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� Introduction

�What�s new�� is an interesting and broadening eternal question� but one which�
if pursued exclusively� results only in an endless parade of trivia and fashion� the
silt of tomorrow� I would like� instead� to be concerned with the question �What is
best��� a question which cuts deeply rather than broadly� a question whose answers
tend to move the silt downstream�

Robert M� Pirsig
�Zen and the Art of Motorcycle Maintenance� ����	�

Mathematical optimization is the formal title given to the branch of computational sci�
ence that seeks to answer the question �What is best�� for problems in which the quality of
any answer can be expressed as a numerical value� Such problems arise in all areas of math�
ematics� the physical� chemical and biological sciences� engineering� architecture� economics�
and management� and the range of techniques available to solve them is nearly as wide�

The purpose of this chapter is not to make the reader an expert on all aspects of math�
ematical optimization but to provide a broad overview of the 
eld� The beginning sections
introduce the terminology of optimization and the ways in which problems and their solutions
are formulated and classi
ed� Subsequent sections consider the most appropriate methods
for several classes of optimization problems� with emphasis placed on powerful� versatile
algorithms well suited to optimizing functions of many variables on high performance com�
putational platforms� High�performance computational issues� such as vectorization and
parallelization of optimization codes� are beyond the scope of this chapter� This 
eld is still
in its infancy at this time� with general strategies adopted from numerical linear algebra
codes �see chapter on Linear Algebra�� However� the last section contains a brief overview
of possible approaches�

��� De�nitions

The goal of an optimization problem can be formulated as follows� 
nd the combination
of parameters �independent variables� which optimize a given quantity� possibly subject to
some restrictions on the allowed parameter ranges� The quantity to be optimized �maximized
or minimized� is termed the objective function� the parameters which may be changed in the
quest for the optimum are called control or decision variables� the restrictions on allowed
parameter values are known as constraints�

A maximum of a function f is a minimum of �f � Thus� the general optimization problem
may be stated mathematically as�

minimize f�x�� x � �x�� x�� � � � � xn�T

subject to ci�x� � �� i � �� �� � � � �m�

ci�x� � �� i � m� � �� � � � �m�
���
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where f�x� is the objective function� x is the column vector of the n independent variables�
and ci�x� is the set of constraint functions� Constraint equations of the form ci�x� � � are
termed equality constraints� and those of the form ci�x� � � are inequality constraints� Taken
together� f�x� and ci�x� are known as the problem functions�

��� Classi�cations

There are many optimization algorithms available to the computational scientist� Many
methods are appropriate only for certain types of problems� Thus� it is important to be
able to recognize the characteristics of a problem in order to identify an appropriate solution
technique� Within each class of problems there are di�erent minimization methods� varying
in computational requirements� convergence properties� and so on� A discussion on the
relative strengths and weaknesses of available techniques within a given class of problems
will be the focus of the following sections� Optimization problems are classi
ed according to
the mathematical characteristics of the objective function� the constraints� and the control
variables�

Probably the most important characteristic is the nature of the objective function� A
function is linear if the relationship between f�x� and the control variables is of the form

f�x� � bTx� c� ���

where b is a constant�valued vector and c is a constant� a function is quadratic if

f�x� � xTAx� bTx� c� ���

where A is a constant�valued matrix� Special methods can locate the optimal solution very
e�ciently for linear and quadratic functions� for example�

There is a special class of problems� examples of which are particularly common in the

elds of operations research and engineering design� in which the task is to 
nd the optimum
permutation of some control variables� These are known as combinatorial optimization
problems� The most famous example is the traveling salesman problem �TSP� in which
the shortest cyclical itinerary visiting N cities is sought� The solutions to such problems
are usually represented as ordered lists of integers �indicating� for example in the TSP� the
cities in the order they are to be visited�� and they are� of course� constrained� since not
all integer lists represent valid solutions� These and other classi
cations are summarized in
Table �� Table � lists application examples from the wide range of 
elds where optimization
is employed and gives their classi
cations under this taxonomy�

Section � details methods appropriate to unconstrained continuous univariate�multivariate
problems� and Section � mentions methods appropriate to constrained continuous multivari�
ate problems� Section 	 considers methods appropriate to �mixed	 integer multivariate prob�
lems� and Section 
 discusses what to do if none of these methods succeed� In general� the
optimization of the complex functions that occur in many practical applications is di�cult�
However� with persistence and resourcefulness solutions can often be obtained�



	

Table �� Optimization Problem Classi
cations

Characteristic Property Classi
cation

Number of One Univariate
control variables More than one Multivariate

Type of Continuous real numbers Continuous
control variables Integers Integer or Discrete

Both continuous real Mixed Integer
numbers and integers

Integers in permutations Combinatorial
Problem functions Linear functions of the Linear

control variables
Quadratic functions of Quadratic
the control variables

Other nonlinear Nonlinear
functions of the control

variables
Problem formulation Subject to constraints Constrained

Not subject to Unconstrained
constraints

Table �� Examples of Optimization Applications

Field Problem Classi
cation

Nuclear In�Core Nuclear Nonlinear
Engineering Fuel Management Constrained

Multivariate
Combinatorial

Computational Energy Minimization Nonlinear
Chemistry for �D Structure Unconstrained

Prediction Multivariate
Continuous

Computational Distance Geometry Nonlinear
Chemistry and Constrained
Biology Multivariate

Continuous
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��� Optimality Conditions

Before continuing to consider individual optimization algorithms� we describe the conditions
which hold at the optimum sought�

The strict de
nition of the global optimum x� of f�x� is that

f�x�� � f�y� � y � V �x��y �� x�� �	�

where V �x� is the set of feasible values of the control variables x� Obviously� for an uncon�
strained problem V �x� is in
nitely large�

A point y� is a strong local minimum of f�x� if

f�y�� � f�y� � y � N�y�� ���y �� y�� �
�

where N�y�� �� is de
ned as the set of feasible points contained in the neighborhood of y��
i�e�� within some arbitrarily small distance � of y�� For y� to be a weak local minimum only
an inequality need be satis
ed

f�y�� 	 f�y� � y � N�y�� ���y �� y�� ���

More useful de
nitions� i�e�� more easily identi
ed optimality conditions� can be provided
if f�x� is a smooth function with continuous 
rst and second derivatives for all feasible x�
Then a point x� is a stationary point of f�x� if

g�x�� � �� ���

where g�x� is the gradient of f�x�� This 
rst derivative vector �f�x� has components given
by

gi�x� �
	f�x�

	xi
� ���

The point x� is also a strong local minimum of f�x� if the Hessian matrix H�x�� the sym�
metric matrix of second derivatives with components

Hij�x� �
	�f�x�

	xi	xj
� ���

is positive�de
nite at x�� i�e�� if

uTH�x��u 
 � � u �� �� ����

This condition is a generalization of convexity� or positive curvature� to higher dimensions�
Figure � illustrates the di�erent types of stationary points for unconstrained univariate

functions�
As shown in Figure �� the situation is slightly more complex for constrained optimization

problems� The presence of a constraint boundary� in Figure � in the form of a simple bound on
the permitted values of the control variable� can cause the global minimum to be an extreme
value� an extremum �i�e�� an endpoint�� rather than a true stationary point� Some methods
of treating constraints transform the optimization problem into an equivalent unconstrained
one� with a di�erent objective function� Such techniques are discussed in Section 	�
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��� Numerical Example and Programming Notes

Rosenbrock�s function is often used as a minimization test problem for nonlinear continuous
problems� since its minimum lies at the base of a �banana�shaped valley� and can be di�cult
to locate� This function is de
ned for even integers n as the following sum�

f�x� �
X

j�����������n��

���� xj�
� � ����xj�� � x�j�

� � ����

The contour plot of Rosenbrock�s function for n � � is shown in Figure �� In general�
contour maps show surfaces in the �n � ���dimensional space de
ned by f�x� � � where
� is a constant� For n � �� plane curves correspond to various values of �� We see from
the 
gure that the minimum point �dark circle� is at ��� ��T � where f�x� � �� The gradient
components of this function are given by

gj�� � ����xj�� � x�j�
gj � ���xjgj�� � �� � xj� 

�
� j � �� �� 
� � � � � n� �� ����

and the Hessian is the �� � block diagonal matrix with entries

Hj���j�� � ���
Hj���j � �	��xj
Hj�j � ���xjHj���j � gj�� � ��

����� � j � �� �� 
� � � � � n� �� ����

�These formulas are given in a form most e�cient for programming�� For n � �� the two
eigenvalues of the Hessian at the minimum are �� � ������ and �� � ��	� and thus the
condition number � � �max��min � ��
 � ���� The function contours� whose axes lengths
are proportional to the inverse of the eigenvalues� are thus quite elongated near the minimum
�see Figure ���

In minimization applications� the user is often required to write subroutines that compute
the target function and its 
rst and second derivatives �the latter optional� at each given
point� For Rosenbrock�s function� for example� the code for computing these quantities may
consist of the following�

C���������������������������������������������������������������������

SUBROUTINE ROSFUN�N�X�F�G�NOUT�

C �������������������������������������������������������

C ROSENBROCK�S FUNCTION OF DIMENSION N � ASSEMBLE F�G�H

C �������������������������������������������������������

IMPLICIT DOUBLE PRECISION�A�H�O�Z�

PARAMETER �MAXN � 	


�

INTEGER N�NOUT

DOUBLE PRECISION F�T	�T��X�N��G�N�

COMMON�HESIAN�HESD�MAXN��HESOD�MAXN�
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Figure �� Contours of the Two�Dimensional Rosenbrock Function�

F � 

D


DO 	
 J � 	� N�	� �

T	 � 	
D
 � X�J�

T� � 	

D
 � � X�J�	� � X�J���� �

F � F � �T	���� � �T�����

	
 CONTINUE

IF �NOUT 
EQ
 
� RETURN

DO �
 J � 	� N�	� �

T	 � 	
D
 � X�J�

T� � 	

D
 � � X�J�	� � X�J���� �

G�J�	� � �

D
 � T�

G� J � � ��
D
 � � X�J� � G�J�	� � T	 �

�
 CONTINUE

IF �NOUT 
EQ
 	� RETURN

C ������������������������������������������������������

C H is stored in � arrays� HESD for diagonals� HESOD for

C off�diagonals� stored by rows for the upper triangle


C HESOD is zero every even entry since H has the �x�

C block�diagonal pattern�

C � �
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C � �

C � �

C � �

C Etc


C ������������������������������������������������������

DO �
 J � 	� N�	� �

HESD�J�	� � �


D


HESD� J � � ��
D
 � ��


D
�X�J�	� � 	
D
 � �


D
��X�J����� �

HESOD�J� � ��


D
 � X�J�

�
 CONTINUE

RETURN

END

C���������������������������������������������������������������������

Note that the Hessian is stored in two one�dimensional arrays that reside in a COMMON

block� A storage format is often not imposed on the Hessian for large�scale problems so that
the user can exploit problem structure �e�g�� sparsity� to save storage space�

� Methods for Unconstrained Continuous Multivari�

ate Problems

��� Overview

In this section we outline some basic techniques involving deterministic algorithms� for

nding local minima of multivariate functions whose arguments are continuous and on which
no restrictions are imposed� For constrained problems� techniques are based on those for
unconstrained problems� and we mention only general approaches to them at the end of this
section� It should be emphasized that 
nding the global minimum is an entirely di�erent� and
more challenging� problem which will not be addressed here�� Basically� stochastic methods�

are better suited at this time for large�scale global optimization �see Figure 	� and some
appropriate algorithms will be outlined in Section 
�

For comprehensive presentations on deterministic optimization techniques for multivari�
ate functions� we refer the reader to excellent textbooks ��� 	� �� ��� ��� ��� 	
 � some recent
volumes and reviews ���� 	�� 
� � The outline in this section is not intended to provide full
algorithmic details of all available methods� rather it exposes key algorithmic concepts and
modules� so that the reader could consult specialized literature for further details� Further
background details can also be obtained from the linear algebra chapter�

�methods that do not contain any random elements
�Thus� the notion of global convergence of the algorithms in this section refers to obtaining a strict local

minimum x
� from any given starting point x� and not the global minimum of a function�

�methods that contain random elements
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Figure 	� The Structure of Local and Global Minimization Algorithms�
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Figure 
� The Structure of a Line�Search Based Local Minimization Algorithm�

��� Basic Structure Of Local Methods

The fundamental structure of local iterative techniques for solving unconstrained minimiza�
tion problems is simple� A starting point is chosen� a direction of movement is prescribed
according to some algorithm� and a line search or trust region approach is performed to
determine an appropriate next step� The process is repeated at the new point and the algo�
rithm continues until a local minimum is found �see Figure 
�� Schematically� a model local
minimizer method can be sketched as follows�

Algorithm ��� Basic Local Minimizer

 Supply an initial guess x�

 For k � �� �� �� � � � until convergence

�� Test xk for convergence
�� Calculate a search direction pk

� Determine an appropriate step length �k �or modi
ed step sk	

�� Set xk�� to xk � �kpk �or xk � sk	

See exercise ��
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����� Descent Directions

It is reasonable to choose a search vector pk that will be a descent direction� that is� a
direction leading to function reduction� A descent direction p is de
ned as one along which
the directional derivative is negative�

g�x�Tp � � � ��	�

When we write the approximation

f�x� �p� � f�x� � �g�x�Tp � ��
�

we see that the negativity of the right�hand side guarantees that a lower function value can
be found along p for a su�ciently small ��

Di�erent methods are distinguished by their choice of search directions� Algorithms can
be classi
ed into nonderivative� gradient� and second�derivative �Newton� methods depend�
ing on the technique used to determine pk in Algorithm ���� These classes will be discussed
in turn beginning in Section ����

����� Line Search and Trust Region Steps

Both line search and trust region methods are essential components of basic descent schemes
for guaranteeing global convergence ���� 	
 � Of course� only one of the two methods is
needed for a given minimization algorithm� To date� there has been no clear evidence for
superiority of one class over another� Thus we sketch below the line search procedure� more
intuitive and simpler to program�

The line search is essentially an approximate one�dimensional minimization problem� It
is usually performed by safeguarded polynomial interpolation� That is� in a typical line step
iteration� cubic interpolation is performed in a region of � that ensures that the minimum
of f along p has been bracketed� Typically� if the search directions are properly scaled�
the initial trial point �t � � produces a 
rst reasonable trial move from xk �see Figure ���
The minimum is bracketed by examining the new function value and slope and decreasing
or increasing the interval as needed �see Figure ��� The minimum of that polynomial in�
terpolant in the bracketed interval then provides a new candidate for �� The minimized
one�dimensional function at the current point xk is de
ned by !f��� � f�xk � �pk�� and the
vectors corresponding to di�erent values of � are set by !x��� � xk � �pk�

For example� at the 
rst step� a cubic polynomial can be constructed from the two
function values !f ���� !f ��t� and the two slopes !g���� !g��t�� The slopes are the directional
derivatives de
ned as� !g��� � g�xk � �pk�Tpk� Note in Fig� � a negative slope at � � �
since pk is a descent direction� More generally� for the bracketed interval ���� �� � and cor�
responding function and slopes !f�� !f�� !g�� !g�� the cubic polynomial passing through ���� !f��
and ���� !f�� and having the speci
ed slopes is given by�

p��� � a��� ���
� � b��� ���

� � c��� ��� � d � ����
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Figure �� A Line Search Step�

where

a � ���� !f� � !f�� � �!g� � !g����� � ��� � ��� � ���
� ����

b � ��� !f� � !f��� ��!g� � !g����� � ��� � ��� � ���
� ����

c � !g� ����

d � !f� � ����

A minimum of p��� can be obtained by setting

� � �� � ��b�
p
b� � �ac  � �a ����

as long as a �� � and b� � �ac � �� Otherwise� a quadratic interpolant 
tted to !f�� !g�� and
!f� can be constructed with the same coe�cients�

p��� � b�� � ���
� � c�� � ��� � d � ����

and minimized to produce

� � �� � c��b � ����
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is greater� �c� The new slope is negative and function value is lower�
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Figure �� Line Search Conditions�

The degenerate case of b � � corresponds to a linear function rather than a quadratic and
redundancy among the three values f !f�� !f�� !g�g� it is excluded by construction�

Once a new � and corresponding trial point !x��� have been determined in a line search
iteration� conditions of su�cient progress with respect to the objective function are tested�
The conditions often used in optimization algorithms are derived from the Armijo and Gold�
stein criteria ��� � They require that

f�xk � �pk� 	 f�xk� � ��g�xk�
Tpk ��	�

and
jg�xk � �pk�

Tpkj 	 �jg�xk�
Tpkj ��
�

hold for two constants �� �� where � � � � � � �� Essentially� the 
rst condition prescribes
an upper limit on acceptable new function values� and the second condition imposes a lower
bound on � �see Figure ��� Typical values of � and � in line search algorithms are � � ����

and � � ���� Larger values of � make the 
rst test more severe� and smaller � make the
second more severe� The work in the line search �number of polynomial interpolations�
should be balanced with the overall progress in the minimization�

See exercises � and ��
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����� Convergence Criteria

The simplest test for optimality of each xk in the basic local minimizer algorithm ��� involves
the following gradient condition�

kgkk 	 
g�� � jf�xk�j� � ����

The parameter 
g is a small positive number such as square root of machine precision� 
m
�
m is the smallest number 
 such that the "oating point value of �� � 
� is greater than the
"oating representation of ��� For large�scale problems� the Euclidean norm divided by

p
n�

or the max norm� kgk� � maxi jgij� may be used to replace kgk� or kgk��
p
n in the left side

of equation ����� This measures instead an average gradient element�
To obtain a measure of progress at each iteration �function reduction� change in x� etc��

and possibly halt computations if necessary� the following combination can be used ��� �

f�xk���� f�xk� � 
f�� � jf�xk�j� ����

kxk�� � xkk � �
f�
����� � kxkk� � ����

kgkk � �
f ������ � jf�xk�j� � ����

Here 
f 
 � is a small number that speci
es the desired accuracy in the function value� Each
step of the algorithm ��� can then check conditions ���� and ����� ����� ����� For x�� only
the 
rst is checked� If either the triplet ����� ����� ���� or ���� hold� the iteration process
can be halted� While the conditions above are quite useful in practice� many minimization
algorithms only incorporate a gradient�norm test in some form�

����� Convergence Characterization

The convergence properties of an algorithm are described by two analytic quantities� conver�
gence order and convergence ratio� A sequence fxkg is said to converge to x� if the following
holds� limk�� kxk�x�k � �� The sequence is said to converge to x� with order p if p is the
largest nonnegative number for which a 
nite limit � exists� where

� 	 � 	 lim
k��

kxk�� � x�k
kxk � x�kp � ����

When p � � and � � �� the sequence is said to converge linearly �e�g�� xk � ��k for n � ���
when p � � and � � �� the sequence converges superlinearly �e�g�� xk � k�k�� and when
p � �� the convergence is quadratic �e�g�� xk � ���

k

�� Thus� quadratic convergence is more
rapid than superlinear� which in turn is faster than linear� The constant � is the associated
convergence ratio�

See exercise 	�
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Convergence properties of most minimization algorithms are analyzed through their ap�
plication to convex quadratic functions� Such functions can be written in the form of equation
���� where A is a positive�de
nite n � n matrix� We refer to this convex quadratic func�
tion throughout this chapter by qA�x�� For such a function� the unique global minimum
x� satis
es the linear system Ax� � �b � Since general functions can be approximated by
a quadratic convex function in the neighborhood of their local minima� the convergence
properties obtained for convex quadratic functions are usually applied locally to general
functions� However� such generalizations do not guarantee good behavior in practice on
complex� large�scale functions�

��� Nonderivative Methods

Minimization methods that incorporate only function values generally involve some sys�
tematic method to search the conformational space� Although they are generally easy to
implement� their realized convergence properties are rather poor� They may work well in
special cases when the function is quite random in character or the variables are essentially
uncorrelated� In general� the computational cost� dominated by the number of function eval�
uations� can be excessively high for functions of many variables and can far outweigh the
bene
t of avoiding derivative calculations� The techniques brie"y sketched below are thus
more interesting from a historical perspective�

Coordinate Descent methods form the basis to nonderivative methods ���� 	
 � In the
simplest variant� the search directions at each step are taken as the standard basis vectors�
A sweep through these n search vectors produces a sequential modi
cation of one function
variable at a time� Through repeatedly sweeping the n�dimensional space� a local minimum
might ultimately be found� Since this strategy is ine�cient and not reliable� Powell�s variant
has been developed �
� � Rather than specifying the search vectors a priori� the standard
basis directions are modi
ed as the algorithm progresses� The modi
cation ensures that�
when the procedure is applied to a convex quadratic function� n mutually conjugate directions
are generated after n sweeps� A set of mutually conjugate directions fpkg with respect to the
�positive�de
nite� Hessian A of such a convex quadratic is de
ned by pT

i Apj � � for all
i �� j� This set possesses the important property that a successive search along each of these
directions su�ces to 
nd the minimum solution ���� 	
 � Powell�s method thus guarantees
that in exact arithmetic �i�e�� in absence of round�o� error�� the minimum of a convex
quadratic function will be found after n sweeps�

If obtaining the analytic derivatives is out of the question� viable alternatives remain�
The gradient can be approximated by 
nite�di�erences of function values� such as

gi�x� � �

hi
�f�x� hiei�� f�x�  � ����

for suitably chosen intervalsfhig ��� � Alternatively� automatic di�erentiation� essentially a
new algebraic construct ���� �
� 
� � may be used� In any case� these calculated derivatives
may then be used in a gradient or quasi�Newton method� Such alternatives will generally
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provide signi
cant improvement in computational cost and reliability� as will be discussed in
the following sections�

��� Gradient Methods

Two common gradient methods are Steepest Descent �SD� ��� 	
 and Conjugate Gradient
�CG� ���� �� � Both are fundamental techniques that are often incorporated into various
iterative algorithms in many areas of scienti
c computing� For a theoretical treatment and
notes on parallel implementations� see the linear algebra chapter�

����� Derivative Programming

Before we continue to describe algorithmic details of gradient methods� some programming
tips are appropriate� For using gradient and second derivative minimization methods� deriva�
tive subroutines must be supplied by the user� Errors in the code for the function and the
derivatives are common� Such errors� especially in the derivatives� are often di�cult to 
nd
since function decrease may still be realized upon minimization� Therefore� it is essential to
test the derivative routines of the objective function before applying minimization routines�

We have developed one such testing procedure using a Taylor series approach� Our
general subroutine TESTGH tests the compatibility of the gradient and Hessian components
of a function against the function routine� Its calling sequence is�

TESTGH�N�XC�FC�GC�Y�YHY�VEC�

where N is the dimension� XC�N� the current vector of control variables� FC the function value
at XC� GC�N� the gradient vector at XC� Y�N� a random perturbation vector� YHY the inner
product of Y with HY �the product of the Hessian evaluated at XC and the vector Y�� and
VEC�N� a work vector� On input� all quantities except for VEC must be given� The vector Y
should be chosen so that the function value at XC�Y is in a reasonable range for the problem
�see below��

Derivatives are tested using a Taylor expansion of f around a given point xc� The
following Taylor series is formulated at xc � 
y where 
 is a scalar�

f�xc � 
y� � f�xc� � 
gTc y � �
����yTHc y� O�
��� ����

where gc and Hc are the gradient and Hessian� respectively� evaluated at xc� If only the gra�
dient routines are tested� the second�order Taylor term YHY is set to zero� and the truncation
error is O�
��� Our test is performed by computing this Taylor approximation at smaller and
smaller values of 
 and checking whether the truncation errors are as expected� O�
�� and
O�
�� if the approximation is correct up to the gradient and Hessian terms� respectively� At
every step we half 
 and test if indeed the truncation errors decrease as they should �i�e�� if
the error corresponding to 
 is 
�� the error for 
�� should be 
��	 if the gradient is correct�
and 
��� if the Hessian is also correct��

The output consists of a series of values for RATIO �ratio of old to new errors� printed
for each 
 until the truncation error and�or 
 is very small� If RATIO tends to 	 as 
 is
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decreased �and the error is relatively small� the gradient is correct� and if RATIO tends to �
both the gradient and Hessian are correct� If RATIO tends to �� which is O�
�� neither the
gradient nor the Hessian are correct� If RATIO tends to unity� the errors may be too large
given the perturbation vector yc� Thus in general� reliable values of RATIO should occur
when� ��� 
 is not too large and not too small� and ��� the di�erence between f�xc � 
y� and
the Taylor�series approximation is of reasonable magnitude� Di�erent starting point and�or
perturbation vectors can be tried for veri
cation� The code for TESTGH can be found in 
le
testgh
f in connection with the online version of this paper�

For example� output from testing Rosenbrock�s function for �� variables consists of the
following�
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ENTERING TESTGH ROUTINE�

THE FUNCTION VALUE AT X � 	
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DIFF IS SMALL �LESS THAN �
����	���E�
� IN ABSOLUTE VALUE�

Note that the RATIO is larger than eight when EPS is larger and then decreases steadily�
A small error in the code would produce much di�erent values� We encourage the student
to try this testing routine on several subroutines that compute objective functions and their
derivatives� errors should be introduced into the derivative codes systematically to examine
the ability of TESTGH to detect them and provide the right diagnosis� as outlined above�

See exercises 
 and ��

����� Steepest Descent

SD is one of the oldest and simplest methods� It is actually more important as a theo�
retical� rather than practical� reference by which to test other methods� However� �steepest
descent� steps are often incorporated into other methods �e�g�� Conjugate Gradient� Newton�
when roundo� destroys some desirable theoretical properties� progress is slow� or regions of
inde
nite curvature are encountered�

At each iteration of SD� the search direction is taken as �gk� the negative gradient of the
objective function at xk� Recall that a descent direction pk satis
es gTk pk � �� The simplest
way to guarantee the negativity of this inner product is to choose pk � �gk� This choice
also minimizes the inner product �gTk p for unit�length vectors and� thus gives rise to the
name Steepest Descent�

SD is simple to implement and requires modest storage� O�n�� However� progress toward
a minimum may be very slow� especially near a solution� The convergence rate of SD when
applied to a convex quadratic function qA�x� is only linear� The associated convergence ratio
is no greater than ��� � ����� � �� � where � � �max�A� � �min�A� � Since the convergence
ratio measures the reduction of the error at every step �kxk�� � x�k 	 �kxk � x�k for a
linear rate�� the relevant SD value can be arbitrarily close to � when � is large� Thus� the SD
search vectors may in some cases exhibit very ine�cient paths toward a solution� especially
close to the solution�

Minimization performance for Rosenbrock�s and Beale�s function with n � � are shown
in Figures � and Figure �� for SD and other methods that will be discussed in this section�

We show progress by superimposing the resulting iterates from each minimization appli�
cation on the contour plot� Recall that the minimum point for Rosenbrock�s function lies at
x � ��� ��T � where f�x� � �� We clearly see in Figure � the characteristic behavior of the
SD method� relatively good progress at 
rst� but very slow convergence in the vicinity of
the solution� The method was stopped after ���� iterations� where a gradient norm of only
O������ was obtained� For the remaining methods� gradient norms of O����	#������ were
realized�
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Figure �� Steepest Descent Minimization Path for the Two�Dimensional Rosenbrock Func�
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Figure ��� Conjugate Gradient Minimization Path for the Two�Dimensional Rosenbrock
Function�
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Figure ��� BFGS Quasi�Newton Minimization Path for the Two�Dimensional Rosenbrock
Function�
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Function�
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Note from the contour plots of Beale�s function� Figure ��� that the function has a narrow
curving valley in the vicinity of the minimum� which occurs at x � ��� ��
�T � The function
value at the minimum is zero and increases sharply� particularly as x� increases�

From Figure ��� we clearly note how the SD search vectors �the negative gradient� are
perpendicular to the contour lines� progress is initially rapid but then becomes very slow�

����� Conjugate Gradient

The CG method was originally designed to minimize convex quadratic functions but� through
several variations� has been extended to the general case ���� 
� � The 
rst iteration in CG
is the same as in SD� but successive directions are constructed so that they form a set of
mutually conjugate vectors with respect to the �positive�de
nite� Hessian A of a general
convex quadratic function qA�x�� Whereas the rate of convergence for SD depends on the
ratio of the extremal eigenvalues of A� the convergence properties of CG depend on the
entire matrix spectrum� Faster convergence is expected when the eigenvalues are clustered�
In exact arithmetic� convergence is obtained in at most n steps� In particular� if A has m
distinct eigenvalues� convergence to a solution requires m iterations�

For example� when the bound on convergence measures the size of xk � x� with respect
to the A�norm�

kxkA � �xTAx����� ����

we have ���� 	
 

kxk � x�k�A 	 	kxk � x�k�A
�p

�� �p
� � �

��k
� ��	�

Clearly rapid convergence is expected when � � �� as for SD� Further estimates of conver�
gence bounds can only be derived when certain properties about the eigenvalue distribution
are known �e�g�� m large eigenvalues and n�m small eigenvalues clustered in a region �a� b �
��� �

When one refers to the CG method� one often means the linear Conjugate Gradient� that
is� the implementation for the convex quadratic form� In this case� minimizing �

�
xTAx�bTx

is equivalent to solving the linear system Ax � �b� Consequently� the conjugate directions
pk� as well as the step lengths �k� can be computed in closed form� Below we sketch such
an algorithm from a given x�� We de
ne the residual vector r � ��Ax � b� and use the
vectors fdkg below to denote the CG search vectors�

Algorithm ��� CG method to solve Ax � �b
�� Set r� � ��Ax� � b� � d� � r�
�� For k � �� �� �� � � � until r is su�ciently small� compute�

�k � rTk rk�d
T
kAdk

xk�� � xk � �kdk
rk�� � rk � �kAdk
�k � r T

k��rk���r
T
k rk

dk�� � rk�� � �kdk



��

Note here that only a few vectors are stored� the product Ad is required but not knowl�
edge �or storage� of A per se� and the cost only involves several scalar and vector operations�
The value of the step length �k can be derived in the closed form above by minimizing the
quadratic function qA�xk � �dk� as a function of � �producing �k � rTkdk�d

T
kAdk� and then

using the conjugacy relation� rTkdj � � for all j � k �	
 �

See the linear algebra chapter for further details and examples�

Minimization performance of CG is shown in Figures �� and �	 for Rosenbrock�s and
Beale�s functions� respectively� Note that performance for both functions with CG is better
than SD� as expected� but the paths are characteristically more �random�� For Rosenbrock�s
function� for example� a large step is taken between the fourth and 
fth iterates� where a
distant minimum was detected in the line search� The step length varies considerably from
one iteration to the next� Similarly� for Beale�s function� the step lengths vary from O������
to ����

����� Preconditioning

Performance of the CG method is generally very sensitive to roundo� in the computations
that may destroy the mutual conjugacy property� The method was actually neglected for
many years until it was realized that a preconditioning technique can be used to accelerate
convergence signi
cantly ���� ��� �� �

Preconditioning involves modi
cation of the target linear system Ax � �b through
application of a positive�de
nite preconditioner M that is closely related to A� The modi
ed
system can be written as

M����AM�����M���x� � �M����b � ��
�

Essentially� the new coe�cient matrix is M��A� Preconditioning aims to produce a more
clustered eigenvalue structure for M��A and�or lower condition number than for A to
improve the relevant convergence ratio� However� preconditioning also adds to the compu�
tational e�ort by requiring that a linear system involving M �namely Mz � r� be solved at
every step� Thus� it is essential for e�ciency of the method that M be factored very rapidly
in relation to the original A� This can be achieved� for example� if M is a sparse component
of the dense A� Whereas the solution of an n � n dense linear system requires order of n�

operations� the work for sparse systems can be as low as order n ���� �� �

The recurrence relations for the PCG method can be derived for Algorithm ��� after
substituting xk � M����!xk and rk � M���!rk� New search vectors !dk � M����dk can be
used to derive the iteration process� and then the tilde modi
ers dropped� The PCG method
becomes the following iterative process�

Algorithm ��� PCG Method to solve Ax � �b�
�� Set r� � ��Ax� � b�� d� � M��r�
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�� For k � �� �� �� � � � until r is su�ciently small� compute�

�k � rTk �M��rk��dTkAdk
xk�� � xk � �kdk
rk�� � rk � �kAdk
�k � rTk���M

��rk��� � rTk �M��rk�
dk�� � �M��rk��� � �kdk

����

Note above that the system Mzk � rk must be solved repeatedly for zk and that the
matrix�vector products Adk are required as before�

����� Nonlinear Conjugate Gradient

Extensions of the linear CG method to nonquadratic problems have been developed and
extensively researched ���� 
�� �� � In the common variants� the basic idea is to avoid matrix
operations altogether and simply express the search directions recursively as

dk � �gk � �kdk�� � ����

for k � �� �� � � �� with d� � �g�� The new iterates for the minimum point can then be set to

xk�� � xk � �kdk � ����

where �k is the step length� In comparing this iterative procedure to the linear CG of
Algorithm ���� we note that rk � �gk for a quadratic function� The parameter �k above is
chosen so that if f were a convex quadratic and �k is the exact one�dimensional minimizer
of f along dk� the nonlinear CG reduces to the linear CG method and terminates in at most
n steps in exact arithmetic�

Three of the best known formulas for �k are titled Fletcher�Reeves �FR�� Polak�Ribi$ere
�PR�� and Hestenes�Stiefel �HS� after their developers� They are given by the following
formulas�

�FRk � g T
k gk �g

T
k��gk�� ����

�PRk � g T
k �gk � gk����g

T
k��gk�� �	��

�HS
k � g T

k �gk � gk����d
T
k���gk � gk��� �	��

Interestingly� the last two formulas are generally preferred in practice� though the 
rst has
better theoretical global convergence properties� In fact� very recent research has focused
on combining these practical and theoretical properties for construction of more e�cient
schemes� The simple modi
cation of

�k � maxf�PRk � �g � �	��

for example� can be used to prove global convergence of this nonlinear CG method� even
with inexact line searches ��� � A more general condition on �k� including relaxation of its
nonnegativity� has also been derived�



��

The quality of line search in these nonlinear CG algorithms is crucial to preserve the
mutual conjugacy property of the search directions and to ensure that each generated direc�
tion is one of descent� A technique known as restarting is typically used to preserve a linear
convergence rate by resetting dk to the steepest descent direction� for example� after a given
number of linear searches �e�g�� n�� Preconditioning may also be used as in the linear case
to accelerate convergence�

In sum� the greatest virtues of CG methods are their modest storage and computa�
tional requirements �both order n�� combined with much better convergence than SD� These
properties have made them popular linear�solvers and minimization choices in many appli�
cations� perhaps the only candidates for very large problems� The linear CG is often applied
to systems arising from discretizations of partial di�erential equations where the matrices
are frequently positive�de
nite� sparse� and structured ���� �
 �

��� Newton Methods

����� Newton Methods Overview

Newton methods include several classes� including discrete Newton� quasi Newton �QN�
�also termed variable metric�� and truncated Newton �TN�� Historically� the O�n�� memory
requirements and O�n�� computation associated with solving a linear system directly have
restricted Newton methods only� ��� to small problems� ��� to problems with special sparsity
patterns� or ��� near a solution� after a gradient method has been applied� Fortunately�
advances in computing technology and software are making the Newton approach feasible
for a wide range of problems� Particularly� with advances in automatic di�erentiation ��
�

� � the appeal of these methods should increase further� Extensive treatments of Newton
methods can be found in the literature ����� ��� ��� 	
 � for example� and only general
concepts will be outlined here�

For large�scale applications� essentially two speci
c classes are emerging as the most pow�
erful techniques� limited�memory quasi�Newton �LMQN� and truncated Newton methods�
LMQN methods attempt to combine the modest storage and computational requirements of
CG methods with the superlinear convergence properties of standard �i�e�� full memory� QN
methods� Similarly� TN algorithms attempt to retain the rapid quadratic convergence rate
of classic Newton methods while making computational requirements feasible for large�scale
functions�

All Newton methods are based on approximating the objective function locally by a
quadratic model and then minimizing that function approximately� The quadratic model of
the objective function f at xk along p is given by the expansion

f�xk � p� � f�xk� � gTk p�
�

�
pTHkp � �	��

The minimum of the right�hand side is achieved when pk is the minimum of the quadratic
function�

qHk
�p� � gTk p�

�

�
pTHkp � �		�
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Table �� Newton�s Iteration for Solving f�x� � x� � a � �

Single Precision Double Precision
x jx� sj�s x jx� sj�s

�������� ���������E � �� ����������������� ������������������E � ��
���
���� ��
������E � �� ���
������������� ��
���������������E � ��
����
��� ��
�����
E � �� ����
������������ ��
��������������	E � ��
�������
 ���	�
���E � �	 �������	��	�	��	� ���	����	����
��
�E � �	
�������� ���	�����E � �� ��������������		� 	��	���	������

��E � ��
�������� ���������E � �� ����������������� �������

��	����	�E � �

�������� ���������E � �� ����������������� ���
����������
�	�E � ��
�������� ���������E � �� ����������������� ������������������E � ��

�x � iterate� s � solution� �x � iterate� s � solution�

Alternatively� such a Newton direction pk satis
es the linear system of n simultaneous equa�
tions� known as the Newton equation�

Hkp � �gk � �	
�

In the �classic� Newton method� the Newton direction is used to update each previous
iterate by the formula xk�� � xk � pk� until convergence� The reader may recognize the
one�dimensional version of Newton�s method for solving a nonlinear equation f�x� � ��
xk�� � xk � f�xk��f ��xk�� The analogous iteration process for minimizing f�x� is� xk�� �
xk�f ��xk��f ���xk�� Note that the one�dimensional search vector ��f ��xk��f ���xk� � is replaced
by the Newton direction �H��

k gk in the multivariate case� This direction is de
ned for
nonsingular Hk but its solution may be unstable� When x� is su�ciently close to a solution
x�� quadratic convergence can be proven for Newton�s method ���� ��� 	
 � In practice� this
means that the number of digits of accuracy in the solution is approximately doubled at
every step% This rapid convergence can be seen from the program output for a simple one�
dimensional application of Newton�s method to 
nding the root of a �equivalently� solving
f�x� � x� � a � � or minimizing f�x� � x��� � ax� �see Table ��� See the linear algebra
chapter for related details� Note in the double precision version the round�o� in the last
steps�

See exercise � and ��

In practice� modi
cations of the classic Newton iteration are essential for guaranteeing
global convergence� with quadratic convergence rate near the solution� First� when Hk is
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not positive�de
nite� the search direction may not exist or may not be a descent direction�
Strategies to produce a related positive�de
nite matrix Hk� or alternative search directions�
become necessary� Second� far away from x�� the quadratic approximation of �	�� may be
poor� and the Newton direction must be adjusted� A line search� for example� can dampen
�scale� the Newton direction when it exists� ensuring su�cient decrease and guaranteeing
uniform progress towards a solution� These modi
cations lead to the following modi
ed
Newton framework using a line search�

Algorithm ��� Modi
ed Newton

 For k � �� �� �� � � � � until convergence� given x��

�� Test xk for convergence
�� Compute a descent direction pk so that

kHkpk � gkk 	 �kkgkk � �	��

where �k controls the accuracy of the solution and
some symmetric matrix Hk may approximate Hk�


� Compute a step length � so that for xk�� � xk � �pk�

f�xk��� 	 f�xk� � ��gTk p � �	��

jg T
k��pkj 	 �jg T

k pkj � �	��

with � � � � � � ��
�� Set xk�� � xk � �pk�

Newton variants are constructed by combining various strategies for the individual com�
ponents above� These involve procedures for formulating Hk or Hk� dealing with structures
of inde
nite Hessians� and solving for the modi
ed Newton search direction� For example�
when Hk is approximated by 
nite di�erences� the discrete Newton subclass emerges ��� �
When Hk� or its inverse� is approximated by some modi
cation of the previously constructed
matrix �see below�� QN methods are formed ���� �� � When �k is nonzero� TN methods result
���� 	�� 

� 
�� 
� since the solution of the Newton system is truncated before completion�

����� Discrete Newton

Standard discrete Newton methods require n gradient evaluations and O�n�� operations to
compute and symmetrize every Hessian Hk� Each column i of Hk can be approximated by
the vector

!hi �
�

hi
�g�xk � hiei�� gk � �	��

where hi is a suitably chosen interval ��� � This interval must balance the roundo� error�
proportional to ���hi�� by formulation� with the truncation error� proportional to hi� A
simple estimate for a well�scaled problem to balance the two errors is O�

p

m��
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See exercise ��

To symmetrize the resulting matrixfHk� whose columns are the vectors f!hig� i � �� � � � � n�
from �	
� the matrix

Hk �
�

�
�fHk �fHT

k � �
��

is constructed�
With exact arithmetic� discrete Newton methods converge quadratically if each hi goes

to zero as kgk does ��� � However� the roundo� error limits the smallest feasible size of
di�erence interval in practice and� hence� the accuracy �a combination of roundo� and trun�
cation errors� that can be obtained� As the gradient becomes very small� considerable loss
of accuracy may also result from cancellation errors in the numerator �a large relative error�
js � s�j�js�j� from the subtraction of two quantities� s and s�� of similar magnitude�� Con�
sequently� discrete Newton methods are inappropriate for large�scale problems unless the
Hessian has a known sparsity structure and this structure is exploited in the di�erencing
scheme�

����� Quasi Newton

QN methods form an interesting class of algorithms that are theoretically closely�related to
nonlinear CG methods and to perform well in practice� Surprising recent discoveries yet
increased their appeal�

As extensions of nonlinear CG methods� QN methods are additional curvature informa�
tion to accelerate convergence� However� memory and computational requirements are kept
as low as possible� Essentially� curvature information is built up progressively� At each step
of the algorithm� the current approximation to the Hessian �or inverse Hessian� is updated
by using new gradient information� �The updated matrix itself is not necessarily stored
explicitly� since the updating procedure may be de
ned compactly in terms of a small set of
stored vectors�� For the expansion of the gradient�

gk�� � gk �Hk�xk�� � xk� � 
 
 
 � �
��

we obtain the following relation if Hk were a constant �equivalently� f�x� a quadratic�� equal
to H�

Hsk � yk � �
��

where sk � xk�� � xk and yk � gk�� � gk� Since each gradient di�erence yk provides
information about one column of H� we attempt to construct a family of successive approxi�
mation matrices fBkg so that� if H were a constant� the procedure would be consistent with
equation �
��� This forms the basis for the QN condition on the new update� Bk���

Bk��sk � yk � �
��



��

To specify Bk�� uniquely additional conditions are required� For instance� it is reasonable
to assume that Bk�� di�ers from Bk by a low rank �updating� matrix �i�e�� a matrix of rank
much less than n� that depends on sk� yk� and possibly Bk�

Bk�� � Bk �Uk�sk�yk�Bk� � �
	�

For an update of rank one� written as Bk�� � Bk � uvT � we obtain from �
�� the condition
that u is a vector in the direction of �yk�Bksk�� This produces the general rank one update
formula as�

Bk�� � Bk �
�

vTsk
�yk �Bksk�v

T � �

�

for vTsk �� �� Broyden�s QN method� for example� uses v � sk� While Broyden�s update
does not guarantee symmetry� it is useful for solving nonlinear equations and for deriving
a more e�ective� rank two update� To restrict the general rank one update form of �
��
further� we can impose the condition of symmetry� Symmetry will be �inherited� from Bk

to Bk�� if uvT � �uuT for some scalar �� Letting that � be ��vT sk� we obtain the general
symmetric rank � update �SR�� as follows�

Bk�� � Bk �
�

�yk �Bksk�T sk
�yk �Bksk��yk �Bksk�

T � �
��

Now� SR� will only be positive�de
nite if �yk�Bksk�Tsk 
 �� Thus� rank two updates �e�g��
u�v

T
� � u�v

T
� � were thought until very recently to be more suitable for optimization�

One of the most successful and widely used updating formulas is known as BFGS for
its four developers� Broyden� Fletcher� Goldfarb� and Shanno� It is a rank two update with
inherent positive�de
niteness �i�e�� Bk positive�de
nite � Bk�� positive�de
nite�� and was
derived by �symmetrizing� the Broyden rank one update� A sequence of matrices f eBkg is
generated from a positive�de
nite eB� �which may be taken as the identity�� by the following
BFGS formula� eBk�� � eBk � Uk � �
��

where

U�s�y� eB� �
ssT

yTs

�
yT eBy
yTs

� �
�
� �

yTs
�syT eB� eBysT  � �
��

In Figures �� and �
 QN progress for Rosenbrock�s and Beale�s functions is shown� The
QN code is taken from the package CONMIN of Shanno & Phua available in the NAG library�
The QN paths are clearly more systematic than those associated with the gradient methods�
following down the valley� Behavior of the limited� memory QN methods is essentially
identical for these two�dimensional problems�

We refer the reader to additional papers ���� 		 discussing state�of�the�art LMQN meth�
ods� along with practical schemes for initial scaling � !B�� and for calculating each pk e�ciently
by exploiting the low�rank update procedure�
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����� Truncated Newton

Truncated Newton methods were introduced in the early ����s ��� and have since been
gaining popularity� They are based on the idea that an exact solution of the Newton equation
at every step is unnecessary and can be computationally wasteful in the framework of a
basic descent method� Any descent direction will su�ce when the objective function is not
well approximated by a convex quadratic and� as a solution to the minimization problem
is approached� more e�ort in solution of the Newton equation may be warranted� Their
appeal to scienti
c applications is their ability to exploit function structure to accelerate
convergence�

Thus� the approximate a nonzero residual norm rk � krkk � kHkpk � gkk is allowed at
each step� its size monitored systematically according to the progress made� This formula�
tion leads to a doubly�nested iteration structure� for every outer Newton iteration k �asso�
ciated with xk� there corresponds an inner loop for pk fp�k�p�k� � � �g� As a computationally�
economical method for solving large positive�de
nite linear systems� PCG is the most suit�
able method for the inner loop in this context� Function structure is introduced by using a
preconditioner M that is a sparse approximation to the Hessian�

The PCG process can be terminated when either one of the following conditions is satis�

ed� ��� The residual rk is su�ciently small� ��� the quadratic model qHk

�pik� of eq� ��	� is suf�

ciently reduced� or ��� a direction of negative curvature d is encountered �i�e�� dTHkdk � ���
possible since Hk may not be positive�de
nite� Two e�ective truncation tests monitor the
relative residual norm �RT� ��� and the decrease of the quadratical model qHk

�p� �QT� �	� �
The inner loop of a TN algorithm at Newton step k �step � of algorithm ��	� can then

be sketched as follows� For clarity� we omit the subscript k from p� g� H� M� and q� The
sequence of vectors fpig denotes the PCG iterates for pk� and a small positive number � for
the negative curvature test� such as

p

m� is chosen� along with appropriate values of cr or

cq �for truncation�� around ��
�

Algorithm ��� Truncated Newton �Inner Loop of Outer Step k	
�� Initialization�

Set p� � �� q� � qk�p�� � �� r� � �g� and d� � M��r��
For i � �� �� �� � � � proceed as follows�
�� Negative Curvature Test�

If dTi Hdi � �dTi di�
exit inner loop with search direction

p �

	
d� if i � �
pi otherwise

�
��

�� Truncation Test�
�i � rTi �M��ri��dTi Hdi
pi�� � pi � �idi
ri�� � ri � �iHdi
qi�� � ������ri�� � g�T pi�� �for QT	



�	

If kri��k 	 minfcr�k� kgkg 
 kgk �for RT	
or If ��� qi�qi��� 	 cq�i �for QT	

exit inner loop with search direction p � pi��


� Continuation of PCG�

�i � r T
i���M

��ri����r
T
i �M��ri�

di�� � �M��ri��� � �idi
����

Note that in case of negative curvature� p is set in step � to �M��g if this occurs at the

rst PCG iteration� or to the current iterate for pk thereafter� These choices are guaranteed
direction of descent ��� � Alternate descent directions can also be used� such as �g or di�
but the �default� choices above have been found to be satisfactory in practice�

For computational e�ciency� the products Hd in step ��� can generally be computed
satisfactorily by the following 
nite�di�erence design of gradients at the expense of only one
additional gradient evaluation per inner iteration�

Hkd � g�xk � hd� � g�xk�

h
� ����

where h is a suitably chosen small number� such as

h �
�
p

m�� � kxkk�
kdk � ����

The paths of TN minimization by the package TNPACK of Schlick & Fogelson �
�� 
� 
for Rosenbrock�s and Beale�s functions are shown in Figure �� and Figure ��� Note again
how e�ciently the paths trace the valley toward the minimum and appear even more direct
than QN�

For discussions on practical ways of choosing M� factoring M when the problem does
not guarantee that M is positive de
nite by the modi
ed Cholesky factorization ���� 
�� �� �
and performing e�cient Hessian�vector products� see �

� 
�� 
� �

See exercise ���

� Methods for Constrained Continuous Multivariate

Problems

Techniques for constrained nonlinear programming problems are clearly more challenging
than their unconstrained analogs� and the best approaches to use are still unknown� When
the constraints are linear� the problems are simpler� and a better framework for analysis
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is available� In general� algorithms for constrained problems are based on the optimization
methods for the unconstrained case� as introduced in the previous section� The basic ap�
proach for solution of a constrained nonlinear multivariate problem is to simplify the problem
so it can be reformulated by a sequence of related problems� each of which can be solved by
more familiar methods for the unconstrained case� For example� Newton methods for uncon�
strained problems based on a local quadratic approximation to the objective function may
be developed for the constrained problem by restricting the region in which the quadratic
model is valid� This restriction is similar in "avor to trust� region methods� mentioned in
section ������ A search vector pk for the objective function might be chosen by a similar
procedure to that described for the unconstrained case �e�g�� a Quasi Newton method�� but
the step length along pk might be restricted so that the next iterate is a feasible point� i�e��
satis
es the constraints of the problem�

An excellent introduction to the optimization of constrained nonlinear functions can be
found in the chapter by Gill et al� �pp� �������� in the optimization volume edited by
Nemhauser et al� �	� �

� Methods for Integer and Mixed Integer Multivari�

ate Problems

This section will appear in the next release of this chapter�

� Methods of Last Resort

Unfortunately� there are many optimization problems which cannot be satisfactorily solved
using any of the foregoing algorithms ' inevitably many problems of practical interest fall
into this category� When these systematic search methods fail� one must resort to non�
systematic� i�e�� random search� techniques� The algorithms discussed in this section all
employ some form of random search�

��� Simulated Annealing

As its name implies� the Simulated Annealing �SA� exploits an analogy between the way in
which a metal cools and freezes into a minimum energy crystalline structure �the annealing
process� and the search for a minimum in a more general system�

The algorithm is based upon that of Metropolis et al� �	� � which was originally proposed
as a means of 
nding the equilibrium con
guration of a collection of atoms at a given
temperature� The connection between this algorithm and mathematical minimization was

rst noted by Pincus �
� � but it was Kirkpatrick et al� �	� who proposed that it form the
basis of an optimization technique for combinatorial �and other� problems�

SA�s major advantage over other methods is an ability to avoid becoming trapped at
local minima� The algorithm employs a random search which not only accepts changes that



��

decrease objective function f � but also some changes that increase it� The latter are accepted
with a probability

p � exp



��f

T

�
� ����

where �f is the increase in f and T is a control parameter� which by analogy with the orig�
inal application is known as the system �temperature� irrespective of the objective function
involved�

The implementation of the SA algorithm is remarkably easy� Figure �� shows its basic
structure� The following elements must be provided�

� a representation of possible solutions�

� a generator of random changes in solutions�

� a means of evaluating the problem functions� and

� an annealing schedule � an initial temperature and rules for lowering it as the search
progresses�

����� Solution Representation and Generation

When attempting to solve an optimization problem using the SA algorithm� the most obvious
representation of the control variables is usually appropriate� However� the way in which
new solutions are generated may need some thought� The solution generator should

� introduce small random changes� and

� allow all possible solutions to be reached�

For problems with continuous control values� Vanderbilt and Louie ��� recommend that
new trial solutions be generated according to the formula�

xi�� � xi �Qu� ��	�

where u is a vector of random numbers in the range ��p��
p

��� so that each has zero mean
and unit variance� and Q is a matrix that controls the step size distribution� In order to
generate random steps with a covariance matrix S�Q is found by solving

S � QQT � ��
�

by Cholesky decomposition� for example �see the chapter on Linear Algebra for more details
of this method�� S should be updated as the search progresses to include information about
the local topography�

Si�� � �� � ��Si � ��X� ����
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Input & Assess Initial Solution
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Figure ��� The Structure of the Simulated Annealing Algorithm
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where matrix X measures the covariance of the path actually followed and the damping
constant � controls the rate at which information from X is folded into S with weighting ��
One drawback of this scheme is that the solution of equation ��
�� which must be done every
time S is updated� can represent a substantial computational overhead for problems with
high dimensionality� In addition� because the probability of an objective function increase
being accepted� given by equation ����� does not re"ect the size of the step taken� S must
be estimated afresh every time the system temperature is changed�

An alternative strategy suggested by Parks �	� is to generate solutions according to the
formula�

xi�� � xi �Du� ����

where u is now a vector of random numbers in the range ���� �� and D is a diagonal matrix
which de
nes the maximum change allowed in each variable� After a successful trial� i�e�
after an accepted change in the solution� D is updated�

Di�� � ��� ��Di � ��R� ����

where � and � perform similar roles and R is a diagonal matrix the elements of which consist
of the magnitudes of the successful changes made to each control variable� This tunes the
maximum step size associated with each control variable towards a value giving acceptable
changes�

When using this strategy it is recommended that the probability of accepting an increase
in f be changed from that given by equation ���� to�

p � exp



� �f

T (d

�
� ����

where (d is the average step size� so that �f� (d is a measure of the e�ectiveness of the change
made� As the size of the step taken is considered in calculating p�D does not need to be
adjusted when T is changed�

For problems with integer control variables� the simple strategy whereby new trial solu�
tions are generated according to the formula�

xi�� � xi � u� ����

where u is a vector of random integers in the range ���� �� often su�ces�
For combinatorial� or permutation� optimization problems� the solution representation

and generation mechanism�s� will necessarily be problem�speci
c� For example� in the famous
traveling salesman problem �TSP� of 
nding the shortest cyclical itinerary visiting N cities�
the most obvious representation is a list of the cities in the order they are to be visited�
The solution generation mechanism�s�� or move set� must� obviously� be compatible with
the chosen representation� For combinatorial problems� it is common for the move set to
permute a small� randomly chosen� part of the solution� For example� the move set suggested
by Lin �	� for the TSP makes two types of change�
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� a section of the route is removed and replaced by the same cities running in the opposite
order� e�g� ��j��	j�
� � ��j	��j�
�� or

� a section of the route is moved �cut and pasted� from one part of the tour to another�
e�g� ��j��	j�
� � ���
j��	j��

����� Solution Evaluation

The SA algorithm does not require or deduce derivative information� it merely needs to be
supplied with an objective function for each trial solution it generates� Thus� the evaluation
of the problem functions is essentially a �black box� operation as far as the optimization
algorithm is concerned� Obviously� in the interests of overall computational e�ciency� it is
important that the problem function evaluations should be performed e�ciently� especially as
in many applications these function evaluations are overwhelming the most computationally
intensive activity� Depending on the nature of the system equations advice on accelerating
these calculations may be found in other chapters within this project�

Some thought needs to be given to the handling of constraints when using the SA algo�
rithm� In many cases the routine can simply be programmed to reject any proposed changes
which result in constraint violation� so that a search of feasible space only is executed�
However� there are two important circumstances in which this approach cannot be followed�

� if there are any equality constraints de
ned on the system� or

� if the feasible space de
ned by the constraints is �suspected to be� disjoint� so that it is
not possible to move between all feasible solutions without passing through infeasible
space�

In either case the problem should be transformed into an unconstrained one by con�
structing an augmented objective function incorporating any violated constraints as penalty
functions�

fA�x� � f�x� �
�

T
wTcV �x�� ����

where w is a vector of nonnegative weighting coe�cients and the vector cV quanti
es the
magnitudes of any constraint violations� The inverse dependence of the penalty on temper�
ature biases the search increasingly heavily towards feasible space as it progresses� Consult
section 	 for more details on the penalty function method�

����� Annealing Schedule

Through equation ���� or ����� the annealing schedule determines the degree of uphill move�
ment permitted during the search and is� thus� critical to the algorithm�s performance� The
principle underlying the choice of a suitable annealing schedule is easily stated ' the initial
temperature should be high enough to �melt� the system completely and should be reduced
towards its �freezing point� as the search progresses ' but �choosing an annealing schedule
for practical purposes is still something of a black art� �Bounds� �� ��



	�

The standard implementation of the SA algorithm is one in which homogeneous Markov
chains of 
nite length � are generated at decreasing temperatures� The following parameters
should therefore be speci
ed�

� an initial temperature T��

� a 
nal temperature Tf or a stopping criterion�

� a length for the Markov chains� and

� a rule for decrementing the temperature�

Initial Temperature

Kirkpatrick �	� suggested that a suitable initial temperature T� is one that results in an
average increase acceptance probability �� of about ����� The value of T� will clearly depend
on the scaling of f and� hence� be problem�speci
c� It can be estimated by conducting
an initial search in which all increases are accepted and calculating the average objective
increase observed (�f

�
T� is then given by�

T� � �
(�f
�

ln����
� ����

Final Temperature

In some simple implementations of the SA algorithm the 
nal temperature is determined
by 
xing

� the number of temperature values to be used� or

� the total number of solutions to be generated�

Alternatively� the search can be halted when it ceases to make progress� Lack of progress
can be de
ned in a number of ways� but a useful basic de
nition is

� no improvement �i�e� no new best solution� being found in an entire Markov chain at
one temperature�

combined with

� the acceptance ratio falling below a given �small� value �f �

The sample code supplied with this section uses this de
nition of convergence �lack of
progress��
Length of Markov Chains

�In this context an homogeneous Markov chain is a series of random changes in the control variables�
�In other words� there is an ��� chance that a change which increases the objective function will be

accepted�
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An obvious choice for Lk� the length of the k�th Markov chain� is a value that depends
on the size of the problem� so Lk is independent of k� Alternatively it can be argued that
a minimum number of transitions �min should be accepted at each temperature� However�
as Tk approaches �� transitions are accepted with decreasing probability so the number of
trials required to achieve �min acceptances approaches �� Thus� in practice� an algorithm
in which each Markov chain is terminated after

� Lk transitions or

� �min acceptances�

whichever comes 
rst� is a suitable compromise�
Decrementing the Temperature

The simplest and most common temperature decrement rule is�

Tk�� � �Tk� ����

where � is constant close to� but smaller than� �� This exponential cooling scheme �ECS� was

rst proposed Kirkpatrick et al� ��� with � � ���
� Randelman and Grest �
	 compared
this strategy with a linear cooling scheme �LCS� in which T is reduced every L trials�

Tk�� � Tk ��T� ��	�

They found the reductions achieved using the two schemes to be comparable� and also
noted that the 
nal value of f was� in general� improved with slower cooling rates� at the
expense� of course� of greater computational e�ort� Finally� they observed that the algorithm
performance depended more on the cooling rate �T�L than on the individual values of �T
and L� Obviously� care must be taken to avoid negative temperatures when using the LCS�

Many researchers have proposed more elaborate annealing schedules� most of which are
in some respect adaptive� using statistical measures of the algorithm�s current performance
to modify its control parameters� These are well reviewed by van Laarhoven and Aarts �	� �

����� SA Computational Considerations

As the procedures controlling the generation and acceptance of new solutions are so simple�
the computational cost of implementing the SA algorithm is almost invariably dominated
by that associated with the evaluation of the problem functions� It is essential that these
evaluations should be performed as e�ciently as possible� Sometimes� as� for example� in
the Nuclear Fuel Management Case Study presented elsewhere in this project� it is possible
to use a Generalized Perturbation Theory method to expedite these calculations� However�
the viability of such an approach will obviously be problem�dependent� In general� any
e�orts to improve performance �reduce run times� should be directed towards exploiting
the vectorization or parallelization capabilities of the intended computational platform to
accelerate the problem function evaluations� Advice on how this can be achieved can be
found in the chapter appropriate to the form of the system equations to be solved�
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SA is an intrinsically sequential algorithm� due to its recursive structure� Some possible
parallel designs �reviewed by Arts and Korst �� � have been developed� making use of the
idea of multiple trial parallelism� in which several di�erent trial solutions are simultaneously
generated� evaluated and tested on individual processors� Whenever one of these processors
accepts its solution� it becomes the new one from which others are generated� Although
such an approach results in N times as many solutions being investigated per unit time
�where N is the number of processors�� it is found that the total �elapsed� time required for
convergence is not proportionally reduced� This is due to the fact that the instantaneous
concurrent e�ciency h� which in this context can be de
ned as

� �
�tS
N�tP

� ��
�

where �t is the time taken for a new solution to be accepted by the serial or parallel algorithm�
varies as the search progresses� It is initially only about ��N � because the vast majority of
the solutions generated are accepted� and� therefore� N � � of the processors are redundant�
As the annealing temperature is reduced �and the solution acceptance probability falls�� �
increases� approaching ���) as T nears zero� However� the overall incentive for parallelizing
the optimization scheme is not great� especially as in many instances the problem function
evaluation procedure can be multitasked with much greater ease and e�ect�

A signi
cant component of an SA code is the random number generator� which is used
both for generating random changes in the control variables and for the temperature de�
pendent increase acceptance test� �See� for example� the sample code supplied with this
section�� Random number generators are often provided in standard function libraries or as
machine�speci
c functions� It is important� particularly when tackling large scale problems
requiring thousands of iterations� that the random number generator used have good spectral
properties ' see the chapter on Random Number Generators for more details�

����� SA Algorithm Performance

Figure �� shows the progress of a SA search on the two�dimensional Rosenbrock function�
f � �� � x�� � ��� 
 x� � x���

�� Although one would not ordinarily choose to use SA on a
problem which is amenable to solution by more e�cient methods� it is interesting to do so
for purposes of comparison� Each of the solutions accepted in a ���� trial search is shown
�marked by symbols�� The algorithm employed the adaptive step size selection scheme
of equations ���� and ����� It is apparent that the search is wide�ranging but ultimately
concentrates in the neighborhood of the optimum�

Figure �� shows the progress in reducing the objective function for the same search�
Initially� when the annealing temperature is high� some large increases in f are accepted and
some areas far from the optimum are explored� As execution continues and T falls� fewer
uphill excursions are tolerated �and those that are tolerated are of smaller magnitude�� The
last 	�) of the run is spent searching around the optimum� This performance is typical of
the SA algorithm�
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Figure ��� Minimization of the Two�dimensional Rosenbrock Function by Simulated An�
nealing ' Search Pattern�

The code used in this example is mo sa
f� It uses the input data available in 
le
mo sa in
dat� Both of these 
les may be viewed with an html browser�

��� Genetic Algorithms

Kirkpatrick �	� has described SA as �an example of an evolutionary process modeled ac�
curately by purely stochastic means�� but this is more literally true of another class of new
optimization routines known collectively as Genetic Algorithms �GAs�� These attempt to
simulate the phenomenon of natural evolution 
rst observed by Darwin ��� and recently
elaborated by Dawkins ��	 �

In natural evolution each species searches for bene
cial adaptations in an ever�changing
environment� As species evolve these new attributes are encoded in the chromosomes of
individual members� This information does change by random mutation� but the real driving
force behind evolutionary development is the combination and exchange of chromosomal
material during breeding�

Although sporadic attempts to incorporate these principles in optimization routines have
been made since the early ����s �see a review in Chapter 	 of Goldberg ��� �� GAs were 
rst
established on a sound theoretical basis by Holland ��� � The two key axioms underlying
this innovative work were that complicated nonbiological structures could be described by
simple bit strings and that these structures could be improved by the application of simple
transformations to these strings�
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Figure ��� Minimization of the Two�Dimensional Rosenbrock Function by Simulated An�
nealing ' Objective Reduction�

GAs di�er from traditional optimization algorithms in four important respects�

� They work using an encoding of the control variables� rather than the variables them�
selves�

� They search from one population of solutions to another� rather than from individual
to individual�

� They use only objective function information� not derivatives�

� They use probabilistic� not deterministic� transition rules�

Of course� GAs share the last two attributes with SA and� not surprisingly� have found
applications in many of the same areas�

The basic structure of a GA is shown in Figure ��� One minor change from the standard
optimization routine "ow diagram is the use of the word �population� rather than �solution��
A more major di�erence is that the usual operation of generating a new solution has been
replaced by three separate activities ' population selection� recombination and mutation�

����� Solution Representation

In order to tackle a problem using a GA� candidate solutions must be encoded in a suitable
form� In the traditional GA solutions are represented by binary bit strings ��chromosomes���



Methods of Last Resort 	


Generate Initial Population

Assess Initial Population
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Recombine New Population

Mutate New Population

Assess New Population

Terminate Search?
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No
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Figure ��� The Basic Structure of a Genetic Algorithm�
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While integer and decision variables are easily encoded in this form� the representation of
continuous control variables is not so simple� In general� the only option available is to
approximate them �rescaled as necessary� by equivalent integer variables� The accuracy
with which an optimum solution can be resolved then depends on the encoded bit length of
these integers� leading to an inevitable compromise between precision and execution time� 


For combinatorial optimization problems� problem�speci
c solution encodings� such as
ordered lists� are necessary� For example� a solution to the TSP can be represented by a
string listing the cities in the order they are to be visited� Problem�speci
c operators are
also required to manipulate such strings validly�

����� Population Selection

The initial population for a GA search is usually selected randomly� although there may be
occasions when heuristic selection is appropriate �Grefenstette ��	 �� Within the algorithm�
population selection is based on the principle of �survival of the 
ttest�� The standard
procedure is to de
ne the probability of a particular solution i�s survival to be�

PSi �
fi
fP � ����

if the objective function is to be maximized� where fi is the 
tness �objective value� of
solution i� and

fP �
NX
i��

fi ����

is the total 
tness of the population �of size N�� or

PSi � �� fi
fP � ����

if f is to be minimized� The new population is then selected by simulating the spinning of
a suitably weighted roulette wheels N times�

It is clear that f must always be positive for this scheme to be used� Its range and scaling
are also important� For instance� early in a search it is possible for a few superindividuals
�solutions with 
tness values signi
cantly better than average� to dominate the selection
process� Various schemes have been suggested to overcome this potential danger� of which
the simplest is linear scaling� whereby f is rescaled through an equation of the form�

!f � af � b� ����

Coe�cients a and b are chosen each generation so that the average values of f and !f are
equal and so that the maximum value of !f is a speci
ed multiple of �usually twice� the

�In fact� Evolution Strategies �see section ��	 almost always perform better than Genetic Algorithms on
optimization problems with continuous control variables and do not incur quantization errors� so there is� in
practice� little incentive to use a GA on such problems�
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average� Linear scaling risks the introduction of negative values of !f for low performance
solutions and must� therefore be used with caution�

Baker �� suggested that PSi should simply be made a �linear� function of the solution�s
rank within the population� For example� the best solution might be allocated a survival
probability of ��N � If this is the case� that for the worst solution is then constrained to
be zero� because of the normalization condition that the survival probabilities sum to unity�
This ranking scheme has been found to overcome the problems of over� or underselection�
without revealing any obvious drawbacks�

Roulette wheel selection su�ers from the disadvantage of being a high�variance process
with the result that there are often large di�erences between the actual and expected numbers
of copies made ' there is no guarantee that the best solution will be copied� De Jong ��
 
tested an elitist scheme� which gave just such a guarantee by enlarging the population to
include a copy of the best solution if it hadn�t been retained� He found that on problems
with just one maximum �or minimum� the algorithm performance was much improved� but
on multimodal problems it was degraded�

Numerous schemes which introduce various levels of determinism into the selection pro�
cess have been investigated� Overall� it seems that a procedure entitled stochastic remainder
selection without replacement o�ers the best performance� In this� the expected number of
copies of each solution is calculated as

Ei � NPSi� ����

Each solution is then copied Ii times� Ii being the integer part of Ei� The fractional remainder

Ri � Ei � Ii ����

is treated as the probability of further duplication� For example� a solution for which Ei � ���
would certainly be copied once and would be copied again with probability ���� Each solution
is successively subjected to an appropriately weighted simulated coin toss until the new
population is complete�

����� Population Recombination

Whatever selection procedure is used� it does not� of course� introduce any new solutions�
Solutions which survive do so in order to serve as progenitors �breeding stock� for a new
generation� It is in the recombination phase that the algorithm attempts to create new�
improved solutions� The key procedure is that of crossover� in which the GA seeks to
construct better solutions by combining the features of good existing ones�

In the simplest form of crossover �one point crossover	 proceeds as follows� First� the
entire population is paired o� at random to give N�� sets of potential parents� Second�
pairs of solutions are chosen to undergo crossover with probability PC � If the simulated
weighted coin toss rejects crossover for a pair� then both solutions remain in the population
unchanged� However� if it is approved� then two new solutions are created by exchanging all
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the bits following a randomly selected locus on the strings� For example� if crossover after
position 
 is proposed between solutions

	 
 
 	 	 	 
 	

and
	 	 	 	 
 
 
 
�

the resulting o�spring are
	 
 
 	 	 
 
 


and
	 	 	 	 
 	 
 	

which replace their parents in the population�
A slightly more complex operator� 
rst proposed by Cavicchio �� � is two point crossover in

which two crossover points are randomly selected and the substrings between �and including�
those positions are exchanged� If necessary� strings are treated as continuous rings� Thus� if
crossover between points � �selected 
rst� and � is proposed for strings

	 
 
 	 	 	 
 	

and
	 	 	 	 
 
 
 
�

the resulting o�spring are
	 	 
 	 	 
 
 


and
	 
 	 	 
 	 
 	


Whereas� if crossover is between points � �selected 
rst� and �� the o�spring are
	 	 	 	 
 
 
 	

and
	 
 
 	 	 	 
 



The even�handedness of two point crossover is appealing� There is no intuitive reason
why right�hand bits should be exchanged more frequently than left�hand ones� unless the
string represents the binary coding of a single integer or continuous variable� in which case�
of course� the signi
cance of individual bits decreases from left to right�

De Jong ��
 tested multiple point crossover operators� which exchange more than one
substring� and found that performance is degraded as more substrings are swapped� Although
it is essential to introduce some changes in order to make progress� too many alterations make
the probability of destroying the good features of a solution unacceptably high� An e�ective
GA search requires a balance between exploitation �of good features in existing solutions�
and exploration � introducing new �combinations of� features�

The performance of the recombination phase of a GA can also be improved by requiring
that crossover introduce variation whenever possible� For instance� if the strings

	 
 	 
 	 
 	 	

and
	 	 
 	 	 
 	 	


are chosen partners� then only exchanges involving bits �� � or 	 will result in o�spring
di�ering from their parents� Booker �
 suggested that a general solution to this problem is



Methods of Last Resort 	�

to perform crossover between points in the parents� reduced surrogates� which contain just
the nonmatching bits�

For many real applications� problem�speci
c solution representations and crossover oper�
ators have been developed� This "exibility is one of the attractions of GAs ' it is very easy
to introduce heuristic operators� which can substantially improve algorithm performance�
The state of the art has been well reviewed recently by Davis ��� �

����� Population Mutation

Although mutation merits a separate box in the "ow diagram� it is very much a background
operator in most GA applications �as it is in nature�� The purpose of the mutation stage is to
provide insurance against the irrevocable loss of genetic information and hence to maintain
diversity within the population� For instance� if every solution in the population has � as
the value of a particular bit� then no amount of crossover will produce a solution with a �
there instead�

In traditional GAs every bit of every solution is potentially susceptible to mutation� Each
bit is subjected to a simulated weighted coin toss with a probability of mutation PM � which
is usually very low �of the order of ���� or less�� If mutation is approved� the bit changes
value �in the case of a binary coding from � to � or � to ���

There are schools of thought in the GA community which believe that mutation should
only take place in solutions for which crossover was not approved or that only one mutation
per solution should occur� Undoubtedly there are classes of problems for which each scheme
is the most e�ective�

����� Advanced Operators

The simple operators and representations described above form the backbone of all GAs� but�
because natural genetics is in reality a much more complex phenomenon than that portrayed
so far� it is possible to conceive of several alternative representations and operators which
have particular advantages for some GA applications� including�

� Introducing the concepts of diploidy and dominance� whereby solutions are represented
by �several� pairs of chromosomes� The decoding of these �which determines between
blue and brown eyes� say� then depends on whether individual bits are dominant or
recessive� Such a representation allows alternative solutions to be held in abeyance�
and can prove particularly useful for optimization problems where the solution space
is time�varying�

� Introducing the ideas of niche and speciation in multimodal problems� whereby one
deliberately tries to maintain diversity �to breed di�erent species exploiting di�erent
niches in the environment� in order to locate several of the local optima� This can be
achieved by elaborating the selection and recombination rules described above�
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� Introducing some sort of intelligent control over the selection of mating partners� such
as the �inbreeding with intermittent crossbreeding� scheme of Hollstien ��� � In this
scheme similar individuals are mated with each other as long as the �family� 
tness
continues to improve� When this ceases new genetic material is added by crossbreeding
with other families�

These and other advanced operators are discussed in detail in Chapter 
 of the seminal
book by Goldberg ��� �

����� Population Assessment

Like the SA algorithm� a GA does not use derivative information� it just needs to be supplied
with a 
tness value for each member of each population� Thus� the evaluation of the problem
functions is essentially a �black box� operation as far as the GA is concerned� Obviously� in
the interests of overall computational e�ciency� the problem function evaluations should be
performed e�ciently� Depending on the nature of the system equations advice on accelerating
these calculations may be found in other chapters within this project�

The guidelines for constraint handling in a GA are basically identical to those outlined
in Section 
���� for the SA algorithm� As long as there are no equality constraints and the
feasible space is not disjoint� then infeasible solutions can simply be �rejected�� In a GA
this means ensuring that those particular solutions are not selected as parents in the next
generation� e�g� by allocating them a zero survival probability�

If these conditions on the constraints are not met� then a penalty function method be
used� A suitable form for a GA is�

fA�x� � f�x� � MkwTcV �x�� ����

where w is a vector of nonnegative weighting coe�cients� the vector cV quanti
es the mag�
nitudes of any constraint violations� M is the number of the current generation and k is a
suitable exponent� The dependence of the penalty on generation number biases the search
increasingly heavily towards feasible space as it progresses� Consult section 	 for more details
on the penalty function method�

����	 Control Parameters

The e�ciency of a GA is highly dependent on the values of the algorithm�s control parame�
ters� Assuming that basic features like the selection procedure are predetermined� the control
parameters available for adjustment are�

� the population size N �

� the crossover probability PC � and

� the mutation probability PM �
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De Jong ��
 made some recommendations based on his observations of the performance
of GAs on a test bed of 
 problems� which included examples with di�cult characteristics
such as discontinuities� high dimensionality� noise and multimodality� His work suggested
that settings of

�N�PC � PM � � �
�� ����� ������ ����

would give satisfactory performance over a wide range of problems�
Grefenstette ��� went one stage further and used a GA to optimize these parameters for

a test bed of problems� He concluded that

�N�PC � PM � � ���� ���
� ������ ��	�

resulted in the best performance when the average 
tness of each generation was used as the
indicator� while

�N�PC � PM � � ���� ��	
� ������ ��
�

gave rise to the best performance when the 
tness of the best individual member in each
generation was monitored� The latter is� of course� the more usual performance measure for
optimization routines�

In general� the population size should be no smaller than �
 or �� whatever the problem
being tackled� and for problems of high dimensionality larger populations �of the order of
hundreds� are appropriate�

����
 GA Computational Considerations

As with the Simulated Annealing algorithm� the procedures controlling the generation of
new solutions are so simple that the computational cost of implementing a GA is usually
dominated by that associated with the evaluation of the problem functions� It is therefore
important that these evaluations should be performed e�ciently and essential if the opti�
mization is to be performed on a serial computer� Advice on how these calculations can be
accelerated can be found in the chapter appropriate to the form of the system equations to
be solved�

Unlike SA� which is intrinsically a sequential algorithm� GAs are particularly well�suited
to implementation on parallel computers� Evaluation of the objective function and con�
straints can be done simultaneously for a whole population� as can the production of the
new population by mutation and crossover� Thus� on a highly parallel machine� a GA can be
expected to run nearly N times as fast for many problems� where N is the population size�

If it is possible to parallelize the evaluation of individual problem functions e�ectively�
some thought and� perhaps� experimentation will be needed to determine the level at which
multitasking should be performed� This will obviously depend on the number of processors
available� the intended population size and the potential speed�ups available� If the number of
processors exceeds the population size �a highly parallel machine%�� multi�level parallelization
may be possible�

A signi
cant component of a GA code is the random number generator� which is essential
to the processes of selection� crossover and mutation� �See� for example� the sample code
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Figure ��� Minimization of the Two�Dimensional Rosenbrock Function by a Genetic Algo�
rithm ' Population Distribution of the First� Tenth� Twentieth� and Thirtieth Generations�

supplied with this section�� Random number generators are often provided in standard
function libraries or as machine�speci
c functions� It is important� particularly when tackling
large scale problems requiring thousands of iterations� that the random number generator
used have good spectral properties ' see the chapter on Random Number Generators for
more details�

����� GA Algorithm Performance

Figure �� shows the progress of a GA on the two�dimensional Rosenbrock function� f �
���x��������x��x���

�� This is presented purely for purposes of comparison� Each member
of the �st� ��th� ��th and ��th generations is shown �by a symbol�� The convergence of the
population to the neighborhood of the optimum at ��� �� is readily apparent�

Within the GA each control variable was represented by a �� bit binary number �chro�
mosome�� or equivalently in decimal integers between ����������	�	���	�� and �� So� when
rescaled into real numbers with a range of �� this representation gives quantization errors of
just ��	 � ���	�

Figure �� shows the progress in reducing the objective function for the same search�
Both the 
tness of the best individual within each population and the population average

tness are shown �note that the scales are di�erent�� These are the two standard measures of
progress in a GA run� The di�erence between these two measures is indicative of the degree
of convergence in the population�
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In this particular example� the GA has been successful in locating the global optimum�
but it must be noted that GAs are often found to experience convergence di�culties� In
many applications GAs locate the neighborhood of the global optimum extremely e�ciently
but have problems converging onto the optimum itself� In such instances a hybrid algorithm�
for example using a GA initially and then switching to a low temperature SA search� can
prove e�ective�

The code used in this example is mo ga
f� It uses input data available in 
le mo ga in
dat�
Both of these 
les may be viewed with an html browser�

��� Evolutionary Strategies

This section will appear in the next release of this chapter�

� High�Performance Optimization Programming

Future developments in the 
eld of optimization will undoubtedly be in"uenced by recent
interest and rapid developments in new technologies ' powerful vector and parallel machines�
Indeed� their exploitation for algorithm design and solution of �grand challenge� applications
is expected to bring new advances in many 
elds� such as computational chemistry and
computational "uid dynamics�




	

Supercomputers can provide speedup over traditional architectures by optimizing both
scalar and vector computations� This can be accomplished by pipelining data as well as
o�ering special hardware instructions for calculating intrinsic functions �e�g�� exp�x��

p
x��

arithmetic� and array operations� In addition� parallel computers can execute several op�
erations concurrently� Multiple instructions can be speci
ed for multiple data streams in
MIMD designs� whereas the same instructions can be applied to multiple data streams in
SIMD prototypes� Communication among processors is crucial for e�cient algorithm design
so that the full parallel apparatus is exploited� These issues will only increase in signi
cance
as massively parallel networks enter into regular use�

In general� one of the 
rst steps in optimizing codes for these architectures is implemen�
tation of standard basic linear algebra subroutines �BLAS�� These routines ' continuously
being improved� expanded� and adapted optimally to more machines ' perform operations
such as dot products �xTy� and vector manipulations �ax� y�� as well as matrix�vector and
matrix�matrix operations� Thus� operations� such as in equations �	��� �
��� or �
�� and �
��
can be executed very e�ciently� In particular� if n is very large� segmentation among the
processors may also be involved� A new library of FORTRAN �� subroutines� LAPACK� fo�
cuses on design and implementation of standard numerical linear algebra tasks �e�g�� systems
of linear equations� eigenvalue and singular value problems� to achieve high e�ciency and
accuracy on vector processors� high�performance workstations� and shared�memory multi�
processors� At this writing� up�to�date information may be obtained by sending the message
send index from LAPACK to the electronic mail address netlib�ornl
gov�

Speci
c strategies for optimization algorithms have been quite recent and are not yet
uni
ed� For parallel computers� natural improvements may involve the following ideas� ���
performing multiple minimization procedures concurrently from di�erent starting points� ���
evaluating function and derivatives concurrently at di�erent points �e�g�� for a 
nite�di�erence
approximation of gradient or Hessian or for an improved line search�� ��� performing ma�
trix operations or decompositions in parallel for special structured systems �e�g�� Cholesky
factorizations of block�band preconditioners��

With increased computer storage and speed� the feasible methods for solution of very
large �e�g�� O����� or more variable� nonlinear optimization problems arising in important
applications �macromolecular structure� meteorology� economics� will undoubtedly expand
considerably and make possible solution of larger and far more complex problems in all 
elds
of science and engineering�

	 Exercises

Exercise � The determination of a minimum of a function�

Consider 
nding the minimum of the function f�x� � �x � ��� � ��� sin����x � ��� by
the structure described in algorithm ���� This nonlinear function is essentially a quadratic
function perturbed by small sinusoidal "uctuations� One can use several simple techniques



Exercises 



as a 
rst approach to solving this problem� These include graphics� tabulation of function
values� and bisection to bracket the interval where a minimum lies�

a� Plot this function�
b� Plot its derivative g�x� � f ��x�� solving for the roots of g�x� is a closely related problem

to minimizing f�x��
c� Choose various initial points devise descent paths toward the minimum of f�x��
d� Plot your paths toward the minimum and analyze the results�

Exercise � Derive the interpolation formulas for the line search�

a� Derive the interpolation formulas above for the line search by using the form of p���
in equation ���� and using the four known conditions involving !f�� !f�� !g� and !g��

b� Now use the quadratic form of equation ����� and derive the coe�cients b� c� d by using
the conditions for !f�� !f� and !g��

Exercise � The construction of a subroutine for the line search interpolation procedure�

a� Write a subroutine to construct the line search interpolation procedure described above
once the values of !f�� !f�� !g� and !g� are provided� You can switch to the quadratic interpolant
when the coe�cient a is small or by examining the four values supplied�

b� Construct input data to cover all situations shown in Figure � and test your programs�
Plot your results by showing your computed interpolant� Is your subroutine robust enough
to produce a minimum in each case� How can it be improved�

Exercise � Derive the convergence rates for the three sequences mentioned above�

Exercise � Derivative testing�

Use routine TESTGH for testing Rosenbrock�s function for n���	��� and ��� on a wide
range of starting points�

Exercise � The determination of the two�dimenstional Beale function by numerical tech�
niques�

Write code for the two�dimensional function known as Beale�

f�x�� x�� � ���
� x���� x�� 
� � ����
� x���� x�� 

� � �����
� x���� x��� 
�� ����

its gradient vector� and Hessian matrix� Test the derivative routines with program TESTGH

above until they are all correct�

Exercise 	 The determination of the roots of a function�

Set up a program to 
nd the root of x� � a� and test it for various values of a from various
starting points� Plot your minimization trajectories by displaying each iterate and connecting
it to the next� When is convergence satisfactory and when are problems encountered�
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Exercise 
 The reliability of the root�
nding program�

Test your program on 
nding the roots of the equation f�x� � x � e�x � �� Plot this
function and your minimization paths from di�erent starting points�

Exercise � The forward and central di�erence quotients for the determination of a deriva�
tive of a function�

Consider approximating the derivative of the function f�x� � ex for x � �� Use the
forward and central di�erence quotients as de
ned below�

DF �h� � �f�x � h�� f�x� �h ����

DC�h� � �f�x � h�� f�x� h� ��h ����

Using both single and double�precision programs� make tables showing in each case the value
for h� the di�erence approximations DF �h� and DC�h�� and the errors associated with these
values �since we know the answer here�� Use a wide range of values for the di�erence interval
h� from ��� to ������ What can you say about the quality of the two di�erent approximations
and their associated optimal values for h� Can you suggest how an optimal value for h can
be estimated�

Exercise �� The minimization of a one�dimensional function by Newton�s method�

Consider minimizing the one�dimensional function

f�x� � sin�x� � x� exp�x� ����

by Newton�s method� You might want to transform this problem into a root�
nding one�
g�x� � �� Newton�s method was originally devised for solving nonlinear equations and then
extended for minimization� Roughly speaking� the Newton techniques we learned above for
minimizing f�x� can be adapted to solve nonlinear equations of form g�x� � f�x� � ��

While good graphics skills can be very e�ective for minimizing or 
nding the roots of
one�dimensional problems� we cannot expect to solve such problems systematically when
many variables are involved and for repeated applications� The following exercises will give
you practical experience in solving such problems using graphics and suitable programs�

�i� Sketch g�x� and g��x� by making use of your basic knowledge of trigonometric and
exponential functions�

�ii� Write a program to implement Newton�s method for root 
nding� Write it in a "exible
way so that you can use it later for other problems� Choose your stopping criteria
carefully� You should balance the desire to obtain as accurate a result as possible with
the amount of computation involved� In other words� there is no point in continuing a
loop when the answer can no longer be improved� What are reasonable evaluations of
progress to use� Consider� for example� changes in the magnitudes of successive iterates
x and the associated function values g�x�� Also consider the amount of progress realized
�in terms of function value� in relation to the size of step taken� �Sketch a situation
where this may be relevant��
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�iii� First 
nd the largest root� i�e�� the one furthest to the right on the x�axis� Experiment
with di�erent starting points� What can you say about the performance and accuracy
of Newton�s method� �Consider g��x��� What convergence do you see in practice� in
terms of digits of accuracy obtained in each step� Be sure to illustrate progress by
listing x� g�x�� measures of error� and measures of progress between successive iterates
for each step of the method� Print the results to as many digits as you think are
relevant� What accuracy do you expect from Newton�s method in terms of machine
precision 
m �

�iv� Now try to 
nd a few of the next largest roots to the left� Select and experiment
with di�erent starting points by considering various regions on your function sketch�
When convergence is satisfactory� is it as fast as you observed for the large root� Are
there examples of points for which your method fails� Why� Can you suggest a class of
strategies to improve the method in those cases� Implement the following modi
cation�
Newton�s method with bisection safeguards� In this version� we will keep two points
a and b for which f always has opposite signs �i�e� we will always bracket a root��
Let xk � a if jg�a�j � jg�b�j and b otherwise� The method then takes a Newton step�
de
ned by the tangent to the curve through the point �xk� g�xk��� if the Newton point
xk�� lies in the interval �a� b and jg�xk���j 	 �

�
jg�xk�j� otherwise� a bisection step is

taken� Make a sketch of this scheme so that you understand what it does� Compare
performance now for 
nding several roots� Are there cases where the straightforward
implementation of Newton�s method failed but this version succeeds� Why� What can
you say about performance�

�v� Now that you understand some of the di�culties involved even in some very simple
problems� you might appreciate available software tools better� Use a library package
to minimize f�x� or 
nd some roots of g�x�� You can use an appropriate routine from
comprehensive libraries such as NAG or you might search for a minimizer in Netlib�
a network of free numerical analysis software� To get started in Netlib� at the time of
writing you can send the message ��send index�� to netlib�ornl
gov� �You may
also refer to the introduction of netlib in the linear algebra chapter� You may want
to search for a keyword such as Brent� You may also need to obtain other supporting
software that may not be included in the 
le� Information on such requirements should
be given with the code� Once you obtain a suitable code� describe brie"y the algorithm�
going back to the original cited literature if you must� Try some of the good and bad
starting points you diagnosed earlier� What can you say about performance of the
package�

References

�� Acton� F� S�� Numerical Methods that Usually Work� Chapter ��� The Mathematical
Association of America� Washington� D� C�� ���� �updated from the ���� edition��




�

�Introductory numerical methods book� fun and lively in style
 

�� Arts� E� H� L�� and Korst� J�H�M�� Simulated Annealing and Boltzmann Machines�
Wiley �Interscience�� New York� �����

�� Baker� J� E�� Adaptive Selection Methods for Genetic Algorithms� pp� �������� Pro�
ceedings of an International Conference on Genetic Algorithms and their Applications
�J� J� Grefenstette� editor�� Lawrence Erlbaum Associates� Hillsdale� NJ�

�	 Boggs� P�T�� Byrd� R�H� and Schnabel� R�B�� Eds�� Numerical Optimization
���	� SIAM� Philadelphia� ���
� �A collection of papers presented at the SIAM

optimization conference� varied and interesting approaches
 

�
 Booker� L� B�� Improving Search in Genetic Algorithms� pp� ������ Genetic Algorithms
and Simulated Annealing �L� Davis� editor�� Pitman� London� �����

�� Bounds� D� G�� New Optimization Methods from Physics and Biology� Nature ����
��
����� �����

�� Cauchy� A�� Methode Generale pour la Resolution des Systemes d�Equations Simul�
tanees� Comp� Rend� Acad� Sci� Paris� 
���
��� ��	�� �Advanced article� Cauchy�s

steepest descent method
 

�� Cavicchio� D� J�� Adaptive Search Using Simulated Evolution� Ph�D� Thesis� University
of Michigan� Ann Arbor� MI� �����

�� Ciarlet� P�G�� Introduction to Numerical Linear Algebra and Optimization� Cambridge
University Press� Cambridge� Great Britain� ����� �Advanced optimization book�

theoretical angle
 

��� Concus� P�� Golub� G� H and O�Leary� D�P�� A Generalized Conjugate Gradient
Method for the Numerical Solution of Elliptic Partial Di�erential Equations� Sparse
Matrix Computations� J� R� Bunch and D� J� Rose� Eds�� Academic Press� New
York� ����� �������� �Advanced article describing preconditioned conjugate

gradient applications
 

��� Dahlquist� G� and Bjork� A�� Numerical Methods� Prentice�Hall� Englewood Cli�s�
New Jersey� ���	� �Classic numerical methods book� covers numerous areas in

broad detail
 

��� Darwin� C�� On The Origin of Species� �st edition �facsimile � ���	�� Harvard University
Press� Cambridge� MA� ��
��

��� Davis� L�� Handbook of Genetic Algorithms� Van Nostrand Reinhold� New York� NY�
�����

��	 Dawkins� R�� The Blind Watchmaker� Penguin� London� �����
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�

��
 De Jong� K� A�� An Analysis of the Behavior of a Class of Genetic Adaptive Systems�
Ph�D� Thesis� University of Michigan� Ann Arbor� MI�� ���
�

��� Dennis� J�E� Jr� and Schnabel� R�B�� Numerical Methods for Unconstrained
Optimization and Nonlinear Equations� Prentice�Hall� Englewood Cli�s� New
Jersey� ����� �Advanced optimization book� providing theoretical background

for algorithms
 

��� Dennis Jr�� J�E� and More� J�J�� Quasi�Newton Methods� Motivation and Theory� SIAM
Review ��� 	����� ����� �Advanced review of Quasi�Newton methods
 

��� Dembo� R�S� and Steihaug� T�� Truncated�Newton Algorithms for Large�Scale Un�
constrained Optimization� Math� Prog� ��� ������� ������� �Advanced article

presenting the truncated Newton method in theoretical detail
 

��� Dixon� L�C�W�� On the Impact of Automatic Di�erentiation on the Relative Performance
of Parallel Truncated Newton and Variable Metric Algorithms� SIAM J� Opt� �� 	�
�	���
����� �Review on automatic differentiation and its usage
 

��� Du�� I�S�� Erisman� A� M� and Reid� J�K�� Direct Methods for Sparse Matrices� Claren�
don Press� Oxford ������� �Advanced textbook on direct methods for solving

sparse linear systems
 

��� Evans� J�D�� The Use of Pre�conditioning in Iterative Methods for Solving Lin�
ear Equations With Symmetric Positive De
nite Matrices� J� Inst� Math� Applic� 	�
��
���	� ����� �Advanced article introducing preconditioning for conjugate

gradient methods
 

��� Fletcher� R�� Practical Methods of Optimization� Second Edition� �A Wiley� Interscience
Publication�� John Wiley and Sons� Tiptree� Essex� Great Britain� ����� �Advanced
book on optimization techniques
 

��� Fletcher� R� and Reeves� C�M�� Function Minimization by Conjugate Gradients�
Comp� J� �� �	���
	� ���	� �Advanced article on using conjugate gradient for

nonconvex functions
 

��	 Floudas� C�A� and Pardalos� P� M�� Eds�� Recent Advances in Global Optimization�
Princeton Series in Computer Science� Princeton University Press� New Jersey� �����
�Recent volume on various approaches to global optimization
 

��
 George� A� and Liu� J�W�� Computer Solution of Large Sparse Positive De
nite Systems�
Prentice�Hall� Englewood Cli�s� New Jersey� ����� �Advanced textbook on solving

large sparse positive definite systems of equations
 

��� Gilbert� J�C� and Nocedal� J�� Global Convergence Properties of Conjugate Gradient
Methods for Optimization� SIAM J� Opt� �� ���	�� ����� �Advanced article summa�

rizing the various conjugate gradient methods and their properties
 



��

��� Gilbert� J�C�� and Lemarechal� C�� Some Numerical Experiments with Variable�
Storage Quasi�Newton Algorithms� Math� Prog� 	
� 	���	�
� ����� �Advanced article

describing practical experience with limited�memory Quasi�Newton methods

on large�scale crystallography and meteorology problems
 

��� Gill� P�E�� Murray� W� and Wright� M� H�� Numerical Linear Algebra and Optimization�
Volume �� Addison�Wesley� Redwood City� California� ����� �Introductory numerical

linear algebra and optimization book
 

��� Gill� P�E�� Murray� W� and Wright� M�H�� Practical Optimization� Academic Press� New
York� ����� �Standard reference book on practical optimization methods
 

��� Gill� P�E�� Murray� W�� Saunders� M� A� and Wright� M�H�� Computing
Forward�Di�erence Intervals for Numerical Optimization� SIAM J� Sci� Stat� Com�
put� 	� �������� ����� �Advanced article� excellent description on choosing

finite�difference intervals
 

��� Goldberg� D� E�� Genetic Algorithms in Search� Optimization and Machine Learning�
Addison Wesley� Reading� MA� �����

��� Golub� G�H� and Van Loan� C�F�� Matrix Computations� Johns Hopkins University
Press� Baltimore� Maryland� ����� �Excellent linear algebra book
 

��� Grefenstette� J� J�� Optimization of Control Parameters for Genetic Algorithms� IEEE
Trans� Syst�� Man� Cyber� SMC���� �������� �����

��	 Grefenstette� J� J�� Incorporating Problem Speci
c Knowledge into Genetic Algorithms�
pp� 	����� Genetic Algorithms and Simulated Annealing �L� Davis� editor�� Pitman�
London� �����

��
 Griewank� A�� On Automatic Di�erentiation� Mathematical Programming �����
Kluwer Academic Publishers� Japan� ����� pp� ������� �Review on automatic

differentiation
 

��� Hestenes� M�R�� Conjugate Direction Methods in Optimization� Springer�Verlag� New
York� ����� �Advanced textbook on methods related to conjugate gradient
 

��� Holland� J� H�� Adaptation in Natural and Arti
cial Systems� University of Michigan
Press� Ann Arbor� MI� ���
�

��� Hollstien� R� B�� Arti
cial Genetic Adaptation in Computer Control Systems� Ph�D�
Thesis� University of Michigan� Ann Arbor� MI�� �����

��� Kirkpatrick� S�� Gerlatt� C� D� Jr�� and Vecchi� M� P�� Optimization by Simulated An�
nealing� IBM Research Report RC ��

� �����
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�	� Kirkpatrick� S�� Gerlatt� C� D� Jr�� and Vecchi� M�P�� Optimization by Simulated An�
nealing� Science ���� �������� �����

�	� Kirkpatrick� S�� Optimization by Simulated Annealing � Quantitative Studies� J� Stat�
Phys� �	� ��
����� ���	�

�	� Laarhoven� P� J� M� van� and Aarts� E� H� L�� Simulated Annealing� Theory and Appli�
cations� Reidel� Dordrecht� Holland� �����

�	� Lin� S�� Computer Solutions of the Traveling Salesman Problem� Bell Syst� Tech� J� 		�
��	
������ ���
�

�		 Liu� D�C� and Nocedal� J�� On the Limited Memory BFGS Method for Large Scale
Optimization� Math� Prog� 	
� 
���
��� ����� �Advanced article presenting the

limited�memory Quasi Newton method
 

�	
 Luenberger� D�G�� Linear and Nonlinear Programming� Second Edition�
Addison�Wesley� Reading� Massachusetts� ���	� �Introductory optimization book�

providing easy�to�grasp explanations of algorithmic strategies
 

�	� Metropolis� N�� Rosenbluth� A�W�� Rosenbluth� M� N�� Teller� A�H� and Teller� E��
Equations of State Calculations by Fast Computing Machines� J� Chem� Phys� ��� �����
����� ��
��

�	� Nash� S�G�� Solving Nonlinear Programming Problems using Truncated�Newton Tech�
niques� Numerical Optimization ���	� P� T� Boggs� R� H� Byrd� and R� B� Schn�
abel� Eds�� SIAM� Philadelphia� ���
� pp� �������� �Advanced article presenting

a practical truncated Newton algorithm
 

�	� Nemhauser� G�L�� Rinnooy Kan� A�H�G� and Todd� M�J�� Eds�� Handbook in Opera�
tions Research Management Science� Vol� �� Optimization� Elsevier Science Publish�
ers �North�Holland�� Amsterdam� The Netherlands� and New York� ����� �Excellent
volume on recent technique in optimization research
 

�	� Parks� G� T�� An Intelligent Stochastic Optimization Routine for Nuclear Fuel Cycle
Design� Nucl� Technol� ��� �����	�� �����

�
� Pincus� M�� A Monte Carlo Method for the Approximate Solution of Certain Types of
Constrained Optimization Problems� Oper� Res� ��� ���
������ �����

�
� Powell� M�J�D�� An E�cient Method for Finding the Minimum of a Function of Sev�
eral Variables Without Calculating Derivatives� Comp� J� �� �

����� ���	� �Advanced
articles� presents Powell minimization method
 

�
� Powell� M�J�D�� Nonconvex Minimization Calculations and the Conjugate Gradient
Method� Lecture Notes in Mathematics� Vol� ����� pp� �����	�� ���	� �Advanced
review on conjugate gradient for nonconvex functions
 



��

�
� Rall� L�B�� Automatic Di�erentiation � Techniques and Applications� Lecture Notes
in Computer Science ���� Springer�Verlag� Berlin� New York� ����� �Textbook on

automatic differentiation
 

�
	 Randelman� R� E�� and Grest� G�S�� N�City Traveling Salesman Problem � Optimization
by Simulated Annealings� J� Stat� Phys� 	
� ��
����� �����

�

 Schlick� T� and Overton� M�� A Powerful Truncated Newton Method for Potential En�
ergy Minimization� J� Comp� Chem� �� ���
������ ����� �Article presenting devel�

opment and application of a truncated Newton method to computational

chemistry problems
 

�
� Schlick� T� and Fogelson� A�� TNPACK ' A Truncated Newton Minimization
Package for Large�Scale Problems� I� Algorithm and Usage and II� Implementa�
tion Examples� ACM Trans� Math� Softw� ��� 	������ ����� �Article describing a

truncated�Newton minimization package TNPACK and illustrating its

application in several scientific applications
 

�
� Derreumaux� P�� Zhang� G�� Schlick� T�� and Brooks� B�� A Truncated Newton Min�
imizer Adapted for CHARMM and Biomolecular Applications� J� Comp� Chem� �
�

���

�� ���	� �Article describing the adaptation of a minimization package

for optimization of molecular structures
 

�
� Schlick� T�� Modi
ed Cholesky Factorizations for Sparse Preconditioners� SIAM J�
Sci� Stat� Comp� �	� 	�	�		
� ����� �Article presenting practical strategies of

choosing sparse preconditioners for optimization
 

�
� Schlick� T�� Optimization Methods in Computational Chemistry� Reviews in Compu�
tational Chemistry� Vol� III� K� B� Lipkowitz and D� B� Boyd� Eds�� VCH Publisher�
New York� pp ����� ����� �Review on optimization techniques in computational

chemistry applications
 

��� Schnabel� R�B� and Eskow� E�� A New Modi
ed Cholesky Factorization� SIAM J� Sci�
Stat� Comput� ��� �������
�� ����� �Advanced article presenting a new modified

Cholesky factorization
 

��� Shanno� D�F�� Conjugate Gradient Methods with Inexact Searches� Math� Oper�
Res� �� �		��
�� ����� �Advanced article on conjugate gradient for nonconvex

functions
 

��� Vanderbilt� D�� and Louie� S� G�� A Monte Carlo Simulated Annealing Approach to
Optimization over Continuous Variables� J� Comput� Phys� 
�� �
�� ���� ���	�


