2D Transformations

- Given a 2D object, transformation is to change the object's
- Position (translation)
- Size (scaling)
- Orientation (rotation)
- Shapes (shear)
- Apply a sequence of matrix multiplication to the object vertices

Point representation

- We can use a column vector (a $2 x 1$ matrix) to represent a 2D point $\left|\begin{array}{l}x \\ y\end{array}\right|$
- A general form of linear transformation can be written as:

$$
\begin{array}{lll}
x^{\prime}=a x+b y+c & & \left|\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right|=\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right| *\left|\begin{array}{l}
x \\
y \\
1
\end{array}\right| \\
y^{\prime}=d x+e y+f & \text { OR } &
\end{array}
$$

Translation

- Re-position a point along a straight line
- Given a point (x, y), and the translation distance (tx,ty)

The new point: (x^{\prime}, y^{\prime})

$$
x^{\prime}=x+t x
$$

$y^{\prime}=y+t y$

OR $\quad P^{\prime}=P+T$ where $P^{\prime}=\left|\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right| P=\left|\begin{array}{l}x \\ y\end{array}\right| T=\left|\begin{array}{l}\text { tx } \\ \text { ty }\end{array}\right|$

Or, 3x3 Matrix representations

- Translation: $\left|\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right|=\left|\begin{array}{lll}1 & 0 & t x \\ 0 & 1 & \text { ty } \\ 0 & 0 & 1\end{array}\right| *\left|\begin{array}{c}x \\ y \\ 1\end{array}\right|$
- Rotation:

$$
\left|\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right|=\left|\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right| *\left|\begin{array}{c}
x \\
y \\
1
\end{array}\right|
$$

- Scaling: $\quad\left|\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right|=\left|\begin{array}{ccc}S x & 0 & 0 \\ 0 & S y & 0 \\ 0 & 0 & 1\end{array}\right| *\left|\begin{array}{l}x \\ y \\ 1\end{array}\right|$

Why use 3×3 matrices?

Why use 3×3 matrices?

- So that we can perform all transformations using matrix/vector multiplications
- This allows us to pre-multiply all the matrices together
- The point (x, y) needs to be represented as $(x, y, 1) \quad->$ this is called Homogeneous coordinates!

Rotation Revisit

- The standard rotation matrix is used to rotate about the origin $(0,0)$

- What if I want to rotate about an arbitrary center?

Affine Transformation

- Translation, Scaling, Rotation, Shearing are all affine transformation
- Affine transformation - transformed point $\mathrm{P}^{\prime}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$ is a linear combination of the original point $P(x, y)$, i.e.

$$
\left.\left|\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right|=\left|\begin{array}{ccc}
m 11 & \text { m12 } & \text { m13 } \\
\text { m21 } & \text { m22 } & \text { m23 } \\
0 & 0 & 1
\end{array}\right| \begin{aligned}
& x \\
& y \\
& 1
\end{aligned} \right\rvert\,
$$

- Any 2D affine transformation can be decomposed into a rotation, followed by a scaling, followed by a shearing, and followed by a translation. Affine matrix $=$ translation x shearing x scaling x rotation

Composing Transformation

- Composing Transformation - the process of applying several transformation in succession to form one overall transformation
- If we apply transform a point P using M1 matrix first, and then transform using M2, and then M3, then we have:
 (pre-multiply) $\quad \dot{M}$

Composing Transformation

- Matrix multiplication is associative

M3 \times M2 \times M1 $=(\mathrm{M} 3 \times \mathrm{M} 2) \times \mathrm{M} 1=\mathrm{M} 3 \times(\mathrm{M} 2 \times \mathrm{M} 1)$

- Transformation products may not be commutative

$$
A \times B!=B \times A
$$

- Some cases where $A \times B=B \times A$

A	B
translation	translation
scaling	scaling
rotation	rotation
uniform scaling	rotation
(sx=sy)	

How OpenGL does it?

Peng.

- OpenGL's transformation functions are meant to be used in 3D
- No problem for 2D though - just ignore the z dimension
- Translation:
- gITranslatef(d)(tx, ty, tz) -> glTranslatef(d)(tx,ty,0) for 2D

