
Texture Mapping

A way of adding surface details
Two ways can achieve the goal:

Surface detail polygons: create extra polygons to model
object details

Add scene complexity and thus slow down the graphics
rendering speed
Some fine features are hard to model!

Map a texture to the surface (a more popular approach)

Complexity of images does
Not affect the complexity
Of geometry processing
(transformation, clipping…)

Texture Representation

Bitmap (pixel map) textures (supported by OpenGL)
Procedural textures (used in advanced rendering
programs)

Bitmap texture:
A 2D image - represented by 2D array
texture[height][width]
Each pixel (or called texel) by a unique
pair texture coordinate (s, t)
The s and t are usually normalized to
a [0,1] range
For any given (s,t) in the normalized range,
there is a unique image value (i.e.,
a unique [red, green, blue] set) s

t

(0,0)

(1,1)

Map textures to surfaces

Establish mapping from texture to surfaces
(polygons):
- Application program needs to specify texture
coordinates for each corner of the polygon

The polygon can be
in an arbitrary size

(0,0) (1,0)

(1,0) (1,1)

Map textures to surfaces

Texture mapping is performed in
rasterization (backward mapping)

(0,0) (1,0)

(0,1) (1,1) For each pixel that is to be painted, its
texture coordinates (s, t) are determined
(interpolated) based on the corners’
texture coordinates (why not just
interpolate the color?)

The interpolated texture coordinates
are then used to perform texture lookup

Texture Mapping

S

t

3D geometry

2D image

2D projection of 3D geometry

1. projection

2. texture lookup

3. patch texel

Texture Value Lookup

For the given texture coordinates (s,t), we can find a
unique image value from the texture map

(0,0)

(1,1)

(0.25,0) (0.5,0) (0.75,0) (1,0)

How about coordinates that are not
exactly at the intersection (pixel) positions?

A) Nearest neighbor
B) Linear Interpolation
C) Other filters

OpenGL texture mapping

Steps in your program
1) Specify texture

- read or generate image
- Assign to texture

2) Specify texture mapping parameters
- Wrapping, filtering, etc.

3) Enable GL texture mapping (GL_TEXTURE_2D)
4) Assign texture coordinates to vertices
5) Draw your objects
6) Disable GL texture mapping (if you don’t need to

perform texture mapping any more)

Specify textures
Load the texture map from main memory to
texture memory

glTexImage2D(Glenum target, Glint level, Glint
iformat, int width, int height, int border, Glenum format,
Glenum type, Glvoid* img)

Example:
glTeximage2D(GL_TEXTURE_2D, 0, GL_RGB, 64, 64, 0,
GL_RGB, GL_UNSIGNED_BYTE, myImage);
(myImage is a 2D array: GLuByte myImage[64][64][3];)

The dimensions of texture images must be powers
of 2

Fix texture size

If the dimensions of the texture map are
not power of 2, you can

1) Pad zeros 2) use gluScaleImage()

100

60

128

64

Ask OpenGL to filter the data
for you to the right size –
you can specify the output resolution
that you want

Remember to adjust the texture coordinates
for your polygon corners – you don’t want to
Include black texels in your final picture

Texture mapping parameters

What happen if the given texture coordinates (s,t) are outside
[0,1] range?

Example: glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S, GL_CLAMP)

(0,0)

(1,1)

texture GL_Repeat

(0,0)

(2,2)

(0,0)

(2,2)

GL_Clamp

If (s >1) s = 1
If (t >1) t = 1

Texture mapping parameters(2)

Since a polygon can get transformed to arbitrary screen size,
texels in the texture map can get magnified or minified.

Filtering: interpolate a texel value from its neighbors or combine
multiple texel values into a single one

texture
polygon projection

Magnification

texture polygon projection

Minification

2) Linear interpolate the neighbors
(better quality, slower)

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
GL_LINEAR)

1) Nearest Neighbor (lower
image quality)

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_NEAREST);

Texture mapping parameters(3)

OpenGL texture filtering:

Or GL_TEXTURE_MAX_FILTER

Texture color blending

Determine how to combine the texel color and the
object color

GL_MODULATE – multiply texture and object color
GL_BLEND – linear combination of texture and object color
GL_REPLACE – use texture color to replace object color

Example:
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

Enable (Disable) Textures

Enable texture – glEnable(GL_TEXTURE_2D)
Disable texture – glDisable(GL_TEXTURE_2D)

Remember to disable texture mapping when
you draw non-textured polygons

Specify texture coordinates

Give texture coordinates before defining each
vertex

glBegin(GL_QUADS);

glTexCoord2D(0,0);
glVertex3f(-0.5, 0, 0.5);
…
glEnd();

Transform texture coordinates

All the texture coordinates are multiplied by
Gl_TEXTURE matrix before in use
To transform texture coordinates, you do:

glMatrixMode(Gl_TEXTURE);
Apply regular transformation functions
Then you can draw the textured objects

Put it all together

…
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
…
glEnable(GL_TEXTURE_2D);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 64, 64, 0, GL_RGB,

GL_UNSIGNED_BYTE, mytexture);

Draw_picture1(); // define texture coordinates and vertices in the function
….

Projector Functions
How do we map the texture onto a arbitrary (complex) object?

Construct a mapping between the 3-D point to an intermediate
surface

Idea: Project each object point to the intermediate surface with a
parallel or perspective projection

The focal point is usually placed inside the object

Plane
Cylinder
Sphere
Cube

Planar projector

courtesy of R. Wolfe

Planar Projector

Orthographic projection
onto XY plane:

u = x, v = y

...onto YZ plane ...onto XZ plane

courtesy of
R. Wolfe

Cylindrical Projector
Convert rectangular coordinates (x, y, z) to
cylindrical (r, µ, h), use only (h, µ) to index
texture image

courtesy of
R. Wolfe

Spherical Projector

Convert rectangular coordinates (x, y, z) to
spherical (θ, φ)

courtesy of R. Wolfe

Parametric Surfaces
A parameterized surface patch

x = f(u, v), y = g(u, v), z = h(u, v)
You will get to these kinds of surfaces in CSE
784.

courtesy of R. Wolfe

Texture Rasterization
Texture coordinates are interpolated from
polygon vertices just like … remember …

Color : Gouraud shading
Depth: Z-buffer
First along polygon edges between vertices
Then along scanlines between left and right sides

from Hill

courtesy of H. Pfister

Linear Texture Coordinate Interpolation
This doesn’t work in perspective projection!
The textures look warped along the diagonal
Noticeable during an animation

Why?
Equal spacing in screen (pixel) space is not the same as in
texture space in perspective projection

Perspective foreshortening

from Hill

courtesy of
H. Pfister

Perspective-Correct Texture
Coordinate Interpolation
Interpolate (tex_coord/w) over the polygon, then
do perspective divide after interpolation

Compute at each vertex after perspective
transformation

“Numerators” s/w, t/w
“Denominator” 1/w

Linearly interpolate 1/w, s/w, and t/w across the
polygon

At each pixel
Perform perspective division of interpolated texture
coordinates (s/w, t/w) by interpolated 1/w (i.e.,
numerator over denominator) to get (s, t)

Perspective-Correct Interpolation

That fixed it!

Perspective Correction Hint
Texture coordinate and color interpolation:

Linearly in screen space (wrong) OR
Perspective correct interpolation (slower)

glHint (GL_PERSPECTIVE_CORRECTION_HINT,
hint), where hint is one of:

GL_NICEST: Perspective
GL_FASTEST: Linear
GL_DONT_CARE: Linear

