Color Theory

What is color?

- How do we perceive it?
- How do we describe and match colors?
- Color spaces

What is color?

- Interaction of light and eye-brain system
- Light: electromagnetic phenomenon
- Discerned by different wavelength

Color Spectra

Pure colors - single wavelength

Color Spectra

Sample lights:

How do we perceive them?

Human

Visual

System

Rods

- black \& white receptors
- peripheral vision
- sensitive

Cones

- 3 type tuned to different frequencies
- 3 cones have different sensitivities
- central vision
- less sensitive

Tristimulus Theory of Color

Important principle:
Any color spectra is perceived by sensors with 3 different response frequencies!

Tristimulus theory of color:
Color is inherently a three-dimensional space

Metamers:
If two colors produce the same tristimulus values, then they are visually indistinguishable

Spectral Response of Human Visual System

Color Spectra

Sample lights:

How to describe them numerically?

Color Spectra

Important principle:

Any color spectra is perceived as:

- a single dominant wavelength - its hue
- mixed with a certain amount of white light (saturation)
- of a certain intensity or brightness

Dominant Wavelength

Stating the numbers

- Dominant wavelength (hue)
- Luminance (total power)
- Saturation (purity)

Luminance and Saturation

- Luminance $(L)=(D-A) B+A W$
- Saturation $=(D-A) B / L * 100 \%$
- White light: D = A, i.e., Sat. $=0$

RGB color description

- Use three primary color ($\mathrm{r}, \mathrm{g}, \mathrm{b}$)

$$
-c(L)=r(L) R+g(L) G+b(L) B
$$

4

RGB Primary Colors

RGB Color Space

CMY Color Model

- C: Cyan; M: Magenta; Y: Yellow
- Subtractive primaries - Cyan, Magenta, and Yellow are the compliment of Red, Green Blue
- Specified by what is being removed from white
- Example: Cyan color $=(1,0,0)$ means red is removed; CMY: $(1,1,0)->$ red and green is removed $=>$ what color?
- Sometimes CMYK - K: Black

CMY <-> RGB

$$
\left|\begin{array}{l}
C \\
M \\
Y
\end{array}\right|=\left|\begin{array}{l}
1 \\
1 \\
1
\end{array}\right|-\left|\begin{array}{c}
R \\
G \\
B
\end{array}\right|
$$

CIE Primary "Colors"

(X,Y,Z) - Not real colors

- The combination coefficients are positive
- Perceptual space

$$
c(L)=x(L) X+y(L) Y+z(L) z
$$

CIE Primary Colors

CIE Chromaticity Chart

Project to xy plane

CIE Gamut

- The range of colors that can be produced on a device

Color Spaces

- CIE model is a good color reference Not necessarily the most natural one Many other color spaces are used
- RGB
- HLS
- CMY
- HSV
- YIQ
- ...

HLS Color Space

HLS Color Space (2)

