
1

2D Transformations

x

y
x

y

x

y

2D Transformation

Given a 2D object, transformation is to
change the object’s

Position (translation)
Size (scaling)
Orientation (rotation)
Shapes (shear)

Apply a sequence of matrix multiplication to
the object vertices

Point representation

We can use a column vector (a 2x1 matrix) to
represent a 2D point x

y
A general form of linear transformation can
be written as:

x’ = ax + by + c
OR

y’ = dx + ey + f

X’ a b c x
Y’ = d e f * y
1 0 0 1 1

Translation

Re-position a point along a straight line
Given a point (x,y), and the translation
distance (tx,ty)

The new point: (x’, y’)
x’ = x + tx
y’ = y + ty (x,y)

(x’,y’)

OR P’ = P + T where P’ = x’ p = x T = tx
y’ y ty

tx

ty

2

3x3 2D Translation Matrix

x’ = x + tx
y’ y ty

Use 3 x 1 vector

x’ 1 0 tx x
y’ = 0 1 ty * y
1 0 0 1 1

Note that now it becomes a matrix-vector multiplication

Translation

How to translate an object with multiple
vertices?

Translate individual
vertices

2D Rotation
Default rotation center: Origin (0,0)

θ
θ> 0 : Rotate counter clockwise

θ< 0 : Rotate clockwise
θ

Rotation

(x,y)

(x’,y’)

θ

(x,y) -> Rotate about the origin by θ

(x’, y’)

How to compute (x’, y’) ?
φ

x = r cos (φ) y = r sin (φ)

r

x’ = r cos (φ + θ) y = r sin (φ + θ)

3

Rotation

(x,y)

(x’,y’)

θ

φ
r

x = r cos (φ) y = r sin (φ)

x’ = r cos (φ + θ) y = r sin (φ + θ)

x’ = r cos (φ + θ)
= r cos(φ) cos(θ) – r sin(φ) sin(θ)
= x cos(θ) – y sin(θ)

y’ = r sin (φ + θ)
= r sin(φ) cos(θ) + r cos(φ)sin(θ)
= y cos(θ) + x sin(θ)

Rotation

(x,y)

(x’,y’)

θ

φ
r

x’ = x cos(θ) – y sin(θ)

y’ = y cos(θ) + x sin(θ)

Matrix form?

x’ cos(θ) -sin(θ) x
y’ sin(θ) cos(θ) y

=

3 x 3?

3x3 2D Rotation Matrix

x’ cos(θ) -sin(θ) x
y’ sin(θ) cos(θ) y

=

(x,y)

(x’,y’)

θ

φ
r

x’ cos(θ) -sin(θ) 0 x
y’ sin(θ) cos(θ) 0 y
1 0 0 1 1

=

Rotation

How to rotate an object with multiple
vertices?

Rotate individual
Vertices

θ

4

2D Scaling

Scale: Alter the size of an object by a scaling factor
(Sx, Sy), i.e.

x’ = x . Sx
y’ = y . Sy

x’ Sx 0 x
y’ 0 Sy y=

(1,1)

(2,2) Sx = 2, Sy = 2

(2,2)

(4,4)

2D Scaling

(1,1)

(2,2) Sx = 2, Sy = 2

(2,2)

(4,4)

Not only the object size is changed, it also moved!!
Usually this is an undesirable effect
We will discuss later (soon) how to fix it

3x3 2D Scaling Matrix

x’ Sx 0 x
y’ 0 Sy y=

x’ Sx 0 0 x
y’ = 0 Sy 0 * y
1 0 0 1 1

Put it all together
Translation: x’ x tx

y’ y ty

Rotation: x’ cos(θ) -sin(θ) x
y’ sin(θ) cos(θ) y

Scaling: x’ Sx 0 x
y’ 0 Sy y

= +

= *

= *

5

Or, 3x3 Matrix representations
Translation:

Rotation:

Scaling:

Why use 3x3 matrices?

x’ 1 0 tx x
y’ = 0 1 ty * y
1 0 0 1 1

x’ cos(θ) -sin(θ) 0 x
y’ sin(θ) cos(θ) 0 * y
1 0 0 1 1

=

x’ Sx 0 0 x
y’ = 0 Sy 0 * y
1 0 0 1 1

Why use 3x3 matrices?

So that we can perform all transformations
using matrix/vector multiplications

This allows us to pre-multiply all the matrices
together

The point (x,y) needs to be represented as
(x,y,1) -> this is called Homogeneous
coordinates!

Shearing

Y coordinates are unaffected, but x cordinates
are translated linearly with y
That is:

y’ = y
x’ = x + y * h

x 1 h 0 x
y = 0 1 0 * y
1 0 0 1 1

Shearing in y

x 1 0 0 x
y = g 1 0 * y
1 0 0 1 1

A 2D rotation is three shears
Shearing will not change the area of the object
Any 2D shearing can be done by a rotation, followed
by a scaling, and followed by a rotation

Interesting Facts:

6

Rotation Revisit

The standard rotation matrix is used to
rotate about the origin (0,0)

cos(θ) -sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

What if I want to rotate about an
arbitrary center?

Arbitrary Rotation Center

To rotate about an arbitrary point P (px,py)
by θ:

Translate the object so that P will coincide with
the origin: T(-px, -py)
Rotate the object: R(θ)
Translate the object back: T(px,py)

(px,py)

Arbitrary Rotation Center

Translate the object so that P will coincide with
the origin: T(-px, -py)
Rotate the object: R(θ)
Translate the object back: T(px,py)

Put in matrix form: T(px,py) R(θ) T(-px, -py) * P

x’ 1 0 px cos(θ) -sin(θ) 0 1 0 -px x
y’ = 0 1 py sin(θ) cos(θ) 0 0 1 -py y
1 0 0 1 0 0 1 0 0 1 1

Scaling Revisit

The standard scaling matrix will only
anchor at (0,0)

Sx 0 0
0 Sy 0
0 0 1

What if I want to scale about an arbitrary
pivot point?

7

Arbitrary Scaling Pivot

To scale about an arbitrary pivot point P
(px,py):

Translate the object so that P will coincide with
the origin: T(-px, -py)
Rotate the object: S(sx, sy)
Translate the object back: T(px,py)

(px,py)

Affine Transformation
Translation, Scaling, Rotation, Shearing are all affine
transformation
Affine transformation – transformed point P’ (x’,y’) is
a linear combination of the original point P (x,y), i.e.

x’ m11 m12 m13 x
y’ = m21 m22 m23 y
1 0 0 1 1

Any 2D affine transformation can be decomposed
into a rotation, followed by a scaling, followed by a
shearing, and followed by a translation.
Affine matrix = translation x shearing x scaling x rotation

Composing Transformation

Composing Transformation – the process of applying
several transformation in succession to form one
overall transformation
If we apply transform a point P using M1 matrix first,
and then transform using M2, and then M3, then we
have:
(M3 x (M2 x (M1 x P))) = M3 x M2 x M1 x P

M
(pre-multiply)

Composing Transformation

Matrix multiplication is associative
M3 x M2 x M1 = (M3 x M2) x M1 = M3 x (M2 x M1)

Transformation products may not be commutative

A x B != B x A
Some cases where A x B = B x A

A B
translation translation
scaling scaling
rotation rotation

uniform scaling rotation

(sx = sy)

8

Transformation order matters!

Example: rotation and translation are not
commutative

Translate (5,0) and then Rotate 60 degree

OR

Rotate 60 degree and then translate (5,0)??

Rotate and then translate !!

How OpenGL does it?

OpenGL’s transformation functions are
meant to be used in 3D
No problem for 2D though – just ignore
the z dimension
Translation:

glTranslatef(d)(tx, ty, tz) ->
glTranslatef(d)(tx,ty,0) for 2D

How OpenGL does it?

Rotation:
glRotatef(d)(angle, vx, vy, vz) ->
glRotatef(d)(angle, 0,0,1) for 2D

x

y

z

(vx, vy, vz) – rotation axis

x

y

You can imagine z is pointing out
of the slide

OpenGL Transformation Composition

A global modeling transformation matrix
(GL_MODELVIEW, called it M here)
glMatrixMode(GL_MODELVIEW)

The user is responsible to reset it if necessary
glLoadIdentity()

-> M = 1 0 0
0 1 0
0 0 1

9

OpenGL Transformation Composition

Matrices for performing user-specified
transformations are multiplied to the model view
global matrix
For example,

1 0 1

glTranslated(1,1 0); M = M x 0 1 1

0 0 1

All the vertices P defined within glBegin() will first go
through the transformation (modeling
transformation)

P’ = M x P

Transformation Pipeline

Object
Local Coordinates

Object
World Coordinates

Modeling
transformation

…

