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Monte Carlo Techniques
Basic Concepts

Chapter (13)14, 15 of “Physically Based 
Rendering”  by Pharr&Humphreys
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Reading

• Chapter 13, 14, 15 of “Physically Based 
Rendering”  by Pharr&Humphreys

• Chapter 7  in “Principles of Digital Image 
Synthesis,”  by A. Glassner
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Reading

15.7: volume scattering

15.6: sampling light sources Sampling graphics

15.5: sampling reflection functions

15.4: importance sampling

15.3: bias Techniques to reduce variance

15.2: careful sample placement

Improve efficiency15.1: Russian roulette

14.5: 2D sampling

14.4: transforming distributions Basic procedures for sampling

14.3: sampling random variables

Important basics14.2: montecarlo

Intro, review14.1: probability

Read on your own13: light sources
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Randomized Algorithms

• Las Vegas:
– Always give right answer, but 

use elements of randomness 
on the way

– Example: randomized 
quicksort

• Monte Carlo: 
– stochastic / non-deterministic
– give the right answer on 

average (in the limit)
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Monte Carlo

• Efficiency, relative to other algorithms, 
increases with number of dimensions

• For problems such as  
– integrals difficult to evaluate because of 

multidimensional, complex boundary 
conditions (i.e., no easy closed form 
solutions)

– Those with large number of coupled 
degrees of freedom
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Monte Carlo Integration

• Pick a set of evaluation points

• Accuracy grows with O(N-0.5), i.e. in order 
to do twice as good we need 4 times as 
many samples

• Artifacts manifest themselves as noise

• Research - minimize error while 
minimizing the number of necessary rays
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Basic Concepts

• X, Y - random variables
– Continuous or discrete

– Apply function f to get Y from X: Y=f(X)

• Example - dice
– Set of events X i = { 1, 2, 3, 4, 5, 6}

– f - rolling of dice

– Probability of event i  is pi = 1/6

p j
j=1

6

� =1
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Basic Concepts

• Cumulative distribution function (CDF) 
P(x) of a random variable X:

• Dice example
– P(2) = 1/3
– P(4) = 2/3
– P(6)=1

P x( )= Pr X ≤ x{ }= p s( )ds
−∞

x

�
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• Canonical uniform random variable ξ
– Takes on all values in [0,1) with equal probability

– Easy to create in software (pseudo-random number 
generator)

– Can create general random distributions by starting 
with ξ

– for dice example, map continuous, uniformly 
distributed random variable, ξ, to discrete random 
variable by choosing X i if

Continuous Variable

��
=

−
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≤<
i

j
j

i

j
j pp

1

1

1

ξ
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• Probability of sampling illumination based on 
power Φi:

• Sums to one

pi = Φi

Φ jj
�

Example - lighting
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Probability Distribution 
Function

• Relative probability of a random variable 
taking on a particular value

• Derivative of CDF:

• Non-negative

• Always integrate to one

• Uniform random variable:

p x( )=
dP x( )

dx

P x ∈ a,b[ ]( )= p x( )dx
a

b

�

p x( )=
1 x ∈ 0,1[ ]
0 otherwise

� 
� 
� 

P x( )= x
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Cond. Probability, 
Independence

• We know that the outcome is in A
• What is the probability that it is in B?

• Independence: knowing A does not help:    
Pr(B|A) = Pr(B) ==> Pr(AB)=Pr(A)Pr(B)
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+

Expected Value
• Average value of the function f over some 

distribution of values p(x) over its domain D

• Example - cos over [0,π] where p is uniform

( )[ ] ( ) ( )�==
Dp dxxpxfxfE µ

p x( )=1 π

E p cos x( )[ ]= cosx

π0

π
�

= 1
π

−sinπ + sin0( )= 0 -
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Variance

• Variance of a function: expected deviation 
of the function from its expected value

• Fundamental concept of quantifying the 
error in Monte Carlo (MC) methods

• Want to reduce variance in Monte Carlo 
graphics algorithms

V f x( )[ ]= σ 2 = E f x( )− µ( )2[ ]
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Properties

• Hence we can write:

• For independent random variables:

E af x( )[ ]= aE f x( )[ ]
E f X i( )

i
�[ ]= E f X i( )[ ]

i
�

V af x( )[ ]= a2V f x( )[ ]

V f x( )[ ]= E f x( )( )2[ ]− µ2

V f X i( )
i

�[ ]= V f X i( )[ ]
i

�
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Uniform MC Estimator

• All there is to it, really :)

• Assume we want to compute the integral of 
f(x) over [a,b]

• Assuming uniformly distributed random 
variables X i in [a,b] (i.e. p(x) = 1/(b-a))

• Our MC estimator FN:

FN = b − a

N
f X i( )

i=1

N

�
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0 1

f x( )dx
0

1

� ≈ f xi( )∆x
i=1

N

�

= 1
N

f x i( )
i=1

N

�

Error = O
1
N

� 
� 
� 

	 

 
� 

Simple Integration
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0

1

wi =
0.5 i = 0,N

1 0 < i < N

� 
� 
� 

Error = O
1
N

� 
� 
� 

	 

 
� 

f x( )dx
0

1

� ≈ f x i( )+ f x i+1( )( )∆x

2i= 0

N−1

�

= 1
N

wi f x i( )
i=1

N

�

Trapezoidal Rule
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Uniform MC Estimator

• Given supply of 
uniform random 
variables: 

• E[FN] is equal to the 
correct integral:

E FN[ ]= E
b − a

N
f X i( )

i=1

N

�
� 


 
� 

� 

� 
� 

= b − a

N
E f X i( )[ ]

i=1

N

�

= b − a

N
f x( )p x( )dx

a

b

�
i=1

N

�

= 1
N

f x( )dx
a

b

�
i=1

N

�

= f x( )dx
a

b

�

[ ]baX i ,∈
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General MC Estimator

• Can relax condition for general 
PDF

• Important for efficient evaluation 
of integral - draw random 
variable from arbitrary PDF p(X)

• And hence:

FN = 1

N

f X i( )
p X i( )i=1

N

�

E FN[ ]= E
1

N

f X i( )
p X i( )i=1

N

�
� 


 
� 

� 

� 
� 

= 1
N

f x( )
p x( )

p x( )dx
a

b

�
i=1

N

�

= f x( )dx
a

b

�
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Confidence Interval

• We know we should expect the correct 
result, but how likely are we going to see it?

• Strong law of large numbers (assuming that 
Y i are independent and identically 
distributed):

Pr
N →∞
lim

1
N

Yi

i=1

N

� = E Y[ ]
� 
� 
� 

� 
� 
� 

=1
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Confidence Interval

• Rate of convergence: Chebychev Inequality

• Setting

• We have

• Answers with what probability is error below a 
certain amount

[ ]{ } [ ]
2

Pr
k

FV
kFEF ≤≥−

δ =
V F[ ]

k2

[ ] [ ] δ
δ

≤
�
�
�

�
�
�

≥− FV
FEFPr

{ }
2

2

Pr
ε
σεµ ≤≥−X
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MC Estimator

• How good is it? What’s our error?

• Our error (root-mean square) is in the 
variance, hence 

[ ] ( )
( )

( )
( )

[ ]FV
N

xp

xf
V

N

xp

xf

N
VFV

N

i i

i

N

i i

i
N

1

1

1

1
2

1

=

�
�

�
�



�
=

�
�
�

�

�
�



�
=

�

�

=

=
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MC Estimator

• Hence our overall error:

• V[F] measures square of RMS error!

• This result is independent of our dimension 

[ ] [ ] δ
δ

≤
�
�
�

�
�
�

≥− FV

N
FEF NN

1
Pr
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• Central limit theorem: sum of iid random 
variables with finite variance will be 
approximately normally distributed

• assuming normal distribution:

Distribution of the Average

[ ] �
∞

−

∞→
=

�
�
�

�
�
� ≤−

t
xF

N
N

dxe
N

tFEF 22

2

1
Prlim

π
σ
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• Central limit theorem assuming normal  
distribution

• This can be re-arranged as

• well known Bell curve

E[f(x)]

N=10
N=40

N=160

Distribution of the Average

[ ] �
∞

−

∞→
=

�
�
�

�
�
� ≤−

t
xF

N
N

dxe
N

tFEF 22

2

1
Prlim

π
σ

{ } �
∞

−=≥−
t

x
FN dxetIF

N

222
Pr

π
σ
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• This can be re-arranged as

• Hence for t=3 we can conclude

• I.e. pretty much all results are
within three standard
deviations
(probabilistic error bound
- 0.997 confidence)

E[f(x)]

N=10
N=40

N=160

{ } �
∞

−=≥−
t

x
FN dxetIF

N

222
Pr

π
σ

Pr FN − I ≥ 3σ FN
{ }= 0.997

Distribution of the Average
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Choosing Samples

• How to sample random variables?

• Assume we can do uniform distribution

• How to do general distributions?
– Inversion

– Rejection

– Transformation
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Inversion Method

• Idea - we want all the events to be 
distributed according to y-axis, not x-axis

• Uniform distribution is easy!

PDF

x0

1 CDF

x0

1

PDF

x0

1 CDF

x0

1
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• Compute CDF (make sure it is normalized!)

• Compute the inverse P-1(y)

• Obtain a uniformly distributed random number ξ
• Compute X i = P-1(ξ)

Inversion Method

PDF

x0

1 CDF

x0

1

P x( )= p s( )ds
−∞

x

�

CDF

x0

1 P-1

x0

1
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Example - Power Distribution

• Used in BSDF’s

• Make sure it is normalized

• Compute the CDF

• Invert the CDF

• Now we can choose a uniform ξ distribution 
to get a power distribution! 

p x( )= cx n 0 ≤ x ≤1

cxndx =1
0

1

� c = n +1

P x( )= n +1( )snds = x n +1

0

x

�
P−1 x( )= xn +1

X = ξn +1
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• E.g. Blinn’s Fresnel Term

• Make sure it is normalized

• Compute the CDF

• Invert the CDF

• Now we can choose a uniform x distribution 
to get an exponential distribution!

• extend to any funcs by piecewise approx.

p x( )= ce−ax 0 ≤ x ≤ ∞

ce−axdx =1
0

∞

� c = a

P x( )= ae−asds
0

x

� =1− e−ax

P−1 x( )= − 1
a ln 1− x( )

X = − 1
a ln 1−ξ( )= − 1

a lnξ

Example - Exponential Distrib.
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Rejection Method

• Sometimes
– We cannot integrate p(x)

– We can’ t invert a function P(x) (we don’ t have 
the function description)

• Need to find q(x), such that p(x) < cq(x)

• Dart throwing
– Choose a pair of random variables (X, ξ)

– test whether ξ < p(X)/cq(X)
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Rejection Method

• Essentially we pick a point (x, ξcq(x))

• If point lies beneath p(x) then we are ok

• Not all points do -> expensive method

• Example - sampling a
– Circle: π/4=78.5% good samples

– Sphere: π/6=52.3% good samples

– Gets worst in higher dimensions
� �

�

p(x)
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Transforming between Distrib.

• Inversion Method --> transform uniform 
random distribution to general distribution

• transform general X (PDF px(x))
to general Y (PDF py(x))

• Case 1: Y=y(X)

• y(x) must be one-to-one, i.e. monotonic

• hence
Py y( )= Pr Y ≤ y x( ){ }= Pr X ≤ x{ }= Px x( )
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Transforming between Distrib.

• Hence we have for the PDF’s:

• Example: px(x) = 2x; Y = sinX

py y( )dy = Py y( )= Px x( )= px x( )dx

py y( )= dy

dx

� 
� 
� 

	 

 
� 

−1

px x( )

py y( )= cosx( )−1
px x( )= 2x

cosx
= 2sin−1 y

1− y 2



7

782 37

Transforming between Distrib.

• y(x) usually not given

• However, if CDF’s are the same, we use 
generalization of inversion method:

y x( )= Py
−1 Px x( )( )
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Multiple Dimensions

• Easily generalized - using the Jacobian of 
Y=T(X)

• Example - polar coordinates

py T x( )( )= JT x( )−1
px x( )

x = rcosθ
y = rsinθ

JT x( )=

∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ

� 

� 

� 
� 
� 

	 


 

� 
� 
� 

=
cosθ −rsinθ
sinθ rcosθ
� 

� 
� 

	 


 
� 

p r,θ( )= JT

−1
p x,y( )= rp x,y( )
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Multiple Dimensions

• Spherical coordinates:

• Now looking at spherical directions:
• We want to solid angle to be uniformly 

distributed
• Hence the density in terms of φ and θ:

p r,θ,φ( )= r2 sinθp x,y,z( )

dω = sinθdθdφ

p θ,φ( )dθdφ = p ω( )dω
p θ,φ( )= sinθp ω( )
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Multidimensional Sampling

• Separable case - independently sample X 
from px and Y from py:

• Often times this is not possible - compute 
the marginal density function p(x) first:

• Then compute conditional density function
(p of y given x)

• Use 1D sampling with p(x) and p(y|x)

p x,y( )= px x( )py y( )

p x( )= p x,y( )� dy

p y | x( )=
p x,y( )
p x( )
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Sampling of Hemisphere

• Uniformly, I.e. p(ω) = c

• Sampling θ first:

• Now sampling in φ:

1= p ω( )
H 2� c = 1

2π

p θ( )= p θ,φ( )dφ
0

2π

� = sinθ
2π

dφ
0

2π

� = sinθ

p φ |θ( )=
p θ,φ( )
p θ( )

= 1

2π
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Sampling of Hemisphere

• Now we use inversion technique in order to 
sample the PDF’s:

• Inverting these:

P θ( )= sinαdα
0

α

� =1− cosθ

P φ |θ( )= 1

2π
dα

0

α

� = φ
2π

θ = cos−1ξ1

φ = 2πξ2
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Sampling of Hemisphere

• Converting these to Cartesian coords:

• Similar derivation for a full sphere

θ = cos−1ξ1

φ = 2πξ2

x = sinθ cosφ = cos 2πξ2( ) 1−ξ1
2

y = sinθ sinφ = sin 2πξ2( ) 1−ξ1
2

z = cosθ = ξ1
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Sampling a Disk

• Uniformly:

• Sampling r first:

• Then sampling in θ:

• Inverting the CDF:

p x,y( )= 1
π p r,θ( )= rp x,y( )= r

π

p r( )= p r,θ( )dθ
0

2π

� = 2r

p θ |r( )=
p r,θ( )
p r( )

= 1

2π

P r( )= r2 P θ | r( )= θ
2π

r = ξ1 θ = 2πξ2
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Sampling a Disk

• Given method distorts size of compartments

• Better method r = x θ = x

y
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Cosine Weighted Hemisphere

• Our scattering equations are cos-weighted!!

• Hence we would like a sampling 
distribution, that reflects that!

• Cos-distributed p(ω) = c.cosθ
( )

�

� �

�

=

=

=

2

0

2

0

2

0

sincos2

sincos

1
2

π

ππ

θθθπ

φθθθ

ωω

dc

ddc

dp
H c = 1

π

p θ,φ( )= 1
π

cosθ sinθ
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Cosine Weighted Hemisphere

• Could use marginal and conditional 
densities, but use Malley’s method instead:

• uniformly generate points on the unit disk

• Generate directions by projecting the points 
on the disk up to the hemisphere above it

��

θ

���
��θ

����
�����	� ����

��

�� 
��θ
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Cosine Weighted Hemisphere

• Why does this work?

• Unit disk: p(r, φ) = r/π
• Map to hemisphere: r = sin θ
• Jacobian of this mapping (r, φ) -> (sin θ, φ)

• Hence:
JT x( ) =

cosθ 0

0 1

� 

� 
� 

	 


 
� = cosθ

p θ,φ( )= JT p r,φ( )= cosθ sinθ
π
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Performance Measure

• Key issue of graphics algorithm
time-accuracy tradeoff!

• Efficiency measure of Monte-Carlo:

– V: variance
– T: rendering time

• Better algorithm if
– Better variance in same time or
– Faster for same variance

• Variance reduction techniques wanted!

ε F( )= 1

V F[ ]T F[ ]
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Russian Roulette

• Don’ t evaluate integral if the value is small 
(doesn’ t add much!)

• Example - lighting integral

• Using N sample direction and a distribution 
of p(ωi)

• Avoid evaluations where fr is small or θ
close to 90 degrees

Lo p,ωo( )= f r p,ωo,ω i( )Li p,ω i( )cosθi dω iS 2�

1

N

fr p,ωo,ω i( )Li p,ω i( )cosθi

p ω i( )i=1

N

�
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Russian Roulette

• cannot just leave these samples out
– With some probability q we will replace with a 

constant c
– With some probability (1-q) we actually do the 

normal evaluation, but weigh the result 
accordingly

• The expected value works out fine

′ F =
F − qc

1− q
ξ > q

c otherwise

� 
� 
� 

� � 

E ′ F [ ]= 1− q( ) E F[ ]− qc

1− q

� 

� 
� 

	 


 
� + qc = E F[ ]
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Russian Roulette

• Increases variance
• Improves speed dramatically
• Don’ t pick q to be high though!!
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Stratified Sampling - Revisited

• domain Λ consists of a bunch of strata Λi

• Take ni samples in each strata
• General MC estimator:
• Expected value and variance (assuming vi is 

the volume of one strata):

• Variance for one strata with ni samples:

Fi = 1
ni

f X i, j( )
p X i, j( )j=1

N

�

µi = E f X i, j( )[ ]= 1
v i

f x( )dx
Λ i
� σ i

2 = 1
v i

f x( )− µi( )2
dx

Λ i
�

σ i
2

ni
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Stratified Sampling - Revisited

• Overall estimator / variance:

• Assuming number of samples proportional 
to volume of strata - ni=viN:

• Compared to no-strata (Q is the mean of f 
over the whole domain Λ):

V F[ ]= V v iFi�[ ]= V v iFi[ ]� = v i
2V Fi[ ]� = v i

2σ i
2

ni

�

V FN[ ]= 1
N

v iσ i
2�

V FN[ ]= 1
N

v iσ i
2 + v i µi − Q( )��( )
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Stratified Sampling - Revisited

• Stratified sampling never increases variance

• Right hand side minimized, when strata are 
close to the mean of the whole function

• I.e. pick strata so they reflect local 
behaviour, not global (I.e. compact)

• Which is better?

V FN[ ]= 1
N

v iσ i
2� V FN[ ]= 1

N
v iσ i

2 + v i µi − Q( )��( )
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Stratified Sampling - Revisited

• Improved glossy highlights

Random sampling stratified sampling
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Stratified Sampling - Revisited

• Curse of dimensionality

• Alternative - Latin Hypercubes
– Better variance than uniform random

– Worse variance than stratified
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Quasi Monte Carlo

• Doesn’ t use ‘ real’  random numbers

• Replaced by low-discrepancy sequences

• Works well for many techniques including 
importance sampling

• Doesn’ t work as well for Russian Roulette 
and rejection sampling

• Better convergence rate than regular MC
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Bias

• If β is zero - unbiased, otherwise biased

• Example - pixel filtering

• Unbiased MC estimator, with distribution p

• Biased (regular) filtering:

β = E F[ ]− F

I x,y( )= f x − s,y − t( )L s,t( )dsdt��

I x,y( ) ≈ 1

Np
f x − si,y − ti( )L si,ti( )

i=1

N

�

I x,y( ) ≈
f x − si,y − ti( )L si,t i( )

i
�

f x − si,y − t i( )
i

�
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Bias

• typically

• I.e. the biased estimator is preferred

• Essentially trading bias for variance

Np ≠ f x − si,y − ti( )
i

�
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• Can improve our “chances”  by sampling 
areas, that we expect have a great influence

• called “ importance sampling”

• find a (known) function p, that comes close 
to the function we want to compute the 
integral of,

• then evaluate: ( ) ( )
( )dx
xp

xf
xpI �=

1

0

Importance Sampling MC
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• Crude MC:

• For importance sampling, actually “probe”  
a new function f/p. I.e. we compute our new 
estimates to be:

F = λi f x i( )
i=1

n

�

F = 1
N

f x i( )
p x i( )i=1

N

�

Importance Sampling MC
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• For which p does this make any sense? Well 
p should be close to f.

• If p = f, then we would get

• Hence, if we choose p = f/µ, (I.e. p is the 
normalized distribution function of f) then 
we’d get:

F = 1
N

f x i( )
p x i( )i=1

N

� =1

F = 1
N

f x i( )
f x i( ) µi=1

N

� = µ = f x( )dx
0

1

�

Importance Sampling MC
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Optimal Probability Density

• Variance V[f(x)/p(x)] should be small 

• Optimal: f(x)/p(x) is constant, variance is 0 
p(x) ∝ f (x) and � �� p(x) dx = 1

• p(x) = f (x) / �� f (x) dx

• Optimal selection is impossible since it 
needs the integral

• Practice: where f  is large p is large 
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Are These Optimal ?

π
θ=ω

π
=ω

�
���
����

�
�

����

����������������� �� ω+=

)(

cos),()(
)()(

ω
θω

π pr

pLpR
pLpL er +=

782 66

( )
( ) ( )

( )
( )

2
1

0

2

2
1

0

2

2

Idx
xp

xf

Idxxp
xp

xf
imp

−=

−��



	
��
�

�
=

�

�σ

Importance Sampling MC

• Since we are finding random samples distributed 
by a probability given by p and we are actually 
evaluating in our experiments f/p, we find the 
variance of these experiments to be:

• improves error behavior (just plug in p = f/µ)
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Multiple Importance Sampling

• Importance strategy for f and g, but how to 
sample f*g?, e.g.

• Should we sample according to f or 
according to L i?

• Either one isn’ t good

• Use Multiple Importance Sampling (MIS)

Lo(p,ωo) = f ( p,ω i,ωo)Li
Ω
� (p,ω i)cosθ i dω i
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Multiple Importance Sampling

Importance sampling f Importance sampling L
Multiple

Importance sampling
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• In order to evaluate

• Pick nf samples according to pf and ng

samples according to pg

• Use new MC estimator:

• Balance heuristic vs. power heuristic:

Multiple Importance Sampling

f (x)g(x)dx�

1
n f + ng

f (X i)g(X i)w f (X i)

p f (X i)i=1

n f

� +
f (Y j )g(Y j )wg (Y j )

pg (Y j )j=1

ng

�
� 

� 
� � 

	 


 
� � 

ws(x) = nsps(x)

ni pi(x)
i

�
ws(x) =

ns ps(x)( )β

ni pi(x)( )β

i
�
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MC for global illumination

• We know the basics of MC

• How to apply for global illumination?
– How to apply to BxDF’s

– How to apply to light source

782 71

MC for GI - general case

• General problem - evaluate:

• We don’ t know much about f and L, hence 
use cos-weighted sampling of hemisphere in 
order to find a ωi

• Use Malley’s method

• Make sure that ωo and ωi lie in same 
hemisphere

Lo(p,ωo) = f ( p,ω i,ωo)Li
Ω
� (p,ω i)cosθ i dω i
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MC for GI - microfacet BRDFs

• Typically based on microfacet distribution 
(Fresnel and Geometry terms not statistical 
measures)

• Example - Blinn:
• We know how to sample a spherical / power 

distribution:

• This sampling is over ωh, we need a 
distribution over ωi

D ωh( )= n + 2( ) ωh ⋅ N( )n

cosθh = ξ1
n +1

φ = 2πξ2



13

782 73

MC for GI - microfacet BRDFs

• This sampling is over ωh, we need a 
distribution over ωi:

• Which yields to
(using that θh=2θh and φh=φh):

dω i = sinθidθidφi

dωh = sinθhdθhdφh

dωh

dω i

= sinθhdθhdφh

sinθ idθ idφ i

= sinθhdθhdφh

sin2θh2dθhdφh

= sinθh

4cosθh sinθh

= 1
4cosθh
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MC for GI - microfacet BRDFs

• Isotropic microfacet model:

p θ( )=
ph θ( )

4 ωo ⋅ ωh( )
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MC for GI - microfacet BRDFs

• Anisotropic model (after Ashikhmin and 
Shirley) for a quarter disk:

• If ex= ey, then we get Blinn’s model

φ = arctan
ex +1
ey +1

tan
πξ1

2

� 
� 
� 

	 

 
� 

� 

� 
� � 

	 


 
� � 

cosθh = ξ2

ex cos2 φ +ey sin2 φ +1( )−1
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MC for GI - Specular

• Delta-function - special treatment

• Since p is also a delta function

• this simplifies to

1

N

f (p,ω i,ωo)Li(p,ω i)cosθi

p ω i( )i=1

N

� = 1

N

ρhd (ωo)
δ ω −ω i( )

cosθi

Li(p,ω i) cosθi

p ω i( )i=1

N

�

p ω i( )= δ ω −ω i( )

ρhd (ωo)Li( p,ω)
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MC for GI - Multiple BxDF’s

• Sum up distribution densities

• Have three unified samples - the first one 
determines according to which BxDF to 
distribute the spherical direction

p ω( )= 1
N

pi ω( )
i=1

N

�
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Light Sources

• We need to evaluate
– Sp: Cone of directions from point p to light (for 

evaluating the rendering equation for direct 
illuminations), I.e. ωi

– Sr: Generate random rays from the light source 
(Bi-directional Path Tracing or Photon 
Mapping)

Lo(p,ωo) = f ( p,ω i,ωo)Li
Ω
� (p,ω i)cosθ i dω i
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Point Lights

• Source is a point

• uniform power in all directions

• hard shadows

• Sp:
– Delta-light source

– Treat similar to specular BxDF

• Sr: sampling of a uniform sphere

782 80

Spot Lights

• Like point light, but only emits
light in a cone-like direction

• Sp: like point light, i.e. delta function

• Sr: sampling of a cone

p θ,φ( )= p θ( )p φ( )
p φ( )=1 2π
p θ( )= c

1= c sinθdθ
0

θ max� = c 1− cosθmax( )
p θ( )=1 1− cosθmax( )
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Projection Lights

• Like spot light, but with a
texture in front of it

• Sp: like spot light, i.e. delta function

• Sr: like spot light, i.e. sampling of a cone

p θ,φ( )= p θ( )p φ( )
p φ( )=1 2π
p θ( )= c

1= c sinθdθ
0

θ max� = c 1− cosθmax( )
p θ( )=1 1− cosθmax( )
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Goniophotometric
Lights

• Like point light (hard shadows)

• Non-uniform power in all
directions - given by distribution map

• Sp: like point-light
– Delta-light source

– Treat similar to specular BxDF

• Sr: like point light, i.e. sampling of a 
uniform sphere

782 83

• Infinite light source,
i.e. only one distinct light direction

• hard shadows

• Sp: like point-light
– Delta function

• Sr:
– create virtual disk of the size of the scene

– sample disk uniformly (e.g. Shirley) 

Directional Lights
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• Defined by shape
• Soft shadows
• Sp: distribution over solid angle

– θo is the angle between ωi
and (light) shape normal

– A is the area of the shape

• Sr:
– Sampling over area of the shape

• Sampling distribution depends on the area of the 
shape

Area Lights

dω i = cosθo

r2 dA

p x( )= 1

A
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• If v(p,p’ ) determines visibility:

• Hence:

Area Lights

p x( )= 1

A

Lo(p,ωo) = f (p,ω i,ωo)Li
Ω
� (p,ω i)cosθi dω i

= v p, ′ p ( ) f (p,ω i,ωo)Li
A

� (p,ω i)cosθi

cosθo

r2 dA

dω i = cosθo

r2 dA

Lo( p,ωo) ≈ 1

p x( )
v p, ′ p ( ) f ( p,ω i,ωo)Li( p,ω i)cosθ i

cosθo

r2

≈ A

r2 v p, ′ p ( ) f (p,ω i,ωo)Li( p,ω i)cosθi cosθo
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• Special area shape

• Not all of the sphere is visible
from outside of the sphere

• Only sample the area, that is
visible from p

• Sp: distribution over solid angle
– Use cone sampling

• Sr: Simply sample a uniform sphere

sinθmax = r

p − c
p

c
r

Spherical Lights
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• Typically environment light (spherical)
• Encloses the whole scene
• Sp: 

– Normal given - cos-weighted sampling
– Otherwise - uniform spherical distribution

• Sr:
– uniformly sample sphere at two points p1 and p2

– The direction p1-p2 is the uniformly distributed 
ray

Infinite Area Lights

782 88

Infinite Area Lights

Area light + directional light

Morning skylight Midday skylight Sunset environment map
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Summary

( )[ ] ( ) ( )�==
Dp dxxpxfxfE µ

V f x( )[ ]= σ 2 = E f x( )− µ( )2[ ]

FN = b − a

N
f X i( )

i=1

N

�

FN = 1

N

f X i( )
p X i( )i=1

N

�

[ ] [ ]FV
N

FV N

1=


