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2D Transformations
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2D Transformation

Given a 2D object, transformation is to 
change the object’s

Position (translation)
Size (scaling)
Orientation (rotation)
Shapes (shear)

Apply a sequence of matrix multiplication to 
the object vertices

Point representation

We can use a column vector (a 2x1 matrix) to 
represent a 2D point    x

y
A general form of linear transformation can 
be written as: 

x’ = ax + by + c
OR

y’ = dx + ey + f

X’                a     b      c              x
Y’    =          d     e      f       *     y
1                 0     0     1              1

Translation

Re-position a point along a straight line 
Given a point (x,y), and the translation 
distance (tx,ty)

The new point: (x’, y’) 
x’ = x + tx
y’ = y + ty (x,y)

(x’,y’)

OR   P’  =  P  +  T where    P’ =    x’     p =    x    T =    tx
y’     y             ty

tx

ty
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3x3 2D Translation Matrix

x’     =        x       +       tx
y’               y                 ty

Use 3 x 1 vector 

x’                  1     0     tx x 
y’     =          0      1     ty *     y
1                  0      0     1           1

Note that now it becomes a matrix-vector multiplication

Translation

How to translate an object with multiple 
vertices? 

Translate individual
vertices 

2D Rotation
Default rotation center: Origin (0,0)

θ
θ> 0  : Rotate counter clockwise

θ< 0  : Rotate clockwise
θ

Rotation

(x,y) 

(x’,y’) 

θ

(x,y)  -> Rotate about the origin by θ

(x’, y’)

How to compute (x’, y’) ?
φ

x =  r cos (φ) y = r sin (φ)

r

x’ =  r cos (φ + θ) y = r sin (φ + θ)
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Rotation

(x,y) 

(x’,y’) 

θ

φ
r

x =  r cos (φ) y = r sin (φ)

x’ =  r cos (φ + θ) y = r sin (φ + θ)

x’ =  r cos (φ + θ)
=  r  cos(φ) cos(θ) – r sin(φ) sin(θ) 
=  x cos(θ) – y sin(θ)  

y’ =  r sin (φ + θ)
=  r sin(φ) cos(θ) + r cos(φ)sin(θ) 
=  y cos(θ) + x sin(θ)  

Rotation

(x,y) 

(x’,y’) 

θ

φ
r

x’ =  x cos(θ) – y sin(θ)  

y’ =  y cos(θ) + x sin(θ)  

Matrix form?

x’          cos(θ)     -sin(θ)     x 
y’          sin(θ)      cos(θ)     y

=

3 x 3? 

3x3 2D Rotation Matrix

x’          cos(θ)     -sin(θ)     x 
y’          sin(θ)      cos(θ)     y

=

(x,y) 

(x’,y’) 

θ

φ
r

x’          cos(θ)     -sin(θ)     0        x 
y’          sin(θ)      cos(θ)     0        y
1             0             0         1        1

=

Rotation

How to rotate an object with multiple 
vertices? 

Rotate individual
Vertices 

θ
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2D Scaling 

Scale: Alter the size of an object by a scaling factor
(Sx, Sy), i.e. 

x’ = x . Sx
y’ = y . Sy

x’          Sx 0        x
y’          0    Sy y=

(1,1)

(2,2) Sx = 2, Sy = 2  

(2,2)

(4,4)

2D Scaling 

(1,1)

(2,2) Sx = 2, Sy = 2  

(2,2)

(4,4)

Not only the object size is changed, it also moved!!
Usually this is an undesirable effect 
We will discuss later (soon) how to fix it 

3x3 2D Scaling Matrix

x’          Sx 0        x
y’          0    Sy y=

x’            Sx 0      0        x 
y’     =     0      Sy 0    *   y
1             0       0     1        1

Put it all together 
Translation:   x’        x         tx

y’        y         ty

Rotation:      x’       cos(θ)   -sin(θ)      x
y’        sin(θ)    cos(θ)      y 

Scaling:       x’           Sx 0           x
y’           0         Sy y

=          +

=                               *

=                           *
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Or, 3x3 Matrix representations
Translation: 

Rotation: 

Scaling: 

Why use 3x3 matrices? 

x’                  1     0     tx x 
y’     =          0      1     ty *     y
1                  0      0     1           1

x’          cos(θ)     -sin(θ)     0        x 
y’          sin(θ)      cos(θ)     0   *   y
1             0             0         1        1

=

x’            Sx 0      0        x 
y’     =     0      Sy 0    *   y
1             0       0     1        1

Why use 3x3 matrices?

So that we can perform all transformations 
using matrix/vector multiplications

This allows us to pre-multiply all the matrices 
together 

The point (x,y) needs to be represented as 
(x,y,1)  -> this is called Homogeneous 
coordinates! 

Shearing

Y coordinates are unaffected, but x cordinates
are translated linearly with y
That is:

y’ = y 
x’ = x + y * h 

x          1   h   0       x
y   =     0   1   0   *   y
1          0   0    1      1 

Shearing in y 

x          1   0   0       x
y   =     g   1   0   *  y
1          0   0    1      1 

A 2D rotation is three shears
Shearing will not change the area of the object
Any 2D shearing can be done by a rotation, followed 
by a scaling, and followed by a rotation

Interesting Facts: 
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Rotation Revisit 

The standard rotation matrix is used to 
rotate about the origin (0,0) 

cos(θ)     -sin(θ)     0 
sin(θ)       cos(θ)     0 

0             0         1 

What if I want to rotate about an 
arbitrary center? 

Arbitrary Rotation Center

To rotate about  an arbitrary point P (px,py) 
by θ:

Translate the object so that P will coincide with 
the origin:  T(-px, -py) 
Rotate the object: R(θ)
Translate the object back:   T(px,py)

(px,py)

Arbitrary Rotation Center

Translate the object so that P will coincide with 
the origin:  T(-px, -py) 
Rotate the object: R(θ)
Translate the object back:   T(px,py)

Put in matrix form:    T(px,py) R(θ) T(-px, -py) * P

x’         1 0  px cos(θ)   -sin(θ)   0       1  0  -px x  
y’   =    0 1  py sin(θ)     cos(θ)  0       0  1  -py y
1          0 0   1           0            0      1       0  0   1      1

Scaling Revisit 

The standard scaling matrix will only 
anchor at (0,0) 

Sx 0      0 
0     Sy 0 
0     0       1 

What if I want to scale about an arbitrary 
pivot point? 
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Arbitrary Scaling Pivot 

To scale about an arbitrary pivot point P 
(px,py):

Translate the object so that P will coincide with 
the origin:  T(-px, -py) 
Rotate the object: S(sx, sy)
Translate the object back:   T(px,py)

(px,py)

Affine Transformation
Translation, Scaling, Rotation, Shearing are all affine 
transformation 
Affine transformation – transformed point P’ (x’,y’) is 
a linear combination of the original point P (x,y), i.e.

x’        m11    m12    m13       x
y’   =   m21    m22    m23      y 
1          0         0        1       1

Any 2D affine transformation can be decomposed 
into a rotation, followed by a scaling, followed by a 
shearing, and followed by a translation. 
Affine matrix = translation x shearing x scaling x rotation

Composing Transformation

Composing Transformation – the process of applying 
several transformation in succession to form one 
overall transformation 
If we apply transform a point P using M1 matrix first, 
and then transform using M2, and then M3, then we 
have: 
(M3  x  (M2   x   (M1  x P )))  = M3 x M2 x M1 x P

M
(pre-multiply)

Composing Transformation 

Matrix multiplication is associative
M3 x M2 x M1 = (M3 x M2) x M1 = M3 x (M2 x M1)

Transformation products may not be commutative    

A x B  != B x A
Some cases where A x B = B x A 

A                               B 
translation                     translation 
scaling                          scaling
rotation                         rotation

uniform scaling               rotation

(sx = sy) 
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Transformation order matters!

Example: rotation and translation are not 
commutative

Translate (5,0) and then Rotate 60 degree 

OR 

Rotate 60 degree and then translate (5,0)??

Rotate and then translate !! 

How OpenGL does it? 

OpenGL’s transformation functions are 
meant to be used in 3D 
No problem for 2D though – just ignore 
the z dimension
Translation: 

glTranslatef(d)(tx, ty, tz) ->    
glTranslatef(d)(tx,ty,0) for 2D 

How OpenGL does it? 

Rotation: 
glRotatef(d)(angle, vx, vy, vz) ->    
glRotatef(d)(angle, 0,0,1) for 2D 

x

y

z

(vx, vy, vz) – rotation axis 

x

y

You can imagine z is pointing out
of the slide 

OpenGL Transformation Composition

A global modeling transformation matrix
(GL_MODELVIEW, called it M here)
glMatrixMode(GL_MODELVIEW)

The user is responsible to reset it if necessary
glLoadIdentity()

-> M =  1 0 0 
0 1 0 
0 0 1 



9

OpenGL Transformation Composition

Matrices for performing user-specified 
transformations are multiplied to the model view 
global matrix
For example,         

1  0  1

glTranslated(1,1 0);     M  =   M   x      0  1  1

0  0  1

All the vertices P defined within glBegin() will first go 
through the transformation (modeling 
transformation)  

P’ =  M x P  

Transformation Pipeline

Object 
Local Coordinates

Object 
World Coordinates

Modeling 
transformation

…


