18.152 - Introduction to PDEs, Fall 2004 Profs. Gigliola Staffilani and Andras Vasy
Partial solutions to problem set 6

Problems from Strauss, Walter A. Partial Differential Equations: An Introduction. New York, NY:
Wiley, March 3, 1992. ISBN: 9780471548683.

Problem 58:1 u; = kugyg, u(x,0) = e ™, (z > 0), and u(0,t) = 0.

The solution is, by (6) on p. 57 of Strauss,
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Problem 58.2 u; = kugy, u(x,0) = 0,u(0,t) =1, (z > 0).
Let w(x,t) = u(x,t) — 1, so w should solve

wy = kwge, w(x,0) = =1, w(0,t) =0, (z > 0).

But this has been essentially solved on Ex. 1 of p. 57; the solution there has 41 initial data so the
solution now is the negative of the solution given there:

w(x,t) = —Erf (\;ﬁ) .

Thus,
x
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Problem 64.1 u; = c*ug,,u(z,0) = ¢(x),u(x,0) = ¥(x),(x > 0), and u,(0,#) = 0. Let
Peven, Yeven De the even extensions of ¢ and 1.

Peven = 90(|'r’) and Yeven = w(‘l’D

Let v(z,t) be the solution of

_ 2
Vit = C"Vpyy

H(x) = v(z,0) = @even(T)
l/t(l’,O) = Q;Z)even(l')

where (z,t) € R x (0, 00).
Since Yeven; Yeven are even, so is the solution v (as a function of x). Indeed, w(x,t) = v(z,t) —
v(—z,t) satisfies

Wit = CQw:BiE; W($, O) = (peven(w) - Soeven(_x) = 0; wt(x, 0) = ¢even(x) - weven(_x) = 0.

But then by uniqueness of solutions ot the homogenous wave equation, w(x,t) = 0 (since the con-
stant 0 is certainly a solution), so v(x,t) = v(—=x,t) for all z, ¢ if v is an even function of x.

But v even in x, so (provided that v is differentiable, i.e. if ¢, are nice):
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so u(z,t) = v(x,t), x > 0,t > c satisfies u(2,0) = Yeven(z) = (), uz(0,t) = v,(0,t) = 0, ie.
solves the Neumann problem.

Explicitly,
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(If > ct, this gives z — ct > 0.)

x+ct
u(et) = 5 Lol + ct) + oo — )] + 50 [ w(s)ds,

DN |

i.e. the expected solution.



If © < ¢ty even (T — ct) = Qeven(ct — x) = @(ct — x), and
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So

ct+x ct—x
u(z,t) = % [o(ct + x) + o(ct — x)] + % /t_ P(s)ds + % /0 P (s)ds.

Graphically, this says that the values of 1) between 0 and ¢t — x also contribute to u(z,t), unlike
what happened in the Dirichlet problem.

(x —ct,0) | (ct—x,0) (x + ct,0)

However, note if we differentiate v (with respect to x or t) only the values of ¥ at ¢t + x will be
relevant, so singularities of o, v still propagate along reflected characteristics!

Problem 64.3 u(z,t) = f(x + ct) for t <0, z > 0, hence this also holds up to ¢ = 0 (assuming u
is continuous), so u(z,0) = f(z).

Also ug(x,t) = ef'(x + ct) for t < 0,2 > 0, so we also have, in the limit, ¢t — 0.

w(z,0) = cf'(z).

Thus u is the solution of the Dirichlet problem.

U = czum x>0
u(z,0) = f(z)
ut(x70) = Cf,(.'L‘)
u(0,t) = 0

ie. p(z) = f(x),¥(z) = cf'(x). We can simply substitute into Eq. (3) on p. 60 to obtain the
solution for 0 < z < ct, and into (2) on p. 59 for x > ct > 0.

That gives for x > ct > 0:

x+ct
u(z,t) = ;[f(x+ct)+f(:n—ct)]+216/_t cf'(s)ds
= é[f(x‘*‘Ct)-i-f(ﬂU—ct)]—l—%[f(m—i—ct)—f(a:—ct)]
= f(z+ct)

When we used the fundamental theorem of calculus. (Not a very surprising result!)



For 0 < z < ct we get

ct+x
u(x,t) = [flct+x)— f(ct —x)] + 1/ cf!(s)ds
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Alternate solution:

T =ct

x — ct =constant

f =constant

Below x = ct the solution must be f(z + ct), since it is of the form u(z,t) = f(x + ct) + g(x — ct)
and for x > 0, <0, u(z,t) = f(z+ct), so g(x—ct = 0. Since x > 0,t < 0 allows = — ct to take any
positive value, g(s) = 0 for s > 0. But that gives g(z—ct) = 0if z > ct, i.e. u(x,t) = f(z+ct) there.

To find g(s) for s < 0, consider u(0,t) = 0 i.e. f(ct)+ g(—ct) = 0. This gives g(s) = —f(—s), so
U(l‘,t) = f(x +Ct) - f(Ct - .T),
in agreement with the previous result.

Problem 64.5

Uy = AUy x>0
u(0,t) = 0
u(z,0) = 1
ug(z,0) = 0.

= ¢(x) =1,z >0, and ¢(z) =0,z > 0.
The solution is

u(z,t) = =[p(z+2t)+ p(x —2t)] x> 2t

DN — DN —

u(z,t) = —[p(x+2t) — (2t — )] 0<z<2t

So
1, > 2t

u(z, ) :{ O7 T <2t
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Thus, the solution is singular (not even continuous) at = = 2t.

1, x>0
-1, =z <0.
tinuous at = 0, so the solution v will be discontinuous on the characteristic lines through z = 0,
i.e. x = £2¢. Of these, only x = 2t lies in the region > 0,¢ > 0; this is what we found above.

This is clear from the details of the reflection method as well: poqq(x) = { is discon-

Problem 64.10

U = ga
u(z,0) = coszx
ut(xz,0) = 0.
ug(0,t) = 0

We thus need to extend the initial data to be even “about z = 07, odd “about x = Z”, and periodic
with period 4 (g — 0) = 27. (Note: period = 27, not 7, since conditions at the two endpoints are
different.) But cosx satisfies these conditions! So the solution on the whole line is

1
viz,t) = i[cos@ + ct) + cos(z — ct)], and so
u(z,t) = v(z,t) = cosxcosct for 0 <z < g,t>0
= cosx cos 3t.



