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Abstract: We present a learning technique that automatically syn-
thesizes realistic locomotion for the animation of physics-based
models of animals. The method is especially suitable for animals
with highly flexible, many-degree-of-freedom bodies and a consid-
erable number of internal muscle actuators, such as snakes and
fish. The multilevel learning process first performs repeated loco-
motion trials in search of actuator control functions that produce
efficient locomotion, presuming virtually nothing about the form of
these functions. Applying a short-time Fourier analysis, the learn-
ing process then abstracts control functions that produce effective
locomotion into a compact representation which makes explicit the
natural quasi-periodicities and coordination of the muscle actions.
The artificial animals can finally put into practice the compact,
efficient controllers that they have learned. Their locomotion learn-
ing abilities enable them to accomplish higher-level tasks specified
by the animator while guided by sensory perception of their vir-
tual world; e.g., locomotion to a visible target. We demonstrate
physics-based animation of learned locomotion in dynamic models
of land snakes, fishes, and even marine mammals that have trained
themselves to perform “SeaWorld” stunts.

1 Introduction

The animation of animals in motion is an alluring but difficult prob-
lem. With the advent of visually realistic models of humans and
lower animals, even small imperfections in the locomotion patterns
can be objectionable. The most promising approach to achieving a
satisfactory level of authenticity is to develop physically realistic ar-
tificial animals that employ internal actuators, or muscles, to closely
approximate the movements of natural animal bodies. As these ani-
mal models become increasingly complex, however, animators can
no longer be expected to control them manually. Sophisticated
models must eventually assume the responsibility for their own sen-
sorimotor control. Like real animals, they should be capable of
learning to control themselves.

This paper addresses a natural question: Is it possible for a
physics-based, muscle-actuated model of an animal to learn from
first principles how to control its muscles in order to locomote in a
natural fashion? Unlike prior work on motion synthesis, we target
state-of-the-art animate models of at least the level of realism and
complexity of the snakes and worms of Miller [8] or the fish of Tu
and Terzopoulos [17]. In both of these cases, the muscle controllers
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that produce locomotion were carefully hand crafted using knowl-
edge gleaned from the biomechanics literature [7] and long hours
of experimentation. Our goal in this paper is to devise algorithms
that can provide such animal models the ability to learn how to
locomote automatically, in a way that is inspired by the remarkable
ability of real animals to acquire locomotion skills through action
and perception.

At the foundation of our approach lies the notion that natural
locomotion patterns are energetically efficient. This allows us to
formalize the problem of learning realistic locomotion as one of
optimizing a class of objective functionals, for which there are
various solution techniques. We formulate a bottom-up, multilevel
strategy for learning muscle controllers. At the early stages of the
learning process, the animate model has no a priori knowledge about
how to locomote. It is as if the animal had a fully functional body,but
no motor control center in its “brain”. Through practice—repeated
locomotion trials with different muscle actions—the animal learns
how to locomote with increasing effectiveness, by remembering
actions that improve its motor skills as measured by the objective
functional. Repeated improvements eventually produce life-like
locomotion.

When basic locomotive skill is achieved, the animate models ab-
stract the low-level muscle control functions that they have learned
and train themselves to perform some specific higher-level motor
tasks. The learning algorithm abstracts detailed muscle control
functions into a highly compact representation. The representation
now emphasizes the natural quasi-periodicities of effective muscle
actions and makesexplicit the coordination among multiple muscles
that has led to effective locomotion. Finally, the artificial animals
can put into practice the compact, efficient controllers that they
have learned in order to accomplish the sorts of tasks that animators
would have them do.

We are particularly interested in realistic motion synthesis for
three dimensional models of animals that are highly deformable
and can move continuously within their virtual worlds. Plates 1–5
show frames from animations of animal models that we have created,
which have learned to locomote and perform interesting motor tasks
automatically. We use spring-mass systems to construct our models,
following the work of [8, 17]. This results in biomechanical models
with numerous degrees of freedom and many parameters to control.
The reader should peruse [8, 17] to become familiar with the details
of the models.

An example will serve to illustrate the challenges of controlling
highly deformable body models: Fig. 1 illustrates a biomechani-
cal model of a Sonoral coral snake [4] that we use in one of our
animations (Plate 1). The body consists of 10 segments. Each
segment has two pairs of longitudinal muscle springs that are under
the active control of the snake’s brain. All other springs are passive
dynamic elements that maintain the structural integrity of the body.
The snake can actuate its body by varying the rest lengths of the 40
muscle springs over time. To simplify matters slightly, paired mus-
cles on either side in each segment are actuated synchronously, and
this yields a total of 20 actuators. Clearly, it is counterproductive to
provide the animator direct control over so many actuators. Instead,
we would like the snake to train itself to control its body. We will
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Figure 1: The snake biomechanical model consists of nodal masses
(points) and springs (lines). It has twenty independent actuators
(muscle springs): ten on the left side of the body and ten on the
right side. Each actuator comprises a pair of synchronous muscles.
The numbers along the body indicate nodal masses in cross sectional
planes. The cross-springs, shown in only one segment, maintain the
structural integrity of the body.

develop algorithms that will enable its brain to exercise its body
until it discovers the actuator coordination needed to achieve effi-
cient serpentine locomotion. The snake will monitor the progress
of the learning cycle using an objective functional that incorporates
sensory feedback about its actions.

An advantage of our approach from the point of view of the
animator is its generality. In principle, it is applicable to all animate
models motivated by internal muscles, whether highly deformable,
or articulate. In this paper, we demonstrate its power using 4 differ-
ent, highly deformable animal body models in varied media—terra
firma, water, and air (see Appendix A). Another advantage is that
the approach allows us to equip our models with sensors that enable
them to perceive their environment. Sensory perception is mod-
eled through the objective functional to be optimized. The sensory
contribution to the objective functional represents the animal’s per-
ception of the degree to which its goal has been achieved. Making
the artificial animal perceptually aware allows it to handle tasks
that depend on dynamic events in the environment and gives the
animator a potent tool with which to control the model.

1.1 Related Work

The issue of control is central to physics-based animation research.
Optimal control methods formulate the control problem in terms of
an objective functional which must be minimized over a time inter-
val, subject to the differential equations of motion of the physical
model [1]. The “spacetime constraints” method [19] has attracted a
certain following (e.g., [3]), but it is problematic because, in princi-
ple, it treats physics as a penalty constraint (that can be “stretched
like a spring”) and, in practice, the need to symbolically differen-
tiate the equations of motion renders it impractical for all but the
simplest physical models.

We pursue a different approach toward locomotion control that
is suitable for complex physical models. The approach is inspired
by the “direct dynamics” technique which was described in the
control literature by Goh and Teo [5] and earlier references cited
therein. Direct dynamics prescribes a generate-and-test strategy that
optimizes a control objective functional through repeated forward
dynamic simulation and motion evaluation.

The direct dynamics technique was developed further to control
articulated musculoskeletal models in [10] and it has seen applica-
tion in the mainstream graphics literature to the control of planar
articulated figures [18, 9]. Pandy et al. [10] search the model ac-
tuator space for optimal controllers, but they do not perform global
optimization. Van de Panne and Fiume [18] use simulated annealing
for global optimization. Their models are equipped with simple sen-
sors that probe the environment and use the sensory information to
influence control decisions. Ngo and Marks’ [9] stimulus-response

control algorithm presents a similar approach. They apply the ge-
netic algorithm to find optimal controllers. The genetic algorithm
is also used in the recent work of Sims [15]. Risdale [14] reports
an early effort at controller synthesis for articulated figures from
training examples using neural networks.

A characteristic of prior methods that tends to limit them to rel-
atively simple planar models with few actuators is that they attempt
to tackle the control problem at only a single level of abstraction.
Typically, they deal with the control problem at an abstract level, say,
in terms of a small number of controller network weights [18, 15]
or whole body motions [9]. We advocate a multilevel controller
learning technique that can handle complex models even though it
seeks, based on first principles, optimal muscle actuation functions
in a very concrete representation that makes the weakest possible
assumptions. Thus the learning process is bootstrapped essentially
from scratch. Earlier versions of our work were presented in [6, 16].

1.2 Overview

We describe our multilevel learning technique in the following two
sections. Section 2 presents the strategy for learning low level con-
trollers. Low level control learning is time consuming because of
the high dimensionality of the search space. It is therefore prudent
to reuse controllers. To this end, Section 3 presents the strategy
for abstracting high level controllers. The abstraction step dramat-
ically reduces dimensionality, stores the reduced description in the
animal’s memory, and permits the control problems to be defined in
terms of higher level motor goals. This approach leads naturally to
reusable solutions. We search for good low level control solutions
for a set of simple tasks and use them as building blocks to achieve
higher level goals. Section 4 presents a thorough experimental
evaluation of our learning approach and more results.

2 Learning Low Level Control

Our low-level learning technique repeatedly generates a controller,
applies it to drive a short-time forward simulation of the dynamic
body model, and measures its effectiveness at producing locomotion
using an objective functional. Typically, this low-level motor learn-
ing cycle is lengthy (as it can be in real animals, such as humans).
However, it is simple and ultimately quite effective.

2.1 Biomechanical Models, Muscles, Actuators, Controllers

The biomechanical models that we employ are constructed of nodal
masses and springs, as is detailed in Appendix A. Their dynamics
is specified by the Lagrangian equations of motion

miẍi + 
iẋi +
X
j2N i

f
s
ij = fi (1)

where node i has mass m i, position xi(t) = [xi(t); yi(t); zi(t)],
velocity ẋ, and damping factor 
i, and where fi is an external force.
Spring Sij , which connects node i to neighboring nodes j 2 N i ,
exerts the force f

s
ij(t) = �(cijeij + 
ij ėij)rij=jjrij jj on node

i (and it exerts the force �fsij on node j), where cij is the elastic
constant,
ij is the damping constant, andeij(t) = jjrijjj�lij is the
deformation of the spring with separation vector rij(t) = xj � xi .
The natural length of the spring is lij .

Some of the springs in the biomechanical model play the role
of contractile muscles. Muscles contract as their natural length
lij decreases under the autonomous control of the motor center
of the artificial animal’s brain [17]. To dynamically contract a
muscle, the brain must supply an activation function a(t) to the
muscle. This continuous time function has range [0;1], with 0
corresponding to a fully relaxed muscle of length lrij and 1 to a fully
contracted muscle of length lcij . More specifically, for a muscle
spring, lij = alcij + (1� a)lrij .



Typically, individual muscles form muscle groups, called actu-
ators, that are activated in unison. Referring to Fig. 1 for example,
the 40 muscles in the snake model are grouped pairwise in each
segment to form 10 left actuators and 10 right actuators. Each actu-
ator i is activated by a scalar actuation function ui(t), whose range
is again normalized to [0;1]. The actuation function transforms
straightforwardly into activation functions for each muscle in the
actuator. Thus, to control the snake’s body we must specify the
actuation functions u(t) = [u1(t); : : : ; ui(t); : : : ; uN (t)]0, where
N = 20.

The continuous vector-valued function of time u(t) is called the
controller and its job is to produce locomotion. Controllers may be
stored within the artificial animal’s motor control center.

2.2 Objective Functional

A continuous objective functionalE provides a quantitative measure
of the progress of the locomotion learning process. The functional
is the weighted sum of a term Eu that evaluates the controller u(t)
and a term Ev that evaluates the motion v(t) that the controller
produces in a time interval t0 � t � t1, with smaller values of E
indicating better controllers u. Mathematically,

E(u(t)) =

Z t1

t0

�
�1Eu(u(t)) + �2Ev(v(t))

�
dt; (2)

where �1 and �2 are scalar weights. Fig. 2 illustrates this schemat-
ically.
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Figure 2: The objective function guiding the optimization is a
weighted sum of terms that evaluate the trajectory and the con-
trol function.

It is important to note that the complexity of our models pre-
cludes the closed-form evaluation of E. As the figure indicates, to
compute E, the artificial animal must first engage u(t) to produce
a motion v(t) with its body (in order to evaluate term Ev). This is
done through forward simulation of the biomechanical model over
the time interval t0 � t � t1 using the controller u(t).

We may want to promote a preference for controllers with cer-
tain qualities via the controller evaluation term Eu . For example,
we can guide the optimization of E by discouraging large, rapid
fluctuations of u, since chaotic actuations are usually energy ineffi-
cient. We encourage lower amplitude, smoother controllers through
the function

Eu =
1
2

�
�1

���du
dt

���2 + �2

����d
2
u

dt2

����
2�

; (3)

with weighting factors �1 and �2. The two component terms in (3)
are potential energy densities of linear and cubic variational splines
in time, respectively. The former penalizes actuation amplitudes,
while the latter penalizes actuation variation.

The distinction between good and bad control functions also
depends on the goals that the animal must accomplish. In our

learning experiments we used trajectory criteria Ev such as the
final distance to the goal, the deviation from a desired speed, etc.
These and other criteria will be discussed shortly in conjunction
with specific experiments.

2.3 Time and Frequency Domain Discrete Controllers

To solve the low level control problem, we must optimize the ob-
jective functional (2). This cannot be done analytically. We convert
this continuous optimal control problem to an algebraic parameter
optimization problem [5] by parameterizing the controller through
discretization using basis functions. Mathematically, we express

ui(t) =

MX
j=1

ujiB
j(t); (4)

where the uji are scalar parameters and the B j(t), 1 � j � M
are (vector-valued) temporal basis functions. There are two quali-
tatively different choices of basis functions—local and global.

In the local discretization, the parameters uji are nodal variables
and the Bj(t) can be spline basis functions. The simplest case is
when the uji are evenly distributed in the time interval and theBj(t)
are tent functions centered on the nodes with support extending to
nearest neighbor nodes, so that u(t) is the linear interpolation of the
nodal variables (Fig. 3, top). Smoother B-splines can be used in a
similar fashion. Since the nodal parameters are naturally ordered in
a time sequence, we will refer to locally discretized controllers as
time domain controllers.
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Figure 3: Simple time domain controller (top) with two control
functions u1(t) and u2(t). Each function is a piecewise linear
polynomial generated by 9 control points. Simple frequencydomain
controller (bottom) with two control functions, each a sum of 9
sinusoidal basis functions B j(t) = cos(!jt+ �j).

In the global discretization, the support of the Bj(t) covers
the entire temporal domain t0 � t � t1. A standard choice is
sinusoidal basis functions B j(t) = cos(!jt+ �j) where !j is the
angular frequency and �j is the phase, and the parameters uji are
amplitudes (Fig. 3, bottom). We will refer to controllers discretized
globally using sinusoidal bases of different frequencies and phases
as frequency domain controllers.

The time domain and frequency domain representations offer
different benefits and drawbacks. The time domain controller yields
a faster low-level learning rate. This issue is discussed in detail in
Section 4.1. The frequency domain controller, on the other hand,
does not require a change of basis during the abstraction process
described in Section 3. It can also sometimes be extended arbitrarily
in time since it favors periodicity.

2.4 Optimization of the Discrete Objective Function

Sinceu(t) hasN basis functions, the discretized controller is repre-
sented usingNM parameters. Substituting (4), into the continuous



objective functional (2), we approximate it by the discrete objective
function E([u1

1; : : : ; u
M
N ]0).

Learning low level control amounts to using an optimization
algorithm to iteratively update the parameters of a time domain or
frequency domain controller so as to maximize the discrete objective
function and produce increasingly better locomotion. We have used
both simulated annealing and the simplex method to optimize the
objective function. The reader should refer to a text such as [12] for
details about these optimization methods.

Simulated annealing has three features that make it particularly
suitable for our application. First, it is applicable to problems with
a large number of variables yielding search spaces large enough to
make exhaustive search prohibitive. Second, it does not require
gradient information about the objective function. Analytic gra-
dients are not directly attainable in our situation since evaluating
E requires a forward dynamic simulation of the animal. Third, it
avoids getting trapped in local suboptima of E. In fact, given a
sufficiently slow annealing schedule, it will find a global optimum
of the objective functional. Robustness against local suboptima can
be important in obtaining control functions that produce realistic
motion. The benefit of using the simplex method over simulated
annealing in some cases is its faster convergence rate. On the other
hand, since it is a local optimization technique, strictly speaking, it
can be applied successfully only to the class of optimization prob-
lems in which the topography of E is globally convex. Section
4.1 will describe in more detail the advantages and pitfalls of both
methods when applied to the low level learning problem.

All of the biomechanical models described in Appendix A have
demonstrated the ability to learn effective low level time domain
locomotion controllers. Plates 1, 2, and 3 show frames from ani-
mations with controllers that have been learned by the snake, ray,
and shark models, which produce natural and effective locomo-
tion. Plate 3 illustrates a race among four sharks that have learned
for different durations. The shark that is furthest from the cam-
era has learned how to locomote for the shortest period of time,
which yields muscle control functions that are essentially random
and achieve negligible locomotion. Sharks closer to the camera
have learned for progressively longer periods of time. The closest
shark, which locomotes the best wins the race.

3 Abstracting High Level Control

It is time consuming to learn a good solution for a low level controller
because of the high dimensionality of the problem (large NM ), the
lack of gradient information to accelerate the optimization of the
objective functional, and the presence of suboptimal traps that must
be avoided. Consequently, it is costly to produce animation by
perpetually generating new controllers. The learning procedure
must be able to abstract compact higher level controllers from the
low level controllers that have been learned, retain the abstracted
controllers, and apply them to future locomotion tasks.

The process of abstraction takes the form of a dimensional-
ity reducing change of representation. More specifically, it seeks
to compress the many parameters of the discrete controllers to a
compact form in terms of a handful of basis functions. Natural,
steady-state locomotion patterns tend to be quasi-periodic and they
can be abstracted very effectively without substantial loss. The nat-
ural choice, therefore, is to represent abstracted controllers using
the global sinusoidal basis functions discussed earlier. For the fre-
quency domain controller, the dimensionality reduction is achieved
trivially by retaining all basis functions whose amplitudesuji exceed
a low threshold and suppressing those below threshold. This results
in a small set of significant basis functions with associated ampli-
tudes that constitute the abstracted controller. To abstract a time
domain controller, we apply the fast Fourier transform (FFT) [12]
to the parameters of the time domain controller and then suppress
the below-threshold amplitudes.

3.1 Using Abstracted Controllers

Typically, our artificial animals are put through a “basic training”
regimen of primitive motor tasks that it must learn, such as locomot-
ing at different speeds and executing turns of different radii. They
learn effective low level controllers for each task and retain compact
representations of these controllers through controller abstraction.
The animals subsequentlyput the abstractions that they have learned
into practice to accomplish higher level tasks, such as target track-
ing or leaping through the air. To this end, abstracted controllers
are concatenated in sequence, with each controller slightly over-
lapping the next. To eliminate discontinuities, temporally adjacent
controllers are smoothly blended together by linearly fading and
summing them over a small, fixed region of overlap, approximately
5% of each controller (Fig. 4).

CONTROLLERSBASIC ABSTRACTED

turn up controller move forward controllerturn down controller 

turn left controller turn right controller

turn down controller move forward controller turn up controller 
turn right controller

HIGHER ORDER CONTROLLER USED FOR JUMPING OUT OF WATER

Figure 4: Higher level controller for jumping out of water is con-
structed from a set of abstracted basic controllers.
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Figure 5: The solid curve indicates the path of the fish tracking the
goal. Black dots mark consecutive positions of the goal and white
dots mark the starting point of a new controller.

Currently we use abstracted controllers in two ways. In one
scenario, the animated model has learned a repertoire of abstracted
controllers that it applies in a greedy fashion to navigate in the di-
rection of a target. It modifies its locomotion strategy periodically
by invoking the abstracted controller that gives it the greatest im-
mediate gain over the subsequent time interval. For example, Fig. 5
shows a path generated by the shark model using this method as
it is presented with a series of targets. The shark has learned six
basic abstracted controllers to accomplish this task: do-nothing, go-
straight, sharp-turn-left, sharp-turn-right, wide-turn-left, and wide-
turn-right. It then discovered how to sequencethese controllers, and
for what durations to apply them in order to locomote to successive
targets indicated by black dots. The circles on the path in Fig. 5
indicate positions where the shark reevaluated its current strategy.
Changes in the path’s direction indicate that the shark has switched
to a different controller which provides a bigger immediate gain.
Plate 4 shows rendered frames from the locomotion animation with
the targets rendered as red buoys. This method is inexpensive and
can be made to work in real time. Unfortunately, the greedy strategy
is bound to fail on a problem that requires careful planning.



Plate 1: Locomotion pattern learned by the artificial snake.

Plate 2: Locomotion pattern learned by the artificial ray.

Plate 3: Shark race illustrates the progress of learning (see text).

Plate 4: Target tracking using abstracted controllers (see text).

Plate 5: SeaWorld tricks learned by the artificial dolphin.

The second method overcomes the limitations of the greedy
strategy by learning composite abstracted controllers that accom-
plish complex locomotion tasks. Consider the spectacular stunts
performed by marine mammals that elicit applause at theme parks
like “SeaWorld”. We can treat a leap through the air as a complex
task that can be achieved using simpler tasks; e.g., diving deep be-
neath a suitable leap point, surfacing vigorously to gain momentum,
maintaining balance during the ballistic flight through the air, and
splashing down dramatically with a belly flop.

We have developed an automatic learning technique that con-
structs a macro jump controller of this sort as an optimized sequence
of basic abstracted controllers. The optimization process is, in prin-
ciple, similar to the one in low level learning. It uses simulated
annealing for optimization, but rather than optimizing over nodal
parameters or frequency parameters, it optimizes over the selection,
ordering, and duration of abstracted controllers. Thus the animal
model applying this method learns effective macro controllers of
the type shown at the bottom of Fig. 4 by optimizing over a learned
repertoire of basic abstracted controllers illustrated at the top of the
figure.



3.2 Composing Macro Controllers

We first train the artificial dolphin so that it learns controllers for
5 basic motor tasks: turn-down, turn-up, turn-left, turn-right, and
move-forward. We then give it the task of performing a stunt like
the one described above and the dolphin discovers a combination
of controllers that accomplishes the stunt. In particular, it discovers
that it must build up momentum by thrusting from deep in the virtual
pool of water up towards the surface and exploit this momentum to
leap out of the water. Plate 5(a) shows a frame as the dolphin exits
the water. The dolphin can also learn to perform tricks while in the
air. Plate 5(b) shows it using its nose to bouncea large beach-ball off
a support. The dolphin can learn to control the angular momentum
of its body while exiting the water and while in ballistic flight so
that it can perform aerial spins and somersaults. Plate 5(c) shows
it in the midst of a somersault in which it has just bounced the ball
with its tail instead of its nose. Plate 5(d) shows the dolphin right
after splashdown. In this instance it has made a dramatic bellyflop
splash. By discovering controllers that enable it to control its body
in these complex ways, the dolphin can amuse and entertain the
animator, who would be hard pressed to design similar controllers
by hand for a physics-basedmodel with as many control parameters
as the dolphin model has.

To train the dolphin to perform a variety of stunts we introduced
additional “style” terms into the objective function that afford extra
control on the animal’s trajectory in the air. For example, a simple
jump was learned by optimizing over the maximum height at some
point in time. In order to train the dolphin to jump a hurdle, we
introduced a term to control its orientation as it clears the hurdle—at
the apex of its trajectory, it should be in a horizontal orientation and
it should face downward upon reentry. The somersault controller
was discovered by adding a term that encouragedmaximum angular
velocity of the body in flight. We can maximize or minimize the
area of the animal’s body that hits the water upon reentry for crowd-
drenching splashes or for high scores from the judges for a clean
dive.

Different style terms can, in principle, be added indefinitely to
the control function. The only limitation seems to be the increasing
complexity of the optimization. We have noted that although it can
produce some interesting results, simulated annealing is not espe-
cially well suited to this kind of optimization problem. We suspect
that this is due to the combinatorial nature of the problem and the
fact that simulated annealing does not take advantage of partial so-
lutions that it finds along the way, but instead starts with a new set of
parameters at every iteration of the optimization process. Unfortu-
nately, at a high level of abstraction sometimes even small changes
in the set of parameters produce drastically different trajectories.
Genetic algorithms may perform better on such problems.

4 Additional Experiments and Results

This section presents a more thorough experimental study of our
approach and reports additional results.

4.1 Performance of the Optimizers

Fig. 6(a) compares the performance of the simplex method and
simulated annealing in seeking optimal time and frequency domain
controllers for the shark model given the task of locomoting to a
specified goal location; i.e., Ev = jjdgjj

2, where dg is the separa-
tion vector between the nose node of the shark and the goal point.
The term Eu (3) in the objective functional (2) was disabled for
these tests (�2 = 0). For simplicity, the 4 muscles in each segment
were grouped into a single actuator (N = 3 actuators total), with
the left muscle pair receiving contraction signals that are exactly out
of phase with the right muscle pair. A time interval was discretized
using M = 15 parameters; hence, the dimensionality of the search
space was NM = 45.

Both methods converge to good time domain controllers. The
simplex method yields a final objective functional value of Eo =
0:49 after approximately 500 iterations. Simulated annealing finds
a slightly better solution, Eo = 0:42, but only after 3500 iterations.
For frequency domain controllers, the results differ substantially.
Simulated annealing performs almost as well as for the time domain
controller, yielding an objective function value of Eo = 0:52 after
3500 iterations.2 However, the simplex method does much worse—
it fails to get below Eo = 0:65.

Fig. 6(b–c) compares the convergence for simulated annealing
on both types of controllers. The results are better for the objective
function represented in the time domain (Fig. 6(b)) than for the
frequency domain representation (Fig. 6(c)). For the time domain
representation we need approximately 700 iterations to get very
close to the global minimum. The number of iterations for the
frequency domain representation is much greater.

The above results suggest that it is much harder to optimize
the objective using frequency domain controllers. To understand
why, we plotted E against pairs of randomly chosen parameters uji
(labeledx and y in the plots), using both time and frequency domain
representations. We stepped the selected parameters through a range
of values while keeping the other parameters constant and evaluated
the objective function repeatedly to obtain a 3D surface plot (each
repetition required a forward simulation of the locomotion). The
plot in Fig. 7(a) reveals the simple convex topography of E for time
domain controllers, while the plot in Fig. 7(b) reveals the much
more irregular, nonconvex topography of E for frequency domain
controllers.

Evidently, small changes in the local basis functions of the
time domain controller produce small, well-behaved changes in the
value of the objective function. By contrast, small changes in the
global basis functions of the frequency domain controller produce
relatively larger, more irregular changes in the value of the objective
function.

The many local minima in the topography of the objective func-
tion associated with the frequency domain controller lead to failure
of the simplex method and they present more of a challenge to sim-
ulated annealing. The convex structure of the objective function
associated with the time domain controller allows both annealing
and simplex to converge very quickly. Moreover, they often yield
better time domain controllers than frequency domain controllers.
We conclude that the time domain controller representation is a
worthwhile one.

4.2 Influencing Controllers via the Objective Functional

In Section 2.2 we discussed how the term Eu in (2) that evaluates
controllers allows us to influence the motion. For example, we can
discourage chaotic motions. This section investigates the effect of
different Eu terms in more detail. Again, we employ the shark with
the same goal Ev as in the previous section.

Fig. 8(a) shows the results obtained with the time domain repre-
sentation for �2 = 0, hence the discrete term Eu = �1=2h2(uj+1

i �

uji )
2, where h is the timestep between nodal parameters. The objec-

tive function was evaluated for �1 = 0:0;0:1;0:2 (top to bottom).
As the value of �1 increases, both the amplitude and the frequency

2We start the simulated annealing procedure at the temperature T 0 = 0:5. The
annealing schedule is Ti+1 = �Ti where 0 � � � 1. Usually � = 0:9, but
Fig. 6(b–c) shows the results obtained with different schedules. The maximum number
of steps before the temperature drop is 10NM and the minimum number of accepted
perturbations before the temperature drop is NM For N = 15 it takes about one
hour on an SGI Indigo workstation to get a solution for each control function. At
each step the values of all parameters are perturbed randomly. The perturbation is
bounded by 10% of the range of admissible values. So, for example, if the maximum
contraction of the muscle is 20% of its relaxed length, each perturbationwill be at most
2%. The bound on the perturbation remains fixed over the annealing process. This
yields much faster convergence than if we decreased the magnitude of the perturbation
with temperature.
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Figure 6: (a) Performance comparison of the simplex method and
of simulated annealing. Convergence rate of simulated annealing
on the time domain controller (b) and on the frequency controller
(c) with cooling rates: T0 = 0:8, T1 = 0:85, and T2 = 0:9.
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Figure 7: Topographyof objective function (in 2 dimensions) of time
domain representation(a) and frequencydomain representation(b).

of the learned actuation functions drop and the shark learns loco-
motion controllers that result in less energy expenditure. Fig. 8(b)
shows the results obtained with �1 = 0, hence the discrete term
Eu = �2=2h4(uj+1

i � 2uji + uj�1
i )2 with �2 = 0:0;0:002;0:006

(top to bottom). As the value of � increases, the amplitude of the
learned actuation functions remains constant and only the frequency
decreases.

4.3 Abstracted Learning Results

Next, we report results for the shark and the snake in abstracting
learned time domain controllers for straight locomotion and left
turns. Right turn controllers were obtained by swapping signals
sent to left and right actuators.

To obtain good abstracted controllers for the shark, it was suf-
ficient for both straight motion and left turn to retain the single
dominant mode of the FFT. Fig. 9(a) shows learned controllers for
the shark swimming straight. In this experiment, the left and right
muscle pairs in each segment constitute independent actuators, but
note how the animal has learned to actuate its left muscles approx-
imately out of phase with those on the right side. The posterior
segment muscles contract with roughly half the frequency of the
other muscles and the muscles on either side of the body are ac-
tivated in sequence with a slight phase shift. For the swim left
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Figure 8: Influence of Eu on controller: (a) �2 = 0; (b) �1 = 0.

sequence (Fig. 9(b)) the posterior and anterior segment muscles
on the right side of the body are essentially unused, while all the
muscles on the left side of the body move approximately in phase.

It suffices to use two primary modes of the Fourier transform
to get an effective abstracted controller for the turning snake. For
straight locomotion (Fig. 9(c)) it is difficult to interpret the time
domain actuation functions. However, if we look at the learned
abstracted controller for straight locomotion, we can clearly see
that the main modes have the same frequency, but their phase is
shifted slightly, as expected. When a real snake turns, it first coils
itself in the direction of the turn then switches back to its normal
serpentine mode of locomotion. This pattern is revealed in the
automatically learned turn controller shown in Fig. 9(d). First, all
the muscles on the right side of the body relax and all the muscles
on the left side contract. Then they resume their action for straight
serpentine locomotion.

A Biomechanical Model Structure and Simulation

Animals such as snakes, worms, fishes, and marine mammals, with
highly flexible bodies are well suited to mechanical modeling using
spring-mass systems. All of our animal body models consist of an
internal biomechanical model with contractile muscles coupled to
an external, texture-mapped, NURBS surface display model.

Fig. 1 shows the spring-mass system for the coral snake (Mi-
cruroides euryxanthus), which is similar to the one in [8]. Plate 1
shows the display model. The muscle springs can contract to 30%
of their relaxed length. The body mass is distributed evenly among
all nodes.

Fig. 10 shows the spring-mass system for the Leopard shark
(Triakis semifasciata) [2], which is similar to the fish model in [17].
Plates 3 and 4 show the display model. The 4 posterior muscles can
contract to 10% of their relaxed length; the 8 other muscles to 20%.
The figure specifies the nodal mass distribution.

We model a Heaviside’s dolphin (Cephalorhynchus heavisidii)
[11] (Plate 5 shows the display model) straightforwardly by turning
the shark spring-mass system on its side, such that the muscles serve
as caudal (tail) fin elevator and depressors. We equip the dolphin
with functional pectoral fins that allow it to roll, pitch, and yaw in
the water (see [17] for details about fins).

Fig. 11 shows the spring-mass system for the Kuhl’s stingray
(Dasyatis kuhlii) [13]. Plate 2 shows the display model. Four
left and 4 right elevator muscles and an equal number of depressor
muscles are capable of flexing the wings by contracting to 20% of
their relaxed length. Mass is distributed evenly among all the nodes.

To model snake locomotion, we use directional friction against
the ground which generates reaction forces that move the body
forward, as described in [8]. To model marine animal locomotion,
we compute hydrodynamic reaction forces acting on each of the
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Figure 9: Learned controller for the swim straight (a) and the left
turn (b) for the shark. Learned controller for the straight motion
(c) and the left turn (d) for the snake. For each part: (top) learned
time domain controller (dotted lines indicate actuator functions
for left side of body, solid lines indicate actuator functions for
right side); (center) primary modes of controller FFT (radius of
circles indicates mode amplitudes, radial distances from center of
surrounding circle indicate frequencies, angular positions within
surrounding circle indicate phases); (bottom) abstracted controller
obtained by retaining primary modes.

model’s faces, as described in [17]. These forces produce external
nodal forces fi in the equations of motion (1).

We use a stable, efficient semi-implicit Euler method [12] to
numerically integrate these ODEs. It is implicit in the internal
forces on the lhs of (1) and explicit in the external forces fi.
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