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Papers we will be covering today:
 “Shear buckling and dynamic bending in cloth 

simulation” (CASA 2008) by Chuan Zhou, 
Xiaogang Jin, and Charlie C. L. Wang from 
Zhejiang University, Hangzhou, China

 “Simulating Knitted Cloth at the Yarn Level” 
(SIGGRAPH 2008) by Jonathan M. Kaldor, 
Doug L. James, Steve Marschner, Cornell 
University



  

Why simulate at a yarn level?
 Most cloth simulations deal in an elastic sheet 

model
 This yields results which behave similar to 

leather rather than a woven or knit material
 The yarn-yarn interactions on the micro level 

are key to getting accurate results on the macro 
level



  

Knit vs. woven materials
 Knits
 Non-linear 3-D 

looping structure
 Consists only of one 

continuous yarn
 Highly stretchable

 Weaves
 Linear weft and warp 

structure
 Consists of hundreds 

of yarns
 Stress causes 

buckling rather than 
stretching



  

Shear buckling and dynamic 
bending in cloth simulation

 Structural bending is caused by compressive in-
plane deformation

 Shear buckling occurs when the woven material 
has been stretched to the point where it resists 
further shearing of the fibers

 Weaves are anisotropic, meaning they have 
different characteristics during stretching, 
shearing, and bending



  

The Contribution
 They have developed a new physical model 

considering the micro-interweaved structure in 
woven fabrics with more accurate shear 
buckling model

 They decouple the buckling deformation into 
shearing and structural bucklings

 A new dynamic bending model is derived from 
the thin-shell theory



  

Shear Buckling on Woven Structure
 Shearing stress is 

related to angle 
variation between 
yarns rather than 
length variation

 Elastic sheet models 
with simple mass-
spring systems can 
only handle length 
variations



  

Weft and Warp gaps
 The hole between 

weft and warp is filled 
by shearing

 Resistance to further 
weft/warp rotation 
under greater stress 
is what causes the 
shear buckling



  

Resistance to compression
 In diagonal stretching 

the compression 
forces between yarns 
are perpendicular to 
the external load 
force

 In diagonal 
compression, the 
internal forces are 
opposite the external



  

Relation between diagonal forces
 α represents the resistance to diagonal 

extension 
 β represents the resistance to diagonal 

compression

 In most cases the stiffness of shearing springs 
should be much larger than the values of other 
springs in the system



  

Dynamic Bending Method
 Linear beam theory model

 In the dynamic model, kb changes depending 
on the current shape



  

Simplified model with dynamic 
stiffness

 Bending force:

 Where

 From 



  

Implementation on a Particle 
System

 Shearing springs are only reacted when they 
are under compression

 Very large stiffness coefficients will be assigned 
to those compressed shearing springs



  

Results
 Two shearing tests:
 One with diagonal 

shear load at a 45 
degree angle from 
weft and warp

 One with simple 
stretching along the 
direction of the yarn



  

Results
 Their model provides 

a realistic shear 
buckling result which 
is visually similar to 
real woven materials



  

Simulating Knitted Cloth
 at the Yarn Level

 Few works have 
focused on knit 
simulation

 Knits behave very 
differently from elastic 
sheet models and 
even from woven 
fabrics



  

Multiphasic deformations
 There are layers to 

the deformation of 
knits materials

 Unrolling of the sheet
 Deformation of woven 

or knit structure
 Additional load 

causes the yarns 
themselves to stretch



  

Knit and Purl loops
 The yarn is organized 

in loops along 
horizontal rows

 “Knit” stitches come 
up through the 
previous loop

 “Purl” stitches come 
down through the 
previous loop



  

Types of knits
 Stockinette – all “knit” 

stitches
 Garter – alternating 

“knit” and “purl” 
stitches

 2-2 rib – two rows of 
“knits” followed by 
two rows of “purls”



  

The Yarn-Level Cloth Model
 Yarns are modeled as one continuous open 

cubic b-spline of radius r
 Indices i, j range over spline segments while k, l 

range over the control points
 Equation of curve position:
 And velocity:



  

Yarn constraints

• Mass:



  

Intra-Yarn Properties
 A bending energy function which is quadratic in 

nature

 Inextensibility where the total curve length is a 
hard constraint but mass can move around



  

Yarn-Yarn Collisions
 Yarn collision forces are handled with an 

energy term:

 Where f(d) is defined as 



  

Damping and Friction
 Mass-proportional damping:

 Contact damping:

 Non-rigid motion damping (fuzz):



  

Additional Constraints
 Gluing the end of the yarn:

 Contact with objects of implicit surfaces:

 With distance fields (plane) they employ a 
velocity filter along with the appropriate 
frictional impulse



  

Integrating Yarn Dynamics
 Use an implicit-explicit integration method
 The bottleneck for the integration is usually in 

the collision detection, so they use spatial 
culling

 Static bounding spheres limit the collision 
checking to close neighbors

 AABB tree traversal and contact force 
evaluation is highly parallelizable



  

Initial Yarn Configuration

• Input: a knit pattern, spline segments (k per stitch), a 
set of curves to describe the various kinds of stitches

• Goal: to obtain a properly interconnected 
configuration which can be relaxed to a rest state



  

Results
 Code written in Java and run on machines with 

4-core Intel Xeon processors at 2.66 GHz
 Rendering time ranged from 4 to 15 mpf
 The model handles constant low-stiffness 

contact and transient stiff contact between two 
colliding yarns, but is not as stable in handling 
constant high-stiffness contact

 Realistic results can be a basis for future 
approximation models
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