Ray Tracing Geometry

The Camera Model

- Based on a simpile pin-hole camera model
- Simplest lens model
- Pure geometric optics based on similar triangles
- Perfect image if hole infinitely small
- Inverted image

pin-hole camera

simplified pin-hole camera

Basic Ray Tracing Algorithm

for every pixel \{
cast a ray from the eye through pixel for every object in the scene find intersections with the ray keep it if closest
\}

compute color at the intersection point
\}

Construct a Ray

- 3D parametric line

$$
r(t)=\text { eye }+t(p-e y e)
$$

$r(t)$: ray equation
eye: eye (camera) position
p : pixel position
t: ray parameter
Question: How to calculate the pixel position P?

What are given?

- Camera (eye) position
- View direction or center of interest
- Camera orientation (which way is up?)
- specified by an "up" vector
- Field of view + aspect ratio
- Distance to the image plane
- Pixel resolutions in x and y

Camera Setup

"up" vector

Camera Setup

"up" may not be perpendicular to w
x : cross product

Pixel Calculation

Coordinate (in u,v,n space) of upper left corner of screen

Assume virtual screen is one
unit away ($\mathrm{D}=1$) in w direction
Eye + w - (xres/2)*PixelWidth*u + (yres/2)*PixelHeight *v

Pixel Calculation

Coordinate (in u,v,n space) of upper left corner of screen

Assume virtual screen is one unit away ($\mathrm{D}=1$) in w direction

How do we calculate
PixelWidth and PixelHeight?
Eye + w - (xres/2)*PixelWidth*u + (yres/2)*PixelHeight *v

Camera Setup

Screen Placement

How do images differ if the resolution doesn't change?

Pixel Calculation

$\operatorname{Tan}(\theta / 2)=$ yres*pixelHeight $/ 2$
pixelHeight $=2 * \operatorname{Tan}\left(\theta_{y} / 2\right) /$ yres
pixelWidth $=2 * \operatorname{Tan}\left(\theta_{x} / 2\right) / x$ res

> Pixel AspectRatio = pixelWidth/pixelHeight

Coordinate (in xyz space) of upper left corner of screen = ?

Pixel Calculation

Coordinate (in xyz space) of upper left corner of screen = ?

> Eye + w - (xres/2)*PixelWidth*u + (yres/2)*PixelHeight *v

Pixel Calculation

Coordinate (in xyz space) of upper left pixel center = ?

Eye + w - (xres/2)*PixelWidth*u + (yres/2)*PixelHeight *v + (pixelWidth/2)*u - (pixelHeight/2)*v

Interate through pixel Centers

pixelCenter =
scanlineStart = Eye +
(xres/2)*PixelWidth*u + (yres/2)*PixelHeight *v + (pixelWidth/2)*u (pixelHeight/2)*v
pixelCenter += pixelWidth * u

scanlineStart -= pixelHeight * v

Pixel loops

ScenlineStart = [from previous slide]
For each scanline \{
pixelCenter = scanlineStart
For each pixel across \{ form ray from camera through pixel
pixelCenter += pixelWidth*u
\}
scanlineStart -= pixelHeight*v
\}

Process Objects

```
For each pixel \{
    Form ray from eye through pixel
    distance \(_{\text {min }}=\) infinity
    For each object \{
        If (distance=intersect(ray,object)) \{
        If (distance \(<\) distance \(_{\text {min }}\) ) \{
            closestObject = object
            distance \(_{\text {min }}=\) distance
        \}
    \}
\}
Color pixel according to intersection information
\}
```


After all objects are tested

$$
\begin{aligned}
& \text { If (distance } \min ^{>}>\text {infinityThreshold) \{ } \\
& \text { pixelColor }=\text { background color }
\end{aligned}
$$

else

$$
\text { pixelColor }=\text { color of object at distance }{ }_{\min } \text { along ray }
$$

Ray-Sphere Intersection - geometric

Ray-Sphere Intersection - algebraic

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}=r^{2} \\
& \quad P(t)=\text { eye }+t^{*} \text { Ray }
\end{aligned}
$$

Substitute definition of p into first equation:

Expand squared terms and collect terms based on powers of u :

$$
A^{*} t^{2}+B^{*} t+C=0
$$

Ray-Sphere Intersection (cont’d)

For a sphere with its center at c
A sphere with center $\mathrm{c}=(\mathrm{xc}, \mathrm{yc}, \mathrm{zc})$ and radius R can be represented as:

$$
(x-x c)^{2}+(y-y c)^{2}+(z-z c)^{2}-R^{2}=0
$$

For a point p on the sphere, we can write the above in vector form:

$$
(\mathrm{p}-\mathrm{c}) \cdot(\mathrm{p}-\mathrm{c})-\mathrm{R}^{2}=0 \text { (note }{ }^{\prime} \cdot \text { is a dot product) }
$$

Solve p similarly

Quadratic Equation

When solving a quadratic equation
$a t^{2}+b t+c=0$

Discriminant:

$$
d=\sqrt{b^{2}-4 a c}
$$

And Solution:

$$
t_{ \pm}=\frac{-b \pm d}{2 a}
$$

Ray-Sphere Intersection

$b^{2}-4 a c<0:$ No intersection

$$
d=\sqrt{b^{2}-4 a c}
$$

$b^{2}-4 a c>0$: Two solutions (enter and exit)
$\mathrm{b}^{2}-4 \mathrm{ac}=0$: One solution (ray grazes the sphere)

Determine Color

