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Figure 5.1: Classes of search technigues.




Characteristics

Metaheuristics

“Metaheuristics, although they also optimize through the
neighbourhood approach, differ from heuristics in that they can
move through neighbours that are worse solutions than the
current solution”

Finds global solution — in the limit
But no guarantee of finding global optimum

Large complex search space
high dimensional
multiple local optima

Termination criteria

Allocated time exceeded
Little improvement at iteration

Within threshold of target value
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Selection by fitness
Reproduction
Evolutionary algorithms Inheritance
Mutation
Crossover

Genetic Algorithms — most popular EA
Genetic Programming
Evolutionary Programming

Neuroevolution
etc.

genotype phenotype

Genetics Eé _p/ﬁ

Chromosomes, genotype of genome

Candidate solutions - phenotype
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Encoding

1. Binary vector

2. Continuous variables — finite

Robustness desirable

representation

All changes result in viable individual

Random seed population

Fitness evaluation

Probabilistic

fitness-based selection

parents

Random

crossover — — Crossover
point

Random \/'
Replacement

New generation

“zygotes” —@
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Fithess evaluation & selection

Fitness function
evaluates “goodness” of individual

Select fit and some not-so-fit
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Crossover
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Mutation

Before mutation:

After mutation:

Figure 3.4: Mutation.
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Generations
Keep same size population

Follow promising lines by
1. Mating fit parents
2. Crossover

Global search by
1. Mutation
2. Unfit parent selection

Simulated Annealing

Metalurgy

internal energy, heat
Raise temperature to unstick atoms

To find configurations with lower internal energy
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State Space

State space

{s}

Generate neighbor
Neighbor function
s'=neighbor(s)

Probabilistically move to s’

Evaluate state — probablistic move

Energy function (fitness function)
e = E(s)

Compute energy of neighbor
e'=E(s")

Probability of

going from state with energy e
to state with energy €’

While temperature is T

P(e',e,T)
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Acceptance Probability Function P()

Acceptance function: P(e,e’,T)

P <> 0 when e’>e
=> not stuck at local minimum

As T->0, P->0 for e’>e => downhill
Originally P(e,e’,T)=1 whenever e’>e
Usually P decreases as e’-e increases

T->0 by time or compute expense

P(e1’e'TIarge) > P(e”e’TsmaII)

State Parameters
State space {s}

Energy function E(s)
Neighborhood function neighbor(s)
Acceptance probability P(e’,e,T) e.g. exp((e-e")/T)
Annealing schedule T(t)

Initial temperature T,
Choose similar solution, not radical one ?
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Example illustrating the effect of cooling schedule on the performance of
simulated annealing. The problem is to rearrange the pixels of an image so
as to minimize a certain potential energy function, which causes similar
colours to attract at short range and repel at a slightly larger distance. The
elementary moves swap two adjacent pixels. These images were obtained
with a fast cooling schedule (left) and a slow cooling schedule (right),
producing results similar to amorphous and crystalline solids, respectively.
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