= A way of adding surface details

= Two ways can achieve the goal:

. Surface detail polygons: create extra polygons to model
object details

» Add scene complexity and thus slow down the graphics
rendering speed

~ Some fine features are hard to model!
v Map a texture to the surface (a more popular approach)

Complexity of images does
Not affect the complexity
Of geometry processing
(transformation, clipping...)

i Texture Representation

»

v Bitmap (pixel map) textures (supported by OpenGL)
= Procedural textures (used in advanced rendering

programs)

1,1
EHEENER.IED I
EFIEWE e S eWw
(S raelel -1 18
S P T S R
et bw LYl 11
. s-EEEBL' @RI N
T < O .
[ST Tl]y
WERAEETNENEL
e Tl T DR e
o= My WA

O ST A I

(0,0)

v

Bitmap texture:

. A 2D image - represented by 2D array
texture[height][width]

d Each pixel (or called texel) by a unique
pair texture coordinate (s, t)

d The s and t are usually normalized to
a [0,1] range

1 For any given (s,t) in the normalized range,
there is a unigue image value (i.e.,
a unique [red, green, blue] set)

* Map textures to surfaces

= Establish mapping from texture to surfaces
(polygons):
- Application program needs to specify texture
coordinates for each corner of the polygon

(1,0) (1,1)

The polygon can be
in an arbitrary size

‘L Map textures to surfaces

= Texture mapping is performed In
rasterization (backward mapping)

(0,1) (1,1) L For each pixel that is to be painted, its
texture coordinates (s, t) are determined
(interpolated) based on the corners’
texture coordinates (why not just
interpolate the color?)

] The interpolated texture coordinates

are then used to perform texture lookup
(0,0) (1,0)

‘L Texture Value Lookup

= For the given texture coordinates (s,t), we can find a
unique image value from the texture map

(1,1)

]
]
L]
L]
[]
,

/

F

NN

0,0) (0.25,0) (0.5,0) (0.75,0) (1,0)

How about coordinates that are not
exactly at the intersection (pixel) positions?

A) Nearest neighbor
B) Linear Interpolation
C) Other filters

‘L OpenGL texture mapping @QpenGL.

= Steps in your program
1) Specify texture
read or generate image
Assign to texture

2) Specify texture mapping parameters
Wrapping, filtering, etc.

3) Enable GL texture mapping (GL_TEXTURE_2D)
4) Assign texture coordinates to vertices
5) Draw your objects

6) Disable GL texture mapping (if you don’t need to
perform texture mapping any more)

i Specify textures CrenGL.

= Load the texture map from main memory to
texture memory
o glTexlmage2D(Glenum target, Glint level, Glint
iformat, int width, int height, int border, Glenum format,
Glenum type, Glvoid* imQ)

= Example:

o glTeximage2D(GL_TEXTURE_ 2D, 0, GL_RGB, 64, 64, 0,
GL_RGB, GL_UNSIGNED_BYTE, mylmage);

(mylmage is a 2D array: GLuByte mylmage[64][64][3];)

= The dimensions of texture images must be powers
of 2

i FIX texture size Ceeotil.

= If the dimensions of the texture map are
not power of 2, you can
1 Pad zeros 2) use gluScalelmage()

— 60— Ask OpenGL to filter the data

' for you to the right size —
you can specify the output resolution
that you want

Remember to adjust the texture coordinates
for your polygon corners — you don’t want to
Include black texels in your final picture

i Texture mapping parameters @penGL.

= What happen if the given texture coordinates (s,t) are outside
[0,1] range?

(1.1) (2,2) (2,2)

E ool 11

S - —

(0,0) (0,0) (0,0)

GL_Clamp
texture GL_Repeat
If(s>1)s=1

: If(t>1)t=1
= Example: glTexParameteri(GL _TEXTURE 2D, =1

GL_TEXTURE WRAP_S, GL_CLAMP)

CrentL.

Texture mapping parameters(2)

= Since a polygon can get transformed to arbitrary screen size,
texels in the texture map can get magnified or minified.

\‘<\\\\‘ 1>
texture
polygon projection texture polygon projection
Magnification Minification

= Filtering: interpolate a texel value from its neighbors or combine
multiple texel values into a single one

CoenGL.

Texture mapping parameters(3)

= OpenGL texture filtering:

2) Linear interpolate the neighbors

1) N t Neighbor (| :
) Nearest Neighbor (lower (better quality, slower)

image quality)

glTexParameteri(GL_TEXTURE_2D, glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_NEAREST); CGL_TEXTURE _MIN_FILTER,

GL LINEAR
\ / _)

Or GL_TEXTURE_MAX_FILTER

i Texture color blending penGL.

s Determine how to combine the texel color and the

object color

= GL _MODULATE — multiply texture and object color
= GL BLEND - linear combination of texture and object color
= GL_REPLACE - use texture color to replace object color

Example:
gITexEnvf(GL _TEXTURE _ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

i Enable (Disable) Textures @eensL.

= Enable texture — glEnable(GL TEXTURE_2D)
= Disable texture — glDisable(GL_TEXTURE_2D)

Remember to disable texture mapping when
you draw non-textured polygons

CrentL.

i Specify texture coordinates

= Glve texture coordinates before defining each
vertex

glBegin(GL_QUADS);
glTexCoord2D(0,0);
glVertex3f(-0.5, 0, 0.5);

GENd0);

penGL.

i Transform texture coordinates

= All the texture coordinates are multiplied by
Gl TEXTURE matrix before in use

= To transform texture coordinates, you do:
»« gIMatrixMode(Gl_TEXTURE);
= Apply regular transformation functions
= Then you can draw the textured objects

i Put It all together

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT):
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE):

glEnable(GL_TEXTURE_2D);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 64, 64, 0, GL_RGB,
GL_UNSIGNED_BYTE, mytexture);

Draw_picturel(); // define texture coordinates and vertices in the function

i Projector Functions

How do we map the texture onto a arbitrary (complex) object?

~ Construct a mapping between the 3-D point to an intermediate
surface

= ldea: Project each object point to the intermediate surface with a
parallel or perspective projection
~ The focal point is usually placed inside the object

Plane
Cylinder
Sphere
Cube

courtesy of R. Wolfe

Planar projector

Planar Projg

Orthographic projection
onto XY plane:
u=X, v=Yy

...onto YZ plane ...onto XZ plane

:h Cylindrical Projector

onvert rectangular coordinates (X, y, z) to
cylindrical (r, U, h), use only (h, p) to index
texture image

i Spherical Projector

= Convert rectangular coordinates (X, y, z) to
spherical (6, ¢)

Parametric Surfaces

A parameterized surface patch
> Xx=1(u,v),y=9g(Uu,v), z="h(u, v)

> You will get to these kinds of surfaces in CSE
7/34.

courtesy of R. Wolfe

Texture Rasterization

= [exture coordinates are interpolated from
polygon vertices just like ... remember ...
~ Color : Gouraud shading
~ Depth: Z-buffer
= First along polygon edges between vertices
= Then along scanlines between left and right sides

v oA (S0: f0)

X from Hill

Linear Texture Coordinate Interpolation
This doesn’t work In perspective projection!

= The textures look warped along the diagonal
= Noticeable during an animation

courtesy of H. Pfister

i Why?

= Equal spacing in screen (pixel) space is not the same as in
texture space Iin perspective projection

= Perspective foreshortening

N
a) b)
ﬁ 7
lzearlhcr
. from Hill
closer to the eye o
the eye s

Cent3[-----

of Projection

courtesy of

View plane H. Pfister

Perspective-Correct Texture
Coordinate Interpolation

Interpolate (tex_coord/w) over the polygon, then
do perspective divide after interpolation

Compute at each vertex after perspective
transformation

= “Numerators” S/w, t/w
= “Denominator’ 1/wW

Linearly interpolate 1/w, s/w, and t/w across the
polygon

At each pixel

» Perform perspective division of interpolated texture
coordinates (s/w, t/w) by interpolated 1/w (i.e.,
numerator over denominator) to get (s, t)

i Perspective-Correct Interpolation

= [hat fixed it!

i Perspective Correction Hint

= Texture coordinate and color interpolation:
~ Linearly in screen space (wrong) OR
~ Perspective correct interpolation (slower)

= glHint (GL_PERSPECTIVE_CORRECTION_HINT,
hint), where hint is one of:

= GL NICEST: Perspective
= GL FASTEST: Linear
= GL DONT_CARE: Linear

