
A Powell Optimization Approach for Example-Based
Skinning in a Production Animation Environment

Xiao Xian ∗

Nanyang Technological University
John P. Lewis

Graphic Primitives

Seah Hock Soon
Nanyang Technological University

Nickson Fong
EggStoryCP

Tian Feng
Nanyang Technological University

Abstract
We propose a layered framework for incorporat-
ing example-based skinning algorithms such as
Pose Space Deformation or Shape-by-Example
into an existing character animation system.
The challenge in implementing example-based
skinning in an existing system lies in the fact
that it is generally believed that the interpola-
tion of the examples is best performed before
doing other skinning deformations (although
there has been no analysis as to why this is
the case), whereas the examples are specified
by the user after the other deformations are
performed. It is therefore necessary to invert
the operation of these skinning and deformation
operators. Existing systems typically allow
layering of both basic skinning methods such
as Skeleton Subspace Deformation (SSD)
and other deformations such as lattices, etc.,
and commercial systems may further allow
additional proprietary deformation algorithms
as part of the character skinning. Unfortunately,
understanding and accessing their various
parameters can be laborious at best, and we do
not have access to the algorithms in the case of
commercial packages. The contributions of this
paper are 1) a detailed analysis showing how
inverting the skinning operations leads to better
example interpolation, and 2) a demonstration

∗xiao0003@ntu.edu.sg

that the black-box inverse can be accomplished
in practice using Powell optimization, resulting
in an improved example-based skinning capa-
bility for existing large animation systems.

Keywords: skinning, Powell optimization,
computer animation

1 Introduction

With the help of modelling tools or capture
devices, complicated 3D character models are
widely used in fields of entertainment, virtual
reality, medicine etc. The range of breathtak-
ing realistic 3D models is only limited by the
creativity of artists and resolution of devices.
Driving 3D models in a natural and believ-
able manner is not trivial, especially when the
model is very detailed and playback of anima-
tion becomes quite heavy and time consuming.
Each time when a frame goes wrong, a produc-
tion cannot afford major revisions such as re-
sculpting models or re-rigging skeletons. There-
fore, providing a flexible and efficient solution
to animation remains an open problem.
Articulated character animation is a process

of deforming the skin surface by manipulating
influencing objects such as skeletons, IK, wire
frames and Nurbs curves etc. Skeleton Subspace
Deformation (SSD) is the predominant approach

1



to character skinning at present. A nice review
of SSD is given in [1]. SSD is widely used in
games, virtual reality and other realtime applica-
tions due to its ease of implementation and low
cost of computing. It provides the relation be-
tween characters and their underlying skeletons.
Normally this relation is defined in the rest pose,
and determines how characters move according
to their skeletons thereafter. Sometimes, artists
will edit the geometry of characters in the rest
pose to fine-tune animations. This approach is
not commonly applied, however, since editing in
the rest pose will influence most other poses. On
the other hand SSD is also notorious for artifacts
at rotating elbows and extreme poses. For those
applications that require visual fidelity, such as
movies, SSD serves only as a basic framework,
on which lots of more complicated deformation
approaches are built as a compensation.
Example based skinning methods such as

Pose Space Deformation (PSD) are candidates
for correcting SSD limitations. Example geo-
metric models paired with underlying skeletons
in different poses are provided by artists with
carefully sculpting and posing. PSD smoothly
interpolates these meshes in pose space and pro-
duces visually attractive animations. However,
although PSD may be used as a compensation
to the underlying SSD, and the animator speci-
fies the PSD examples after the SSD has been
performed, it is generally believed that the ex-
amples are best interpolated in the rest pose, be-
fore the SSD has been applied. Therefore the
action of the SSD and any other deformations
must be “inverted” in order to push the example
compensation before these operations. Besides
SSD, other skinning approaches such as rigid
skinning, Free Form Deformation etc. can also
be applied. Our goal is to incorporate example-
based skinning into a system having a variety of
other skinning and deformation operations, and
to be able to invert these operations regardless
of their nature.
Since SSD is the most representative in the

family of basic skinning, we will discuss how
it performs in the inverse operation of PSD
scheme. For a simplified condition where only
one joint rotation and two example poses are
considered, we demonstrate this inverse strategy
has a better performance than the same frame-
work without it.

The rest of this paper is organized as fol-
lows. After a review of related work, we will
study details of SSD and PSD respectively in
the third section. Then discussion of the inverse
operation is presented in the fourth section in-
cluding its implementation and reasons why this
approach will improve the quality of deforma-
tion. In the fifth section, we propose a uni-
fied skinning framework by applying minimiza-
tion theory with respect to other basic skinning
schemes. Conclusion and some discussions of
future work are presented in the last section.

2 Related Work

Besides the geometric solutions mentioned in
the previous section, physical modelling and an-
imation is another field providing realistic char-
acter simulations. Given physical principles,
this category can generate more believable an-
imation effects compared to its geometric coun-
terpart. But they are seldom applied to inter-
active applications because of the high cost of
computing and complicated algorithms. This
paper is mainly dedicated to geometric solu-
tions.
Pose Space Deformation [1] combines shape

blending and Skeleton Subspace Deformation
by formulating a scattered data interpolation
problem over sculpted (or otherwise obtained)
example poses. Character geometries in prob-
lematic poses will be re-sculpted by anima-
tors and then resulting displacement (referred
as delta values in this paper) from the origi-
nal geometries will be stored as “scattered data”
for interpolation phase. The interpolation is
performed in the pose space which consists of
skeleton joints, or other potentially abstract con-
trollers. Their values such as rotation degrees
can be chosen as coordinates of the abstract
pose space. After a model is posed and re-
sculpted in different example poses, a multidi-
mensional linear system is built by implement-
ing an interpolation scheme using Radial Basis
Functions (RBF), and the output of this system
is the weights of each example pose. The final
animation can be synthesized by linearly blend-
ing RBF functions with the solved weights.
Related research efforts have improved the

speed and power of example-based skinning. [2]

2



incorporate linear elements into RBF to produce
constant changes between examples. [3] pre-
compute principal components of the deforma-
tion influences for individual kinematic joints
instead of storing displacements for key poses,
thereby enabling realtime rendering large non-
linear finite element models of human hands.
[4] introduce weighted pose space deformation
for deforming realistic models of human hand.
The latest work [5] identifies statistically rele-
vant bones and approximates bone transforms
from example mesh animations.
Using established terminology from statisti-

cal modeling, these example-based approaches
can be considered as non-parametric skin de-
formation methods. The data needed for these
methods grows with the number of examples,
but arbitrary deformations can be approximated
as a result. Simpler parametric skinning ap-
proaches (of which SSD is the prototype) have
a fixed number of parameters; these have also
seen some development in recent years [6], [7].
Skinning using free form lattices [8], [9] or

NURBS curves [10] instead of skeletons to drive
character surface are also common practices in
the entertainment production. Our framework
implements existing PSD theory and the distinc-
tion is that we insert an optimization module
into the PSD pipeline by applying a unified in-
verse approach assuming the knowledge of basic
skinning is unavailable.

2.1 Our Contribution

We provide detailed reasons why and how the
inverse operation can improve the results. For a
simplified case, we show that the direction of de-
formed vertices from inverse skinning is a linear
function of joint rotation, while in the forward
approach, that direction is kept as a constant.
This demonstration provides for the first time a
clear theoretical reason why inverse operation is
required.
We formulate editing geometry in rest pose

as an optimization problem and propose a uni-
fied framework which can be implemented on
high-end commercial packages while allowing
any proprietary skinning operators to be incor-
porated.

3 Skeleton Sub-Space
Deformation

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

(a). (b).

Figure 1: (a). Skeleton Subspace Deformation; (b). Ra-
dial Basis Interpolation

Skeleton Subspace Deformation (SSD) is a
basic algorithm that is used to define how the
character surface deforms following movements
of its underlying skeletons. The main idea is in-
troduced by [11], and is also known as soft skin-
ning, linear blending or Single Weight Envelop-
ing (SWE). Due to its simplicity and efficiency,
SSD is widely applied to interactive applications
such as games and virtual reality, and it is im-
plemented in most commercial animation pack-
ages.
A skeleton should be rigged to a character sur-

face beforehand, roughly based on the anatomy
of the character and kinetic rules. The pose
in which the skeleton is rigged normally is re-
ferred to as the rest pose. The basic relation-
ship between surfaces and skeletons is defined
at the rest pose, and all motions of the char-
acter will be influenced thereafter. If SSD is
adopted to define this relation, each vertex or
control point of the character surface is provided
with a list of joints, that will influence it, along
with the weight indicating the amount of influ-
ence. When the character is animated, the posi-
tion of a vertex in the animated pose is the result
of weighted linear blending of its transformation
by each associated joint. We formulate SSD as:

vp = SSDp(vr) =
M

∑
k=1

ωkTpkvr (1)

For a vertex in rest pose vr, its transformed po-
sition in pose p is vp. Tpk means the kth joint’s
transformation from rest pose to pose p. Read-
ers can find details on how to compute Tpk in [1].
ωk is the corresponding weight. This weight is
usually a function of distance between vr and its
associated joints, and is defined when we apply
SSD to the rigged character. Figure 1 (a). is a

3



simple illustration of SSD with only two joint
frames. Rectangles represent animated sections
in each of two frames and the curve shows the
blended result of both frames. Since vertex
transformations can be easily implemented in
the graphic card, SSD is very popular in circum-
stances that require animating a number of char-
acters in real time. Some opportunities for con-
trol are provided to the animators. When a char-
acter goes wrong in some pose, animators can
adjust joint influence weights. But the domain
of adjusting one vertex in this way is strictly lim-
ited to the linear subspace formed by the vertex
as transformed by joints influencing this vertex.

3.1 Pose Space Deformation

The famous SSD problem of “collapsed elbow”
is recognized in [1] as being due to the fact that
deforming is limited to a linear subspace. Be-
cause of this limitation SSD cannot synthesize
many parts of a character skin involving compli-
cated joint structures. Built on the SSD scheme,
the Pose Space Deformation (PSD) is proposed
by [1] as a combination of SSD and shape blend-
ing providing nice solution to above mentioned
problems.
PSD can be performed in the following steps:

• example pose setup: move the character to
problematic poses, sculpt and store pose in-
formation (joint configuration x) including
the amount of movement of each sculpted
vertex (delta values d).

• In the inverse PSD approach in this paper,
we transform example models (d) to the
rest pose (dr): This step is trivial if the ba-
sic skinning, say SSD, is explicit. In our
proposed framework, this step will be re-
placed by an optimization routine.

• solving a linear system: we setup an inter-
polation scheme for delta Φ(x)ω = d and
solve it to obtain weights ω for all example
poses.

• realtime synthesis: for an intermediate
pose, we obtain the delta in the rest pose
by interpolating example poses at runtime.
We add this delta to the original character
surface and then let SSD or any other skin-
ning scheme finish the final transformation.

For a vertex v, if sculpted in N example poses,
then there are N delta di, i = 0, . . . ,N− 1 corre-
sponding to each pose xi, i= 0, . . . ,N−1. These
are converted to rest pose displacements using
dri = SSD−1(di). We adopt Gaussian Radial Ba-
sis functions to interpolate dri . First a N ∗ N
matrix Φ is built with the (i, j)th element as
φ(‖ xi− x j ‖), where ‖ xi− x j ‖ means the Eu-
clidean distance between pose xi and pose x j,
then we have a linear system:

W = Φ−1Dr (2)

Here W and Dr are column vectors with ith
element ωi and dri respectively. In the synthesis
phase, for an intermediate pose x, we can obtain
the delta d for this vertex by:

d =
N−1

∑
i=0

ωiφ(‖ xi− x ‖) (3)

For the Gaussian function φ(x) = e−
x2
σ2 , σ is

used to control the “fall-off”. In Figure 1 (b).,
we use Gaussian Radial Basis functions to inter-
polate 3 points. The blue and green curve rep-
resent σ = 1.0 and σ = 2.0 respectively. Other
basis functions also can be candidates.
Although PSD and improved example-based

schemes have been discussed in many publi-
cations [2], [3], [4], the reason why the in-
verse should be performed is still ambiguous. In
the next section we will analyze this issue and
demonstrate why inverting the SSD (and other
deformations) in order to interpolate the exam-
ples in the rest pose is a the right choice.

4 Inverse Operation

This section will describe the implementation of
our inverse algorithm and why it is an improve-
ment. We still study SSD as the underlying skin-
ning, since an explicit form of basic skinning
can help to simplify our task of explanation. We
call the PSD scheme without the inverse opera-
tion as “forward PSD”, and comparison to it will
be used to demonstrate the superiority of the in-
verse method.

4.1 Implementation
In this sub-section, we will explain how inverse
PSD works. For N examples, a vertex v is
first transformed from rest pose by SSD to po-
sitions vi, i = 0, . . . ,N−1, then animators move

4



it to example positions to obtain delta values
di, i = 0, . . . ,N − 1. The final positions of v in
example poses are vi + di, i = 0, . . . ,N− 1, and
we call them target positions vti . We summarize
above operations as:

vti = vi+di = SSDi(vr)+di (4)

where vr means the rest position of v and
SSDi(∗) represents the equation 1. The “forward
PSD” approach then concludes by interpolating
di as a function of pose.
In the inverse approach we instead apply the

inverse of SSDi(∗) to vti to obtain a modified rest
pose vertex vri . The difference of vri and vr pro-
duces new delta value dri , which will be the in-
put of linear system (equation 2) introduced in
the previous section.

dri = SSD−1
i (vti )− vr (5)

In this step we need implement the inverse skin-
ning operator SSD−1. Since SSD is a 3D trans-
formation, SSD−1 simply is the inverse transfor-
mation matrix generated by SSD. For the situa-
tion where other unknown skinning operations
are adopted, we propose a unified framework
which will be discussed in the following section.
Next we build a new delta vector Dr with ith el-
ement as dri , and replace D in equation 2 with
dri to get a new weight vectorWr.

Wr = Φ−1Dr (6)

In the synthesis phase, for an intermediate pose
x we have:

drx =
N−1
∑
i=0

ωri φ(‖ xi− x ‖) (7)

then we add this drx to vr and let SSD finish the
rest of the job:

vx = SSDx(vr+drx) (8)

vx represents the final position of vertex v in
pose x.

4.2 Deformation Direction Analysis

In this section we will analyze and compare the
deforming effects of both forward PSD and in-
verse PSD, explaining why the inverse method
is superior..
Given two examples as shown in Figure 2 (a)

and (b) respectively, vertex vwith the position vr
in the rest pose ( 0 degrees ) is sculpted to a “tar-
get position” vti in an example pose (90 degrees).
The delta value in the first pose is zero. Then

Figure 2: (a). rest pose; (b). example pose with rotation
of 90 degrees

Figure 3: deformation direction

we apply forward and inverse PSD respectively
to interpolate these two poses. For an interme-
diate pose x, we have two distinct deforming
vertices resulting from two algorithms, as illus-
trated in Figure 3, vxssd ,v

x
p,vxIp are the deformed

positions from SSD, forward and inverse PSD
in an intermediate pose x. We use two angles
αp and αI p to analyze how directions of a de-
formed vertex change with the pose. In the for-
ward case, αp is formed by the vector (vxssd ,v

x
p)

and the line y= Yvxssd , where Yvxssd is the y coordi-
nate of vxssd . For two examples shown in Figure
2 (a) and (b), we have delta values d1 = [d1x,d1y]
and d2 = [d2x,d2y]. For equation 2:∣∣∣∣

ω1x ω1y
ω2x ω2y

∣∣∣∣ =
∣∣∣∣

φ11 φ12
φ21 φ22

∣∣∣∣
−1 ∣∣∣∣

d1x d1y
d2x d2y

∣∣∣∣

Because in the rest pose, we didn’t generate
any movement for v , then d1= [d1x,d1y] = [0,0].
Taking the model in rest pose as an example is
a common practice when applying shape inter-
polation, since interpolating effects from other
examples should not change the original model
in rest pose. Therefore, by solving above equa-
tion we have:

ω1x = φ−1
11 d1x+φ−1

12 d2x = φ−1
12 d2x

ω2x = φ−1
21 d1x+φ−1

22 d2x = φ−1
22 d2x = d2x

5



ω1y = φ−1
11 d1y+φ−1

12 d2y = φ−1
12 d2y

ω2y = φ−1
21 d1y+φ−1

22 d2y = φ−1
22 d2y = d2y

where φ−1
i j is the (i, j)th element of Φ−1, and

if i = j, φ−1
i j = 1. Then in an intermediate pose

x for αp, we have tanαp = dy
dx . dy and dx are

delta values in x,y coordinates computed from
equation 3. With the above weight values, we
have:

tanαp =
dy
dx

=
ω1yφ(x− x1)+ω2yφ(x− x2)
ω1xφ(x− x1)+ω2xφ(x− x2)

=
φ−1
12 d2yφ(x− x1)+d2yφ(x− x2)

φ−1
12 d2xφ(x− x1)+d2xφ(x− x2)

=
d2y
d2x

We can see this angle αp is a constant and
depends only on the value of delta in the sec-
ond pose d2 = [d2x,d2y]. Then we take a look
at αI p in the inverse case. We transform two
examples to rest pose to obtain delta values:
dr1 = [d ′

1x,d
′
1y] = [0,0] and dr2 = [d ′

2x,d
′
2y]. Since

only the second joint is rotating, we simplify
SSD as a rotation transformation ignoring other
issues such as accumulating effects from the first
joint:

SSDθ =




cosθ sinθ 0
−sinθ cosθ 0
0 0 1



 .

where θ is the rotation angle of the second joint.
Then for the vertex vr = [v0x,v0y], SSDθ (vr)
transforms v from rest pose to [vSSDx ,vSSDy ] =
[v0x cosθ − v0y sinθ ,v0x sinθ + v0y cosθ ]. In an
intermediate pose x, we have its correspond-
ing rest position as vrx = [v0x + d ′

x,v0y + d ′
y], and

here the [d ′
x,d

′
y] are interpolated result comput-

ing from equation 3. We just apply the sim-
plified SSD to vrx to obtain vxIp: vInpx = (v0x +
d ′
x)cosθ − (v0y + d ′

y)sinθ and vInpy = (v0x +
d ′
x)sinθ + (v0y + d ′

y)cosθ . Similarly, we com-
pute the tangent of αI p:

tanαI p = −
vInpy − vSSDy

vInpx − vSSDx

= −
d ′
x sinθ +d ′

y cosθ
d ′
x cosθ −d ′

y sinθ
= − tan(β +θ)

where tanβ = d′y
d′x

= d′2y
d′2x
. Then we can see αI p =

−(θ + β ), which is linearly proportional to the
pose rotation θ .
And now we take a look at a real cylinder

model with one vertex sculpted in the second
pose, shown in the Figure 4. Forward PSD
and the corresponding inverse PSD in the same

poses (30, 45 and 60 degree of one rotated joint
) are illustrated respectively in Figure 5. We
can see that in forward case, the direction of de-
formed vertex always keeps the same with the
example cylinder (figure 4). For inverse PSD
however, that direction is changed along with
the rotation of the joint. The case described
above is quite common in practice when ani-
mating shoulder, elbow, knee, hip-bone, neck,
etc. All these parts would rotate from the rest
pose with some angle to other poses. On the
other hand, as a matter of experience, PSD is
supposed to be a method as “local” correction,
which means pose space should not be extended
to a whole space that has to incorporate all influ-
enced objects. Otherwise, large amount of un-
necessary works of building examples will be re-
quired, and the distance between different poses
is also meaningless. For example how to mea-
sure the distance between differing poses such
as “lying down” and “pitching”?

Figure 4: A simple test case: two example poses with one
vertex sculpted

5 A Unified Framework for
Inverse Skinning Model

The above discussions assume that the basic
skinning algorithm is SSD, but in many cir-
cumstances, other deformation schemes will be
adopted [9], [10], most of which have been im-
plemented in most animation packages. There-
fore we propose a unified framework in which
no explicit inverse operation is necessitated.
Given a basic skinning method supported by

animation packages we can deform the original
character model from rest pose to another spe-
cific pose. In the more general case, we need
to replace SSD with SKINNING in the inverse
skinning algorithm as such for equation 4:

vti = vi+di = SKINNINGi(vr)+di

But this time we don’t implement the inverse
of SKINNING as in equation 5. To find delta d′i

6



Figure 5: Interpolated Poses: the rotated joint is at 30,45
and 60 degree. left column: PSD; right col-
umn: inverse PSD.

in the rest pose:
vi = SKINNINGi(vr)+di = SKINNINGi(vr +d′i)

we can setup a minimization problem to mini-
mize the function:

f (d′i) = ‖vi−SKINNINGi(vr +d′i)‖2 (9)

This function can be given to Powell’s method
to find d′i at the minimum of f (d′). For each
example pose Pi, we have a d′i , then we can ap-
ply radial basis function to d′i(i = 0 . . .n− 1) in
pose space to obtain ωi(i = 0 . . .n− 1). In syn-
thesis phase, a d′x in an intermediate pose x can
be computed by equation 3 based on its position
x in pose space d′x = ∑n−1

i=0 ωiφ(||x− xi||). Then
we have the final synthesis result:

vx = SKINNING(vr +d′x) (10)

5.1 Direction Set (Powell’s) Methods for
Minimization

For a minimization problem, there are many
candidate algorithms according to the form of
function, knowledge of the derivative, comput-
ing capacity, and requirements for the rate of
convergence, etc. In our situation, the function
form is not explicit, and the computing burden
increases with the number of example poses in-
creases. We will adopt Powell’s method as the
solution to this minimization problem.

One advantage of Powell’s classic method
is that it does not need explicit computation
of the function’s gradient [12]. Because we
are treating the skinning operations as a “black
box”, their gradient is not available, so Powell’s
method is suitable. Minimizing the function
f (d′) in a particular direction is actually mini-
mization problem of one variable, which is also
called line minimization. Powell’s idea is try-
ing to find each minimum of function f (d′) in
different direction until f (d′) stops decreasing.
How to choose the next direction is the main
concern of Powell’s method, and it has been
proved that after repeated cycles ofM line mini-
mizations on conjugate directions, the optimiza-
tion will in due course converge to the minimum
[12]. M is the dimensionality of the function f ().

5.2 System Overview

Figure 6: System Pipeline for Unified Inverse Skinning.

We implement this unified approach as a
Maya plug-in. In Maya, “tweaking” is a pro-
cedure adding delta values to original surface
vertices before any deformations. It is actu-

7



ally Maya’s form of rest-pose editing for their
built-in deformation operators. As presented in
Figure 6, the whole system is divided into two
phases. The first phase is to find each delta in the
rest pose corresponding to each example pose.
Basic skinning provided byMaya is called in the
loop of minimization scheme.
The output of the first phase, the delta in the

rest pose, is input to into the second phase that
is a linear system performing RBF interpolation
to obtain the PSD weights. In the synthesis pro-
cess, for an intermediate pose x, a delta d′x ( or
drx ) is synthesized by equation 7. The final de-
formed vertex is computed by Maya skinning as
in equation 10.

5.3 Singular Poses
If the SSD transformation in equation 1 is singu-
lar, some types of inverse PSD deformation will
not be possible, because any component of the
desired deformation that lies in the null space of
the SSD matrix will be ignored. Although sin-
gular cases are rare (one example is a joint with
180o rotation and equal 12 ,

1
2 weights on the two

joint frames, which is an unrealistic case of self-
intersection), it is possible to handle these cases
with a small rearrangement of the inverse PSD
approach. We reformulate the problem as

f (yi) = ‖vi+wi−SKINNINGi(vr +d′i)‖2+λ‖wi‖2

where yi is a concatenated vector yi = [d′i ,wi]
and λ is an arbitrary small number. The final
synthesis is then

vx = SKINNING(vr +d′x)+wx

where wx is interpolated after SKINNING by
applying the same RBF scheme as used for d′x
(thus, only minimal code changed are required).
The idea here is that, since wi is being mini-
mized, it will be generally be zero, and will be
non-zero only if it is not possible to obtain the
desired deformation vi using SKINNINGi(vr +
d′i). In the case where the SSD transform is near-
singular, the solved d′i can be much large than
other d′k, which can result in poorly posed inter-
polation. To address this case, we further mod-
ify the objective function as

f (yi) = ‖vi+wi−SKINNINGi(vr+d′i)‖2+λ‖wi‖2+µ‖d′i‖2

where 0.0001 is a sufficient value for both λ
and µ .

Figure 7: toad: a sequence of animated frames. left:
PSD; right: inverse PSD.

Figure 8: toad: closeup of circled part from figure 9.
left: PSD; right: inverse PSD.

6 Conclusions and Discussions
Inverse skinning integrates SSD and shape in-
terpolation more firmly than its forward rival.
We demonstrate the direction of deformed ver-
tex in inverse skinning is linearly proportional
to joint rotations in a simplified example, while
the forward PSD does not incorporate the di-
rection information. Therefore the inverse ap-
proach presents better performance and more
consistent interpolation (Figure 7 to Figure 10).
By formulating the inverse process as a min-

imization problem we propose a unified model
not only for SSD but also for other skinning
schemes, into which shape interpolation can be
incorporated. But the minimizing process will

8



introduce more cost. This cost depends on the
size of deformed character, parameters of mini-
mization methods (Powell) such as convergence
precision, and the number of example poses. In
addition the cost of the animation software must
be considered (for example, the Maya API im-
plements a run-time type interpretation system
on all operations). The cost of the inverse op-
eration is not critical, however, since it is a one
time “setup” cost, and the compute time is in-
significant compared to the human time required
to sculpt the desired deformations. Once the lin-
ear system is solved, the synthesis is potentially
realtime since no extra computing is involved in
this process compared to the forward PSD. We
implement this unified example-based approach
as a Maya plugin. It interoperates with their
closed-source “Smooth Skinning” deformation.

Acknowledgements
Authors would like to thank artists from
EggStory Creative Production. We also thank
several of the reviewers for comments which im-
proved this work

References

[1] J. P. Lewis, Matt Cordner, and Nick-
son Fong. Pose space deformation: a
unified approach to shape interpolation
and skeleton-driven deformation. In SIG-
GRAPH 2000: Proceedings of the 27th
annual conference on Computer graph-
ics and interactive techniques, pages 165–
172, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[2] Peter-Pike J. Sloan, III Charles F. Rose,
and Michael F. Cohen. Shape by exam-
ple. In SI3D 2001: Proceedings of the
2001 symposium on Interactive 3D graph-
ics, pages 135–143, New York, NY, USA,
2001. ACM Press.

[3] Paul G. Kry, Doug L. James, and Di-
nesh K. Pai. Eigenskin: real time large
deformation character skinning in hard-
ware. In SCA 2002: Proceedings of
the 2002 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages
153–159, New York, NY, USA, 2002.
ACM Press.

[4] Tsuneya Kurihara and Natsuki Miyata.
Modeling deformable human hands
from medical images. In SCA 2004:
Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on
Computer animation, pages 355–363,
New York, NY, USA, 2004. ACM Press.

[5] Doug L. James and Christopher D. Twigg.
Skinning mesh animations. ACM Trans.
Graph., 24(3):399–407, 2005.

[6] Xiaohuan Corina Wang and Cary Phillips.
Multi-weight enveloping: least-squares
approximation techniques for skin anima-
tion. In SCA 2002: Proceedings of
the 2002 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages
129–138, New York, NY, USA, 2002.
ACM Press.

[7] Alex Mohr and Michael Gleicher. Build-
ing efficient, accurate character skins from
examples. ACM Trans. Graph., 22(3):562–
568, 2003.

[8] Karan Singh and Evangelos Kokkevis.
Skinning characters using surface oriented
free-form deformations. InGraphics Inter-
face, pages 35–42, 2000.

[9] Ron MacCracken and Kenneth I. Joy.
Free-form deformations with lattices of ar-
bitrary topology. In SIGGRAPH 96: Pro-
ceedings of the 23rd annual conference on
Computer graphics and interactive tech-
niques, pages 181–188, New York, NY,
USA, 1996. ACM Press.

[10] Karan Singh and Eugene Fiume. Wires:
a geometric deformation technique. In
SIGGRAPH 98: Proceedings of the 25th
annual conference on Computer graph-
ics and interactive techniques, pages 405–
414, New York, NY, USA, 1998. ACM
Press.

[11] N. Magnenat-Thalmann, R. Laperrire, and
D. Thalmann. Joint-dependent local de-
formations for hand animation and object
grasping. In Proceedings on Graphics in-
terface ’88, pages 26–33, Toronto, Ont.,
Canada, Canada, 1988. Canadian Informa-
tion Processing Society.

[12] William H. Press, William T. Vetterling,
Saul A. Teukolsky, and Brian P. Flannery.
Numerical Recipes in C++: the art of sci-
entific computing. 2002.

9



Figure 9: PSD vs. Inverse PSD: we have two examples, one in rest pose and the other is sculpted when
the thumb is rotated down 66.8 degrees. SSD shows an obvious collapse. The intermediate
poses from SSD, PSD and inverse PSD are shown in the second (45 degrees) and third (60
degrees) row respectively.

examples

interpolated models computed by Powell optimization approach

Figure 10: human arm

10


