

Texture Mapping

- A way of adding surface details
- Two ways can achieve the goal:
 - Surface detail polygons: create extra polygons to model object details
 - Add scene complexity and thus slow down the graphics rendering speed
 - Some fine features are hard to model!
 - ✓ Map a texture to the surface (a more popular approach)

Complexity of images does Not affect the complexity Of geometry processing (transformation, clipping...)

Texture Representation

- ✓ Bitmap (pixel map) textures (supported by OpenGL)
- Procedural textures (used in advanced rendering programs)

Bitmap texture:

- A 2D image represented by 2D array texture[height][width]
- Each pixel (or called texel) by a unique pair texture coordinate (s, t)
- The s and t are usually normalized to a [0,1] range
- For any given (s,t) in the normalized range, there is a unique image value (i.e., a unique [red, green, blue] set)

Map textures to surfaces

- Establish mapping from texture to surfaces (polygons):
 - Application program needs to specify texture coordinates for each corner of the polygon

Map textures to surfaces

 Texture mapping is performed in rasterization (backward mapping)

- For each pixel that is to be painted, its texture coordinates (s, t) are determined (interpolated) based on the corners' texture coordinates (why not just interpolate the color?)
- ☐ The interpolated texture coordinates are then used to perform texture lookup

Texture Value Lookup

 For the given texture coordinates (s,t), we can find a unique image value from the texture map

OpenGL texture mapping

- Steps in your program
 - 1) Specify texture
 - read or generate image
 - Assign to texture
 - 2) Specify texture mapping parameters
 - Wrapping, filtering, etc.
 - 3) Enable GL texture mapping (GL_TEXTURE_2D)
 - 4) Assign texture coordinates to vertices
 - 5) Draw your objects
 - 6) Disable GL texture mapping (if you don't need to perform texture mapping any more)

Specify textures

- Load the texture map from main memory to texture memory
 - glTexImage2D(Glenum target, Glint level, Glint iformat, int width, int height, int border, Glenum format, Glenum type, Glvoid* img)
- Example:
 - glTeximage2D(GL_TEXTURE_2D, 0, GL_RGB, 64, 64, 0, GL_RGB, GL_UNSIGNED_BYTE, myImage); (myImage is a 2D array: GLuByte myImage[64][64][3];)
- The dimensions of texture images must be powers of 2

100

Fix texture size

128

- If the dimensions of the texture map are not power of 2, you can
 - Pad zeros

2) use gluScaleImage()

60

Ask OpenGL to filter the data for you to the right size – you can specify the output resolution that you want

Remember to adjust the texture coordinates for your polygon corners – you don't want to Include black texels in your final picture

64

Texture mapping parameters

What happen if the given texture coordinates (s,t) are outside [0,1] range?

Example: glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP)

Texture mapping parameters(2)

 Since a polygon can get transformed to arbitrary screen size, texels in the texture map can get magnified or minified.

 Filtering: interpolate a texel value from its neighbors or combine multiple texel values into a single one

Texture mapping parameters (3)

- OpenGL texture filtering:
- Nearest Neighbor (lower image quality)

2) Linear interpolate the neighbors (better quality, slower)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)

Or GL_TEXTURE_MAX_FILTER

Texture color blending

- Determine how to combine the texel color and the object color
 - GL_MODULATE multiply texture and object color
 - GL_BLEND linear combination of texture and object color
 - GL_REPLACE use texture color to replace object color

Example:

gITexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

Enable (Disable) Textures PenGL

- Enable texture glEnable(GL_TEXTURE_2D)
- Disable texture glDisable(GL_TEXTURE_2D)

Remember to disable texture mapping when you draw non-textured polygons

Specify texture coordinates

Give texture coordinates before defining each vertex

```
glBegin(GL_QUADS);
glTexCoord2D(0,0);
glVertex3f(-0.5, 0, 0.5);
...
glEnd();
```


Transform texture coordinates

- All the texture coordinates are multiplied by GI_TEXTURE matrix before in use
- To transform texture coordinates, you do:
 - glMatrixMode(GI_TEXTURE);
 - Apply regular transformation functions
 - Then you can draw the textured objects

4

Put it all together

```
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP T, GL REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glEnable(GL_TEXTURE_2D);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 64, 64, 0, GL_RGB,
   GL_UNSIGNED_BYTE, mytexture);
Draw picture 1(); // define texture coordinates and vertices in the function
```


- How do we map the texture onto a arbitrary (complex) object?
 - Construct a mapping between the 3-D point to an intermediate surface
- Idea: Project each object point to the intermediate surface with a parallel or perspective projection
 - The focal point is usually placed inside the object
 - Plane
 - Cylinder
 - Sphere
 - Cube

courtesy of R. Wolfe

Planar projector

Planar Projector

Orthographic projection onto XY plane:

$$U = X$$
, $V = Y$

...onto YZ plane

...onto XZ plane

courtesy of R. Wolfe

Cylindrical Projector

Convert rectangular coordinates (x, y, z) to cylindrical (r, μ, h) , use only (h, μ) to index texture image

courtesy o

4

Spherical Projector

• Convert rectangular coordinates (x, y, z) to spherical (θ, ϕ)

4

Parametric Surfaces

A parameterized surface patch

$$> x = f(u, v), y = g(u, v), z = h(u, v)$$

You will get to these kinds of surfaces in CSE 784.

Texture Rasterization

- Texture coordinates are interpolated from polygon vertices just like ... remember ...
 - Color : Gouraud shading
 - Depth: Z-buffer
 - First along polygon edges between vertices
 - Then along scanlines between left and right sides

Linear Texture Coordinate Interpolation

- This doesn't work in perspective projection!
 - The textures look warped along the diagonal
 - Noticeable during an animation

- Equal spacing in screen (pixel) space is <u>not</u> the same as in texture space in perspective projection
 - Perspective foreshortening

Perspective-Correct Texture Coordinate Interpolation

Interpolate (tex_coord/w) over the polygon, then do perspective divide after interpolation

- Compute at each vertex after perspective transformation
 - "Numerators" **S**/W, **t**/W
 - "Denominator" 1/W
- Linearly interpolate 1/w, s/w, and t/w across the polygon
- At each pixel
 - Perform perspective division of interpolated texture coordinates (s/w, t/w) by interpolated 1/w (i.e., numerator over denominator) to get (s, t)

Perspective-Correct Interpolation

That fixed it!

Perspective Correction Hint

- Texture coordinate and color interpolation:
 - Linearly in screen space (wrong) OR
 - Perspective correct interpolation (slower)
- glHint (GL_PERSPECTIVE_CORRECTION_HINT, hint), where hint is one of:
 - GL_NICEST: Perspective
 - GL_FASTEST: Linear
 - GL_DONT_CARE: Linear