

$\begin{vmatrix} \mathbf{x}' \\ \mathbf{y}' \end{vmatrix} = \begin{vmatrix} \mathbf{S}\mathbf{x} & 0 \\ \mathbf{S}\mathbf{y} \end{vmatrix} \begin{vmatrix} \mathbf{x} \\ \mathbf{y} \end{vmatrix}$
l y i i o syr i yi ↓
$\begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix} = \begin{vmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & 1 \end{vmatrix} \times \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$

Put it all together
Translation: $\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} x \\ y \end{vmatrix} + \begin{vmatrix} tx \\ ty \end{vmatrix}$
• Rotation: $\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{vmatrix} * \begin{vmatrix} x \\ y \end{vmatrix}$
• Scaling: $\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} Sx & 0 \\ 0 & Sy \end{vmatrix} * \begin{vmatrix} x \\ y \end{vmatrix}$

Arbitra	ry Rot	ation Center	
 Translate the origin Rotate the Translate 	the object : T(-px, -p e object: R the object	so that P will coincide with y) θ) back: T(px,py)	
Put in matr	ix form:	T(px,py) R(θ) T(-px, -py) * P	
$\begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & py \\ 0 & 1 & py \\ 0 & 0 & 1 \end{vmatrix}$	$\begin{array}{c c} cos(\theta) \\ cos(\theta) \\ sin(\theta) \\ 0 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

