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MATH 152: THE FOURIER TRANSFORM - TEMPERED
DISTRIBUTIONS

Recall that the support of a continuous function f, denoted by supp f, is the
closure of the set {z : f(z) # 0}. Thus, z ¢ supp f if and only if there exists a
neighborhood U of z such that y € U implies f(y) = 0. Thus, supp f is closed
by definition; so for continuous functions on R™, it is compact if and only if it is
bounded.

The support of a distribution u is defined similarly. One says that = ¢ suppu
if there exists a neighborhood U of z, such that on U, u is given by the zero
function. That is, z ¢ suppu if there exists U as above such that for all ¢ € D
with supp ¢ C U, u(¢) = 0. For example, if u = §, is the delta distribution at a,
then supp u = {a}, since u(¢) = ¢(a), so if = # a, taking U as a neighborhood of =
that is disjoint from a, u(¢) = 0 follows for all ¢ € D with supp¢ C U.

Note that if u is a distribution and suppu is compact, u, which is a priori
amap u : D = C, extends to a map u : C®(R") — C, ie. u(4) is naturally
defined if ¢ is just smooth, and does not have compact support. To see this, let
[ € D be identically one in a neighborhood of suppu, and for ¢ € C*(R"™) define
u(¢) = u(f¢), noting that f¢ € D. If u = uy, is given by integration against
a continuous function g of compact support, this just says that we defined for
¢ € C*(R")

w(@) = [ s@i@oe)ds = | alw)ete)ds,

which is of course the standard definition if ¢ had compact support. Note that
the second equality above holds since we are assuming that f is identically 1 on
supp g, i.e. wherever f is not 1, g necessarily vanishes. We should of course check
that the definition of the extension of u does not depend on the choice of f (which
follows from the above calculation if u is given by a continuous function g). But
this can be checked easily, for if fy is another function in D which is identically one
on supp u, then we need to make sure that u(f¢) = u(fo¢) for all ¢ € C®(R"), i.e.
that u((f — fo)¢) = 0 for all ¢ € C°(R™). But f = fo = 1 on a neighborhood of
supp u, 8o {f — fo)¢ vanishes there, hence u((f — fo)¢) = 0 indeed.
ecall that S = S(R™) is the space of Schwartz functions, i.e. the functions ¢ €
C®(R™) with the property that for any multiindices o, 8 € N*, 2%8°¢ is bounded.
Here we wrote 2* = 2" 23 ... 25", and 8% = 01 ...0%; with 8,, = z2-. (This
notation with a, £, is called the multiindex notation.) Convergence of a sequence
om €S, m €N, tosome ¢ € S, in S is defined as follows. We say that ¢,, converges
to ¢ in S if for all multiindices a, 3, sup |2%8%(¢m — ¢)| — 0 as m — oo, ie. if
z20% ¢, converges to £48%¢ uniformly.
A tempered distribution u is defined as a continuous linear functional on & (this
is written as u € S'), i.e. as a map u : § — C which is linear: u(a¢ + by) =

‘au(@) + bu(e) for all a,b € C, ¢,9 € S, and which is continuous: if ¢,, converges

to ¢ in S then lim,, oo u(dm) = u(4) (this is convergence of complex numbers).
In particular any tempered distribution is a distribution, since ¢ € D implies
¢ € S, and convergence of a sequence in D implies that in S (recall that convergence
1
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of a sequence in D means that the supports stay inside a fixed compact set and
the convergence of all derivatives is uniform). The converse is of course not true;
e.g. any continuous function f on R"™ defines a distribution, but fR" flz)p(z)dz
will not converge for all ¢ € S if f grows too fast at infinity; e.g. f(z) = el*® does
not define a tempered distribution. On the other hand, any continuous function f
satisfying an estimate |f(z)| < C(1 + |z])" for some N and C' defines a tempered
distribution u = uy via

u() =uy () = | flz)(z)dz, HES.

RT\.
This is the reason for the ‘tempered’ terminology: the growth of f is ‘tempered’
at infinity. Moreover, any distribution u of compact support, e.g. d, for o’ € R?, is
tempered. Indeed, 1 € S certainly implies that ¥ € C*®(R"), so u(¢) is defined,
and it is easy to check that this gives a tempered distribution. In particular,
3.(¢) = ¥(a), and it is easy to see that this defines a tempered distribution.
We defined the Fourier transform on S as

FOEQ =60 = [ e o(z)ds,
Rn
and the inverse Fourier transform as
(F)e) = @0 [ =t
Rn
The Fourier transform satisfies the relation
Jsoued = [owi@as  sues.

(Of course, we could have denoted the variable of integration by z on both sides.)
Indeed, explicitly writing out the Fourier transforms,

/ (/ ewfﬂw)dw) W(E) dé = / / e~ g} (€) da dé
= / ¢(z) ( / e (€) df) dz,

where the middle integral converges absolutely (since ¢, 1 decrease rapidly at in-
finity), hence the order of integration can be changed. Of course, this argument
does not really require ¢, € S, it suffices if they decrease fast enough at infinity,
e.g. |¢(z)| < C(1+|z|)~° for some s > n, and similarly for 2.

In the language of distributional pairing this just says that the tempered distrib-
tions ug, resp. ug, defined by ¢, resp. ¢, satisfy

~

ug(¥) =ug(¥), YES.

Motivated by this, we define the Fourier transform of an arbitrary tempered distri-
bution u € §' by

W) =uly), YeS.
It is easy to check that 4 is indeed a tempered distribution, and as observed above,
this definition is consistent with the original one if u is a tempered distribution
given by a Schwartz function ¢ (or one with enough decay at infinity). It is also
easy to see that the Fourier transform, when thus extended to a map ¥ : 8’ — &',
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still has the standard properties, e.g. F(Dg;u) = & Fu. Indeed, by definition, for
ally € S,

(F(Da;u)) () = (De;u)(F) = —u(Dy; Fop) = w(F(§9)) = (Fu)(§9) = (§Fu)(¥),
finishing the proof.

The inverse Fourier transform of a tempered distribution is defined analogously,
and it satisfles F7'F = Id = FF ! on tempered distributions as well.

As an example, we find the Fourier transform of the distribution v = u; given
by the constant function 1. Namely, for all ¢ € S,

i(y) = u) = | Ple)de = (@m)"FH()(0) = (2m)"Y(0) = (2m)"do(y).

Here the first equality is from the definition of the Fourier transform of a tempered
distribution, the second from the definition of u, the third by realizing that the
integral of any function ¢ (in this case ¢ = 1)) is just (2m)™ times its inverse
Fourier transform evaluated at the origin (directly from the definition of 7! as
an integral), the fourth from F~1F = Id on Schwartz functions, and the last from
the definition of the delta distribution. Thus, Fu = (27)"8p, which is often written
as F1 = (2m)"dp. Similarly, the Fourier transform of the tempered distribution u
given by the function f(z) = e*%, where a € R" is a fixed constant, is given by
(27)™4, since :

P

UyY) = u(y) = /n e () dz = (20)"F 7} (§)(a) = (2m)"¢(a) = (2m)"6a (%),

while its inverse Fourier transform is given by §_, since

Flu(y) = w(F 1Y) = / eV FlY(z) dz = F(F 7 P)(~a) = ¢(~a) = d_a(¥).

n

We can also perform analogous calculations on &, b € R™:

Fos() = 65(F) = (F) () = / e~ Vp(z) de,

i.e. the Fourier transform of §;, is the tempered distribution given by the function
f(z) = e™™®b With b = —a, the previous calculations confirm what we knew
anyway namely that FF ! f = f (for this particular f).

Note that the Fourier transform of a compactly supported distribution can be
calculated directly. Indeed, g¢(z) = e~*¢ is a C* function (of z), and compactly
supported distributions can be evaluated on these. Thus, we can define Fu as the
tempered distribution given by the function { — u(ge). For example, if u = &,
then Fu is given by the function 8;(ge) = g¢(b) = €% in accordance with our
previous calculation. Of course, if u is given by a continuous function f of compact
support, then u(ge) = [ f(z)ge(z) dz = [e ™€ f(z)dz = (Ff)(€) — indeed, this
motivated the definition of Fu. This definition is also consistent with the general
one for tempered distributions, as we have seen on the particular example of delta
distributions. The fact that for compactly supported distributions u, Fu is given
by & — u(ge) shows directly that for such u, Fu is given by a C* function: u(ge) =
u(e™®¢), and differentiating this with respect to ¢ simply differentiates ge, i.e.
simply gives another exponential (times a linear function), which is still C*.




MATH 152: THE FOURIER TRANSFORM - THE INVERSION
FORMULA

Recall that S = S(R™) is the space of Schwartz functions, i.e. the functions ¢ €
C>®(R™) with the property that for any multiindices o, 8 € N*, £®87¢ is bounded.
Here we wrote 2* = 21" 25* ...z, and 8 = 9f1...8f; with 8;, = 52-. (This
notation with «a, §, is called the multiindex notation.)

We defined the Fourier transform on S as

) FO© =0 = [ e o) as,

and the inverse Fourier transform as

2 F@ =0 [ e

We showed by integration by parts that F, 7! satisfy

(3) FDa;¢ =€ F¢, —De,F¢ = F(zj$), Dy; =i7'9;
with similar formulae for the inverse Fourier transform:

(4) FDgp = —2;Fyp, Do, Flep = FHE).

We used this to show that F : § — S and similarly for F~!; indeed, if ¢ € S,
then 2%0%¢ is bounded for all multiindices o, 8. But the Fourier transform of this
a constant multiple of §*¢%¢. But we in fact have that (1 + |z|2)("+1/2z2504 is
also bounded (the first factor in effect simply increases o), so |2%8%¢| < C(1 +
|z|2)~("+1)/2 for some C' > 0. Thus,

0666 = | | e @0 0)(e) o

< [ e @0t n@lde s [ O+ jaP) 2 = M < 4o,
n Rn

s0 sup |0%6Pd| < M, i.e. 8°€P¢ is bounded indeed. Although the derivatives and
the multiplications are in the opposite order as in the definition of S, using Leibniz’
rule (i.e. the product rule) for differentiation, we get other terms of the same form,

so we conclude that qAS € S indeed. The proof for the inverse Foruier transform is
of course very similar.

We also calculated the Fourier transform of the Gaussian ¢(z) = e~olol® o> 0,
on R* (note that ¢ € S!) by writing it as

b(€) = (/R ot dml) (/R e~ dmn> )

hence reducing it to one-dimensional integrals which can be calculated by a change
of variable and shift of contours. We can also proceed as follows. Write z for the
one-dimensional variable, £ for its Fourier transform variable for simplicity, and

Y(z) = e,
"tlb\(é-) = / e—imﬁe—a.’bz dm — 6—52/4!1/ e—a(m+i£/(2a))2 d!E,
R R
where we simply completed the square. We wish to show that

R

1
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is a constant, i.e. is independent of ¢, and in fact it is equal to /7 /a. But that is
casy: differentiating f, we obtain f'(¢) = —i fo(z +i€/(2a))e~2(=+i6/(20))* 4z The
integrand is the derivative of (~1/(2a))e~*(®+#&/(22))* with respect to z, so by the
fundamental theorem of calculus, f'() = (i/(2a))e~(=+i€/2a)* |+ -0 due to
the rapid decay of the Gaussian at infinity. This says that f is a constant, so for all
£ O =Ff0)= fR e=%*" dg which can be evaluated by the usual polar coordinate
trick, giving /7 /a. Returning to R™, the final result is thus that
B(E) = (m/a)™/ e8I Vb,

which is hence another Gaussian. A similar calculation shows that for such Gaus-
sians F~1¢ = ¢, i.e. for such Gaussians T = F~1F is the identity map.

Now we can show that 7" is the identity map on all Schwartz functions using the
following lemma.

Lemma 0.1. Suppose T : S — S is linear, and commutes with z; and Dy,. Then
T is a scalar multiple of the identity map, i.e. there exists ¢ € C such that Tf = cf
forall f €8S.

Proof. Let y € R*. We show first that if ¢(y) = 0 and ¢ € S then (T¢)(y) =0
Indeed, we can write, essentially by Taylor’s theorem, ¢(z) = Z:’;Zl(mj —y;)0;(z),
with ¢; € S for all j. In one dimension this is just a statement that if ¢ is Schwartz
and ¢(y) = 0, then ¢1(z) = ¢(z)/(z - y) = (¢(z) — ¢(y))/(z — y) is Schwartz:
smoothness near y follows from Taylor’s theorem, while the rapid decay with all
derivatives from ¢, (z) = ¢{z)/(z — y). For the multi-dimensional version, one can
take ¢;(z) = (z; — y;)¢(z)/|z — y|? for |z — y| > 2, say, suitably modified inside
this ball. Thus,

T¢= Z i — ¥ (To5),

where we used that T is linear and commutes with multiplication by x; for all j.
Substituting in z = y yields (T'¢)(y) = 0 indeed.

Thus, fix y € R*, and some g € S such that g(y) = 1. Let c(y) = (Tg){y). We
claim that for f € S, (Tf)(y) = c(y)f(y). Indeed, let ¢(z) = f(z) — f(y)g(=),
50 6(y) = f(y) ~ fW)9(y) = 0. Thus, 0 = (TA)(y) = (TH)(w) - FW)Te)y) =
(T f){y) — c(y) f(y), proving our claim.

‘We have thus shown that there exists ¢ : R* — C such that for all f € S, y € R?,
(THy) = cy)fly), i.e. Tf = cf. Taking f € S such that f never vanishes, e.g. a

Gaussian as above, shows that ¢ =T f/f is C*, since T'f and f are such.
We have not used that T' commutes with D, so far. But

() (Da; F)(y) = T(De; £)(Y) = Doy (T Na=y = De; (c(2) f(2))|a=y
= (Da;¢)(y) f(y) + c(v) (Do, ) (w)-
Comparing the two sides, and taking f such that f never vanishes, yields (Dg,c)(y) =

0 for all y and for all j. Since all partial derivatives of ¢ vanish, ¢ is a constant,
proving the. lemma. a

The actual value of ¢ can be calculated by applying T' to a single Schwartz
function, e.g. a Gaussian, and then the explicit calculation from above shows that
c=1,s0 F71F = Id indeed.





