Monte Carlo Techniques
Basic Concepts

Chapter (13)14, 15 of “Physically Based
Rendering” by Pharr& Humphreys
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Reading

 Chapter 13, 14, 15 of “Physically Based
Rendering” by Pharr& Humphreys

» Chapter 7 in “Principles of Digital Image
Synthesis,” by A. Glassner

Reading
13: light sources Read on your own
14.1: probability Intro, review
14.2: monte carlo Important basics

14.3: sampling random variables
14.4: transforming distributions Basic procedures for sampling
14.5: 2D sampling

15.1: Russian roulette Improve efficiency
15.2: careful sample placement
15.3: bias Techniques to reduce variance

15.4: importance sampling

15.5: sampling reflection functions

15.6: sampling light sources Sampling graphics
15.7: volume scattering

Randomized Algorithms

» LasVegas:
— Always giveright answer, but
use elements of randomness
on the way

— Example: randomized
quicksort
* Monte Carlo: |
— stochastic / non-deterministic

— givetheright answer on
average (in the limit)

Monte Carlo

« Efficiency, relative to other agorithms,
increases with number of dimensions
* For problems such as

— integrals difficult to evaluate because of
multidimensional, complex boundary
conditions (i.e., no easy closed form
solutions)

— Those with large number of coupled
degrees of freedom
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Monte Carlo Integration

* Pick aset of evaluation points

 Accuracy grows with O(N9), i.e. in order
to do twice as good we need 4 times as
many samples

* Artifacts manifest themselves as noise

 Resear ch - minimize error while
minimizing the number of necessary rays




Basic Concepts

* X, Y -random variables

— Continuous or discrete

— Apply function f to get Y from X: Y=Ff(X)
» Example - dice

—Setof events X; ={1, 2,3,4,5, 6}

—f - rolling of dice

— Probability of eventi isp; = 1/6

6
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Basic Concepts

» Cumulative distribution function (CDF)
P(x) of arandom variable X:

P(x)=Pr{X<x}= I p(s)ds
 Dice example
-P(2)=13
~P(4)=2/3
—-P(6)=1

Continuous Variable

¢ Canonical uniform random variable

— Takeson all valuesin [0,1) with equal probability

— Easy to create in software (pseudo-random number
generator)

— Can create general random distributions by starting
with &

— for dice example, map continuous, uniformly
distributed random variable, &, to discrete random
variable by choosing X; if

i-1 i
2P <ésyp
j=1 j=1
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Example - lighting

* Probability of sampling illumination based on
power @;:

e Sumsto one

Probability Distribution
Function
* Relative probability of arandom variable
taking on a particular value

* Derivative of CDF: p(x)=
» Non-negative

« Alwaysintegrateto one P(x 0 [ab])= j p(x)dx
« Uniform random variable: ’

dP(x)
Cdx

_J1 xO[o]]
p(X)_{O otherwise

P(x)=x
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Cond. Probability,
Independence

» We know that the outcomeisin A
» What is the probability that itisin B?

@ \ Pr(B|A) = Pr‘(AB)/Pr(A)‘

Event space

* Independence: knowing A does not help:
Pr(B|A) = Pr(B) ==> Pr(AB)=Pr(A)Pr(B)




Expected Value

» Average value of the function f over some
distribution of values p(x) over its domain D

Elf(x)]=u= JD f (x) p(x)dx
« Example - cos over [0,1] where p isuniform

p(x)=Yn
E,[cos(x)] = J.o"&;'x

:%(—sinlﬁsino):o .
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Variance

Variance of afunction: expected deviation
of the function from its expected value

Fundamental concept of quantifying the
error in Monte Carlo (MC) methods

VIt (9]=0" =E[(f (9]

Want to reduce variance in Monte Carlo
graphics agorithms
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Properties

E[af (x)]=aE[f (x)]
E[X f()]=2 E[f(x)]
V[t ]Vt (4]

* Hence we can write: ,
VI ]=Ef(r ) ]
« For independent random variables:

V[ )= vIF ()]
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Uniform MC Estimator

All thereistoit, realy :)

Assume we want to compute the integral of
f(x) over [a,b]

Assuming uniformly distributed random
variables X; in [ab] (i.e. p(x) = 1/(b-a))
Our MC estimator Fy:

b-a<
Ry = N Zf(Xi)
i=1
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Simple Integration

J: f(x)dx = IZ:; f(x )Ax
- S 216)

Error = C{lj
N

Trapezoidal Rule
I f () = iNZ;(f () * ()2
::lizi‘wi f(x)

_{0.5 i=0,N

1 O<i<N

Error = O(lj
N

18




Uniform MC Estimator

* Given supply of N
uniform random E[R]= Hzf(x.)J
. N T
variables: =
b_ N
X, O[a,b] =22 e[ (x)]
i=1
* E[Fyisequal tothe =283 [ ()p(x)ax
correct integral: N
1< (b
== [T (g
N i=1 2
= I:f (X)ax
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General MC Estimator

 Canrelax condition for genera

PDF
* Important for efficient evaluation N

of integra - draw random F, :ﬁz(Tj
variable from arbitrary PDF p(X) 1 PO

E[F.]= E{li@}

« And hence: 2 p(%)
:Nijbf(x p(x)dx
782 = .[ f (x)dx 20

Confidence Interval

» We know we should expect the correct
result, but how likely are we going to see it?

« Strong law of large numbers (assuming that
Y, are independent and identically
distributed):

Pr{l im il iY. E[Y]}

N o0 =1
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Confidence Interval

« Rate of convergence: Chebychev Inequality

N

e Setting

* Wehave PrilF ElF] = 6[ J] <o
« Answerswith what probability is efror below a
certain amount
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MC Estimator

» How good isit? What's our error?

* Our error (root-mean sguare) isin the
variance, hence
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MC Estimator

» Hence our overall error:

Pr{F -E[F, ]‘>f VF}<5

* V[F] measures square of RMS error!

 Thisresult isindependent of our dimension
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Distribution of the Average

o Central limit theorem: sum of iid random
variables with finite variance will be
approximately normally distributed

* assuming normal distribution:

. 7 G T
lePr{FN—E[F]st\/ﬁ}—mle 2dx
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Distribution of the Average

* Central limit theorem assuming normal
distribution

t
LimPr{FN—E[F]StUF}: 1 [ePdx

JN

* This can bere-arranged as
2% e
PrﬂFN—I\ztUFN}z\E!e T2dx

» well known Bell curve

Vorr
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Distribution of the Average

P{F, - 1|20, } =
* Hence for t=3 we can conclude
Pr{F, 1= 30; }=0.997

* l.e pretty much all results are

within three standard

deviations

(probabilistic error bound

- 0.997 confidence)
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* This can bere-arranged as 5
ﬂ \f.[ex /2gix
nt

Choosing Samples

» How to sample random variables?
» Assume we can do uniform distribution
» How to do general distributions?
—Inversion
— Rejection
— Transformation

Inversion Method

* ldea- we want al the eventsto be
distributed according to y-axis, not x-axis

1| PoF 1 CDF:
0 0 «

X

» Uniform distribution is easy!

29

1| PoF 1| corF i
0 X

72 0 X

Inversion Method

« Compute CDF (make sureit is normalized!)

1 PDF 1 CDF
P(x)= I p(s)ds -
- Computetheinverse P(y) x° *
1| “cor pt
—_—

0 X 0
¢ Obtain auniformly distributed random number &
» Compute X; = P(&)
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Example - Power Distribution

+ Used in BSDF's p(x)=cx" 0s<xsl
» Makesureitisnormalized ]cx"dle c=n+l
- ComputetheCDF  P(x)2 | (n+1)ds=x""
« Invert the CDF p’l(x)zg‘f{&

» Now we can choose auniform & distribution
to get a power distribution!

LT
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Example - Exponential Distrib.

 E.g. Blinn's Fresnel Term p(x)=ce™ 0<x<wo

» Makesureitisnormalized T ce¥dx=1 c=a

. ComputetheCDF  P(x)= | ae“ds=1-¢™

* Invert the CDF P(x)==%In-x)

* Now we can choose a uniform x distribution
to get an exponentia distribution!

X=-Yin@-&=-Yin¢
* extend to any funcs by piecewise approx.
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Rejection Method

» Sometimes
— We cannot integrate p(x)

— We can't invert afunction P(x) (we don’'t have
the function description)

* Need to find q(x), such that p(x) < cq(x)
* Dart throwing

— Choose a pair of random variables (X, &)

— test whether & < p(X)/cq(X)
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Rejection Method

 Essentially we pick apoint (x, &cq(x))
« If point lies beneath p(x) then we are ok
* Not al points do -> expensive method

» Example - sampling a 1
— Circle: T74=78.5% good samples p(x)
— Sphere: 116=52.3% good samples
— Getsworst in higher dimensions

0

Transforming between Distrib.

* Inversion Method --> transform uniform
random distribution to general distribution

» transform general X (PDF p,(x))
to genera Y (PDF p,(x))
» Casel: Y=y(X)
* y(X) must be one-to-one, i.e. monotonic
* hence
P,(v)=Pr{Y < y(x)} = P{X <} = B(x)
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Transforming between Distrib.

» Hence we have for the PDF's:
P, (v)dy =P, (¥) = B.(x) = p,(x)dx
d -1
2 =Y 0.9
* Example: p(x) = 2x; Y =sinX
2x__z2sn'y

B0)=(099" )= o =2




Transforming between Distrib.

* y(x) usually not given
» However, if CDF s are the same, we use
generalization of inversion method:

y() =R (P(x))
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Multiple Dimensions

* Easily generalized - using the Jacobian of
YETOO g, (r6) =121 (9 "m0

X =rcosé

e Example- polar coordinates = .
y=rsiné
oK X o g
Cos —-ran
3, o’r 079 [ j
()= singd rcosé
oT 0"'0

p(r.6) =3[ p(x.y) = rp(xy)

Multiple Dimensions

* Spherical coordinates:
p(r.6.¢)=r’sin&(x.y,2)
» Now looking at spherical directions:

» Wewant to solid angle to be uniformly
distributed  da=sind&l¢

» Hence the density in terms of @and 6:
p(6, ¢)d&d¢ = p(a)da
p(6.9)=sinp(w)
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Multidimensional Sampling

* Separable case - independently sample X
fromp, and Y from p: p(x.y)= p.(x)p,(y)

 Often timesthisis not possible - compute
the marginal density function p(x) first:

p()= ] p(xy)ly

» Then compute conditional denﬁtv function
(pofy givenx) p(ylx)="

* Use 1D sampling with p(x) gr?d p(y[x)
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Sampling of Hemisphere

e Uniformly, l.e. p(w) = ¢ .
1= J.HQp(a)) c——

» Sampling 0 first:
p(6)= an(9¢7)d¢ SI—mgdgo sné
* Now samplingin ¢:
p@g) _

P219)="00 o
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a1

Sampling of Hemisphere

» Now we use inversion technique in order to

sample the PDF's; P(6)= ]‘sinadazl-cosﬁ

P(pl6)= T

da =

1 4a=2
S22

* Inverting these: B
f=cos ¢

p=21%,




Sampling of Hemisphere

« Converting these to Cartesian coords:

T - _ 2
f=cos’é, sinBosg=cos(27E, W1~ &
9=27%, yzsnesingzzgn(zngz)m

z=cosf=¢

 Similar derivation for afull sphere
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Sampling a Disk
* Uniformly: p(x,y)=% p(r,H):rp(x‘y):%
 Sampling r first: p(r):Tp(r,H)dHZZr

i _pro)_ 1
« Thensamplingin®: p(@Ir)= é(r))—g

[

— 2 —

« InvertingthecDF: PO=r" PEIN=7_
(=& 0=27,

Sampling a Disk

» Given method distorts size of compartments

* Better method r=x =%

y
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Cosine Weighted Hemisphere

* Our scattering equations are cos-weighted!!

» Hence we would like a sampling

distribution, that reflects that!
 Cos-distributed p(w) = c.cosd
1:-'.H2p(w)jw C:i
2772
= _[ Iccos@sinaiai(p 1
00 p(9,(0)=—c0395in9
/2 n
= 2cnjoosl93in6dl9
0
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Cosine Weighted Hemisphere

* Could use marginal and conditional
densities, but use Malley’ s method instead:

« uniformly generate points on the unit disk

 Generate directions by projecting the points
on the disk up to the hemisphere above it

/ A! :, jgjj/cose

= a4
rejected samples a1

£

Cosine Weighted Hemisphere

» Why does this work?

o Unit disk: p(r, @) =/t

* Map to hemisphere: r=sin 0

» Jacobian of this mapping (r, @) -> (sin 6, @)

+ Hence: 5 (X):[CO;H szcose

1
cosfsing

P@.9)=|%|p(r.¢) =




Performance Measure

« Key issue of graphics algorithm
time-accuracy tradeoff!
« Efficiency measure of Monte-Carlo: 1
SR ELG
— V: variance [ ] [ ]
— T: rendering time
 Better algorithm if
— Better variance in same time or
— Faster for same variance
« Variance reduction techniques wanted!
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Russian Roulette

» Don't evaluate integral if the valueis small
(doesn’'t add much!)

» Example - lighting integral
L(pw,)= ] fi (Pw, @)L (p.w)cosq|dw
» Using N sample direction and a distribution
of p(®) 14" (e )l (P )oos6|
N3 p(@)
* Avoid evaluations wheref, issmall or 6
close to 90 degrees
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Russian Roulette

« cannot just leave these samples out

— With some probability g we will replace with a
constant ¢

— With some probability (1-q) we actually do the
normal evaluation, but weigh the result

accordingly F-qc
F’ ={1—q ¢>d
c otherwise
» The expected value works out fine
- E[F]-ac), _
E[F]=@-q 4 +qc = E[F]
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Russian Roulette

* Increases variance
* Improves speed dramatically
» Don't pick g to be high though!!

Stratified Sampling - Revisited

» domain A consists of abunch of strata/\;
e Taken, samplesin each strata _
| ] T 1 f(XH)
* General MCestimator: ~ F -;E o(%,,)
» Expected value and variance (assuming'v; is
the volume of one strata):

= E[f (XH)]=71‘ IA‘ f(x)dx of =V1. '[l\, (f (x)—,u,)zdx

* Variance for one strata with n; samples: a A
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Stratified Sampling - Revisited

* Overal estimator / variance:
V[F] zvl_szF\]zzv[viF\] :szZV[F\] =Zvili
« Assuming number of samples proportional
to volume of strata- n=v;N:
VIF]= 1 Tvo!
» Compared to no-strata (Q is the mean of f
over the whole domain A):

V[FN]=%(ZV‘0|2+ZVI(/1‘ -Q)




Stratified Sampling - Revisited

VIR]= 3 Zvet VIR]= - (Svor+ v -Q)
Stratified sampling never increases variance
Right hand side minimized, when strata are
close to the mean of the whole function
« |.e. pick strata so they reflect local

behaviour, not global (I.e. compact)

Which is better? @ @

Stratified Sampling - Revisited

« Improved glossy highlights

Random sampling stratified sampling

Stratified Sampling - Revisited

¢ Curse of dimensionality
 Alternative - Latin Hypercubes
— Better variance than uniform random
— Worse variance than stratified

782 57

Quasi Monte Carlo

» Doesn’t use ‘real’ random numbers

* Replaced by low-discrepancy sequences

* Works well for many techniques including
importance sampling

» Doesn’t work aswell for Russian Roulette
and rejection sampling

 Better convergence rate than regular MC

Bias
B=E[F]-F
« If Biszero - unbiased, otherwise biased
« Example - pixel filtering
I(xy)= JJ f(x-sy-t)L(st)dsdt
* Unbiased MC estimator, with distribution p
1009) = 2 (=Y = )L6.1)
« Biased (regular) filtering:
):Z f(-sy-t)L(s.t)
2. f(x-s.y-t)
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I(xy

Bias

* typically Np#zX f(x-s,y-t)
¢ |.e. the biased estimator is preferred
« Essentialy trading bias for variance

10



Importance Sampling MC

 Can improve our “chances’ by sampling
areas, that we expect have a great influence

« caled “importance sampling”

find a (known) function p, that comes close

to the function we want to compute the

integral of,

« thenevaluate: !'= p(X)%dx

ot—
RaPRa>

f
p
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Importance Sampling MC
e Crude MC: F:Zn:)lif(xi)

* For importance sampling, actually “probe”
anew function f/p. I.e. we compute our hew
estimates to be:

Importance Sampling MC

* For which p does this make any sense? Well
p should be close to f.

» If p="1, then wewould get :li f(x)_
N3 p(x)

» Hence, if wechoosep =f/y, (I.e. pisthe
normalized distribution function of f) then
we'd get: 1< f(x 1

F:NZ (x) == jof(x)dx

i=1 f (Xi)/'u
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Optimal Probability Density

* Variance V[f(x)/p(x)] should be small

 Optimal: f(x)/p(x) is constant, variance is 0
p(x) Of (x) and Jp(x) dx = 1

e p(x) = f (x) /Jf (x) dx

» Optimal selection isimpossible since it
needs the integral

* Prectice: wheref islargepislarge

Are These Optimal ?

R(p) L(p,&)cosd
pr ()

L (p)=L(p)+

1
pr(w) = 7

_cos(0)
pr(w) = o

2 L.(p) =Le(p) +R(p)L(p, ) .

Importance Sampling MC

¢ Sincewe are finding random samples distributed
by a probability given by p and we are actually
evaluating in our experiments f/p, wefind the
variance of these experiments to be:

O = i(%]z p(x)x— 12
£2(x

p(x)

« improves error behavior (just plugin p = f/p)

Ra)

dx—1?

ot—r
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Multiple Importance Sampling

* Importance strategy for f and g, but how to
samplef*g?, e..
Lo(p@) = | f(p.w.@,)L,(p.)cosd|da
« Should we sdmple according to f or
accordingto L;?
« Either oneisn’t good
 Use Multiple Importance Sampling (MIS)
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Multiple Importance Sampling

Multiple
Importance sampling

Importance sampling f Importance sampling L

Multiple Importance Sampling

« Inorder to evaluate | f(x)a(x)dx
* Pick n; samples according to p; and n
samples according to p,
» Use new MC estimator:
1 [ )W, (X,) ML)
nf +ngk\:1 pf(xl) j=1 pg(YJ)
 Balance heuristic vs. power heuristig:
D) = (np(x))
2np T Y ()

wy(x) =
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MC for global illumination

* We know the basics of MC

» How to apply for global illumination?
— How to apply to BXDF's
— How to apply to light source

MC for GI - general case

* Genera problem - evaluate:
Lo(P@) = | f(p.w,@,)L,(p.e)cos8de

« We don’t know much about f and L, hence
use cos-weighted sampling of hemispherein
order to find aw,

» Use Malley’s method

Make sure that w, and w, liein same
hemisphere
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MC for GI - microfacet BRDFs

» Typicaly based on microfacet distribution
(Fresnel and Geometry terms not statistical
measures)

« Example - Blinn:D(e) = (n+2)(@, IN)’

» We know how to sample a spherical / power
distribution:  cosg, ="/¢,

Y=27%,

* Thissampling is over w,, we need a

distribution over w,
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MC for GI - microfacet BRDFs

* Thissampling is over w,, we need a
distribution over w;:
da, =sin6dfdg,
dw, =sing,dg,dg,

» Whichyieldsto
(using that 6,=26, and @.=@,):

da, _sing,dg,d¢, _ sing,dgdg, _  sing,

dw ~ snfdddg  sin26,2d6,dg, ~ 4cosd,sing,
_1
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MC for GI - microfacet BRDFs

* |Isotropic microfacet model:

O

MC for GI - microfacet BRDFs

* Anisotropic model (after Ashikhmin and
Shirley) for aquarter disk:

p=arctan| &1 tar{@]
g +1 2
cosg, = &8 oo o)’

* If =g, then we get Blinn’s model
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1
N

MC for GI - Specular

» Delta-function - special treatmégqa)

X G
if(pym,wo)L.(pm)\cosfi\_g N Pra (@, lcosd)] ((p,a)[cosq|

= p(w) [\ p(w)
* Since p isaso adeltafunction
p(e)= e~ o)
* thissimplifiesto
Pra(@o)Li(pa)

MC for GI - Multiple BXDF’s
* Sum up distribution densities
1 N
Ple)= 1 2P ()
i=1
» Have three unified samples - the first one

determines according to which BXxDF to
distribute the spherical direction
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Light Sources

* We need to evaluate
— Sp: Cone of directions from point p to light (for
evaluating the rendering equation for direct
illuminations), I.e.
Lo(P@) = | f(p.w,@,)L,(p.e)cos8de
Q
— Sr: Generate random rays from the light source
(Bi-directional Path Tracing or Photon
Mapping)
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5’%‘\4 Point Lights

* Sourceisapoint
* uniform power in all directions
* hard shadows
. §Q:
— Ddtalight source
— Treat similar to specular BXDF
* Sr: sampling of auniform sphere

782 kel

N Spot Lights

* Like point light, but only emits
light in a cone-like direction

» Sp: like point light, i.e. deltafunction
* Sr: sampling of acone
PEA=pO)P(?) 1=c[ ™ sn@io=c(l-cosh,,)
p(@)=y2r p(6)=Y (-cosh,,)
p)=c

¥ Projection Lights

* Like spot light, but with a
texturein front of it

» Sp: like spot light, i.e. deltafunction
 Sr: like spot light, i.e. sampling of acone
PEA=pE)P() 1=c[ ™ sn@io=c(l-cosd,,)
p(9)=y2r p(6)=Y (1-cosh,.)
p@)=c
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~4-. Goniophotometric
dh Lights
« Like point light (hard shadows) | 2

» Non-uniform power in all
directions - given by distribution map

 Sp: like point-light -

— Ddtalight source
— Treat similar to specular BXDF

» Sr: like point light, i.e. sampling of a

uniform sphere
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UTU Directional Lights

* Infinite light source,
i.e. only onedistinct light direction
* hard shadows
* Sp: like point-light
— Ddtafunction
e S
— create virtual disk of the size of the scene
—sample disk uniformly (e.g. Shirley)

782 83

ﬁ Area Lights

« Defined by shape
Soft shadows
» Sp: distribution over solid angle
— 8, isthe angle between o
and (light) shapenormal + day = 2%
— Aistheareaof the shape r
e S
— Sampling over area of the shape
« Sampling distribution depends on the area of the
shape 1
® P()= %
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ﬁ Area Lights

* If v(p,p’) determines visibility:
Lo(p@) = | T (pa,@)L(pa)cosd|dw

dA

, A
= IV(p,p)f(I:',w.,wo)L.(Fhw.)\oosfi.\Cors2
A

* Hence: p(x)= 1
A cosé,
r2

L(p.w,) :%V(p, p)f(p.w,w,)L (p.w)|cosb|

A .
:?V(p, p')f (P, @)L, (p.w)[cos@|cosb,
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“)%9\4 Spherical Lights

¢ Specia area shape

« Not al of the sphereisvisible
from outside of the sphere

¢ Only samplethe area, that is

visible from p
« Sp: distribution over solid angle
— Use cone sampling SiNG, = p

p-c|
« Sr: Simply sample a uniform sphere
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Infinite Area Lights

« Typically environment light (spherical)

« Encloses the whole scene

. Sp:

— Normal given - cos-weighted sampling
— Otherwise - uniform spherical distribution

e S
— uniformly sample sphere at two points p; and p,
— Thedirection p,-p, isthe uniformly distributed

Infinite Area Lights
[

Area light + directional light

.ﬂ
Morning skylight Midday skylight Sunset environment map
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ray
Summary
Bl ()= 1= 1 (x)p(x)x Foo130f(x)
2 " N i=1 p(X\)

vIrel= =e[r@-4]

FN:%gf(X)

VR J= S VIF]

NN
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