

Characteristics

Metaheuristics

"Metaheuristics, although they also optimize through the neighbourhood approach, differ from heuristics in that they can move through neighbours that are worse solutions than the current solution"

Finds global solution – in the limit But no guarantee of finding global optimum

Large complex search space high dimensional multiple local optima

Termination criteria

Allocated time exceeded

Little improvement at iteration

Within threshold of target value

Generations

Keep same size population

Follow promising lines by

- 1. Mating fit parents
- 2. Crossover

Global search by

- 1. Mutation
- 2. Unfit parent selection

Simulated Annealing

Metalurgy

internal energy, heat

Raise temperature to unstick atoms

To find configurations with lower internal energy

Evaluate state – probablistic move	
Energy function (fitness function) e = E(s)	
Compute energy of neighbor e'=E(s')	
P(e',e,T)	Probability of going from state with energy e to state with energy e' While temperature is T

