Automated Learning




Learn low level controllers
compose into high level controllers

spring-mass systems
snakes, fish, marine mammals

locomotion trials to learn low level controllers

optimize composition for high level task completion




Snake biomechanical model
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Figure 1 The snake biomechanical model consisis of nodal masses
(points) and springs (lines). It has rwenty independent actuaiors
(muscle springs): ten on the left side of the body and ten on the
right side. Each actuator comprises a pair of svachronous muscles.
The numbers along the body indicare nodal masses in cross sectional
planes. The cross-springs, shown in only one segment, maintain the
structural integrity of the body.




Low level control

Lagrange equation of motion
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Low level control

Evaluation function

:I :
Elult)) = [ (p Eulult)) + p-E(v())) dt,

controller evaluation metric
e.g. distance traveled

trajectory evaluation metric
e.g. final distance to goal,
deviation from desired speed
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Figure 2: The objective function guiding the optimization is a
welghied sum of terms that evaluaie the trajectory and the con-
fred function,




encourage lower amplitude, smoother controllers
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time & frequency domain discrete controllers
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time domain controller
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Figure 3: Simple time domain controller (top) with two control
functions w{1) and w2(t). Each funciion is a piecewise linear
polvnomial penerated by 9 control points. Stmple freguencydomain
controller (bottom) with rtwo control functions, each a sum of 9
sinusoidal basis functions B (t) = cos(w’t + ¢’ ).




optimization of discrete object function

N control functions, M basis functions

NM parameters

optimize parameters




optimization of discrete object function

Simulated annealing
global
no gradient
for large DoF problems

Simplex method
local
fast




Plate |: Locomaotion partern learned by the artificial snake.




Plate 4: Targer tracking using abstracted controllers (see texi).




Plate 2: Locomotion pattern learned by the artificial ray.




Flate 3: Shark race illustrates the progress of learning ( see texi).




Abstracting high level control

dimensionally reducing change of representation

to avoid complexity, must abstract compact higher
level controllers from low level learned controllers

reuse low level controllers for different tasks

natural, steady state locomotion is quasi-periodic
use frequency domain controller
apply FFT to time domain controller
suppress those with small amplitudes




“basic training” to develop low level controllers

concatenate in sequence, with blended overlap
for higher level tasks
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Figure 4: Higher level controller for jumping out of water is con-
structed from a set of abstracred basic controllers.




abstract controllers in 2 ways

greedy algorithm of compositing low level controllers

fails for higher level tasks (e.g. planning)

Figure 5: The solid curve indicates the path of the fish tracking the
coal. Black dots mark consecutive posttions of the goal and white
dots mark the starting point of a new controller,




optimize sequence of controllers

simulated annealing

optimizes over selection, ordering,
duration of controllers




composing macro controllers

train on 5 basic tasks:
turn-up, turn-left, turn-right, move-forward

optimize on jumping out of water

add ‘style’ terms for height, body
alignment, etc.

simulated annealing not great for this
doesn’t retain partial solutions
maybe use genetic algorithms in future




Plate 5: SeaWorld rricks learned by the artificial dolphin.
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Figure 6: {a) Performance comparison of the simplex method and
of simulated annealing. Convergence raie of simulated annealing
on the rime domain controller (b} and on the frequency controller
(c) with cooling rates: Ty = 0.8, T\ = 0.85, and T> = 0.9,
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Figure 7: Topographvol objective function (in 2 dimensions) of time
domain representation {a) and frequency domain representation (b)),
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Figure 9: Learned controller for the swim straight (a) and the left
turn () for the shark. Learned controller for the siraiphi motion
i) and the leff furn (d) for the snake. For each part: (top) learned
time domain controller (dotted lines indicate actuator functions
Jar lefi side of body, solid lines indicate actuator functions for
right side); {center) primary modes of controller FFT (radius of
circles indicates mode amplitudes, radial distances from center of
surraunding circle indicate frequencies, angular positions within
swrronnding circle indicate phases ) (botton ) abstracted controller
obiained by retaining primary modes.
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Figure 10: The shark biomechanical model has six actuators con-

sisting of a pair of muscles that share the same activation function.
The numbers along the body indicarte the mass of each point in the

corresponding cross sectional plane. The cross-springs that main-
tain the structural integrity of the bodv are indicared in one of the

segments only.
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Figure 1 1: The ray biomechanical model has four sets of actuators:
left and right depressors and left and right elevarors. The numbers

along the body indicare the mass of each point in the corresponding
cross sectional plane. The cross-springs that maintain the structural
integrity of the bodv are indicared in one of the segmenis only.




