ast \pi_{B\gamma}(R)
\]

Lossless decomposition

\[
\begin{array}{c|c|c}
R & A & B & C \\
\hline
a1 & b1 & c1 \\
a2 & b2 & c2 \\
a3 & b1 & c3 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\pi_{A\delta}(R) \cap \pi_{B\gamma}(R) = \emptyset \\
\end{array}
\]

R1, R2 is a lossless join decomposition of R iff the attributes common to R1 and R2 contain a key for at least one of the involved relations.
Dependency-Preserving Losses-Join 3NF Decomposition Algorithm

- Find minimal cover
- Put FDs agreeing on the left-hand-side in the same schema
- Have extra schema for a key, if none of the above schemas contain a key
- \(R = \{ A, B, C, D, E, G, I, J \} \)
- \(F = \{ A \rightarrow B, A \rightarrow E, A \rightarrow D, AC \rightarrow G \} \)
- Resulting Schemas:
 - A B E D
 - AC G
 - A C I J

NOTE THIS IS THE DECOMPOSITION YOU WOULD GET USING 3NF NORMALIZATION.

Facts

- Schemas can always employ lossless-join dependency-preserving decompositions to achieve 3NF
- Determining whether a relationship schema satisfies 3NF is NP-complete. Hence, automated normalization is tough.
- Not all violations to BCNF can be resolved through dependency-preserving decompositions
 - MANAGER \(\rightarrow \) PROJECT DEPT
 - \(\{ \text{PROJECT, DEPT} \} \rightarrow \) MANAGER
 - MANAGER \(\rightarrow \) DEPT
- Doesn’t satisfy BCNF but is in 3NF
- BCNF decompositions can’t always preserve dependencies