Monte Carlo Techniques Basic Concepts

Chapter (13)14, 15 of "Physically Based Rendering" by Pharr\&Humphreys

| Reading |
| :--- | :--- |
| 13: light sources Read on your own
 14.1: probability Intro, review
 14.2: monte carlo Important basics
 14.3: sampling random variables Basic procedures for sampling
 14.4: transforming distributions
 14.5: 2D sampling
 15.1: Russian roulette Techniques to reduce variance
 15.2: careful sample placement
 15.3: bias
 15.4: importance sampling
 15.5: sampling reflection functions
 15.6: sampling light sources Sampling graphics
 $15.7:$ volume scattering |

Randomized Algorithms

- Las Vegas:
- Always give right answer, but use elements of randomness on the way
- Example: randomized quicksort
- Monte Carlo:
- stochastic / non-deterministic
- give the right answer on average (in the limit)

Monte Carlo

- Efficiency, relative to other algorithms, increases with number of dimensions
- For problems such as
- integrals difficult to evaluate because of multidimensional, complex boundary conditions (i.e., no easy closed form solutions)
- Those with large number of coupled degrees of freedom

Basic Concepts

- X, Y - random variables
- Continuous or discrete
- Apply function f to get Y from $\mathrm{X}: \mathrm{Y}=\mathrm{f}(\mathrm{X})$
- Example - dice
- Set of events $X_{i}=\{1,2,3,4,5,6\}$
-f - rolling of dice
- Probability of event i is $p_{i}=1 / 6$

$$
\sum_{j=1}^{6} p_{j}=1
$$

Basic Concepts

- Cumulative distribution function (CDF) $\mathrm{P}(\mathrm{x})$ of a random variable X :

$$
P(x)=\operatorname{Pr}\{X \leq x\}=\int_{-\infty}^{\infty} p(s) d s
$$

- Dice example
$-\mathrm{P}(2)=1 / 3$
$-\mathrm{P}(4)=2 / 3$
$-\mathrm{P}(6)=1$

Continuous Variable

- Canonical uniform random variable ξ
- Takes on all values in $[0,1)$ with equal probability
- Easy to create in software (pseudo-random number generator)
- Can create general random distributions by starting with ξ
- for dice example, map continuous, uniformly distributed random variable, ξ, to discrete random variable by choosing X_{i} if

$$
\sum_{j=1}^{i-1} p_{j}<\xi \leq \sum_{j=1}^{i} p_{j}
$$

Probability Distribution

Function

- Relative probability of a random variable taking on a particular value
- Derivative of CDF: $p(x)=\frac{d P(x)}{d x}$
- Non-negative
- Always integrate to one $\quad P(x \in[a, b])=\int^{4} p(x) d x$
- Uniform random variable:

$$
p(x)=\left\{\begin{array}{lc}
1 & x \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

Example - lighting

- Probability of sampling illumination based on power Φ_{i} :

$$
p_{i}=\frac{\Phi_{i}}{\sum_{j} \Phi_{j}}
$$

- Sums to one

$$
P(x)=x
$$

Expected Value

- Average value of the function f over some distribution of values $p(x)$ over its domain D

$$
E_{p}[f(x)]=\mu=\int_{D} f(x) p(x) d x
$$

- Example - cos over $[0, \pi]$ where p is uniform

$$
\begin{aligned}
p(x) & =1 / \pi \\
E_{p}[\cos (x)] & =\int_{0}^{\pi} \frac{\cos x}{\pi} \\
& =\frac{1}{\pi}(-\sin \pi+\sin 0)=0
\end{aligned}
$$

Variance

- Variance of a function: expected deviation of the function from its expected value
- Fundamental concept of quantifying the error in Monte Carlo (MC) methods

$$
V[f(x)]=\sigma^{2}=E\left[(f(x)-\mu)^{2}\right]
$$

- Want to reduce variance in Monte Carlo graphics algorithms

Uniform MC Estimator

- All there is to it, really :)
- Assume we want to compute the integral of $\mathrm{f}(\mathrm{x})$ over [a,b]
- Assuming uniformly distributed random variables X_{i} in [a,b] (i.e. $\left.p(x)=1 /(b-a)\right)$
- Our MC estimator F_{N} :

$$
F_{N}=\frac{b-a}{N} \sum_{i=1}^{N} f\left(X_{i}\right)
$$

Simple Integration

$$
\begin{aligned}
\int_{0} f(x) d x & \approx \sum_{i=1}^{N} f\left(x_{i}\right) \Delta x \\
& =\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
\end{aligned}
$$

$$
\text { Error }=O\left(\frac{1}{N}\right)
$$

Trapezoidal Rule

	$\int_{0} f(x) d x \approx \sum^{N-1}\left(f\left(x_{i}\right)+f\left(x_{i+1}\right)\right) \frac{\Delta x}{2}$
	$=\frac{1}{N} \sum_{i=1}^{N} w_{i} f\left(x_{i}\right)$
	$w_{i}=\left\{\begin{array}{cc}0.5 & i=0, N \\ 1 & 0<i<N\end{array}\right.$
${ }_{782}$	Error $=O\left(\frac{1}{N}\right)$

Uniform MC Estimator

- Given supply of uniform random variables:

$$
X_{i} \in[a, b]
$$

$$
\begin{aligned}
E\left[F_{N}\right] & =E\left[\frac{b-a}{N} \sum_{i=1}^{N} f\left(X_{i}\right)\right] \\
& =\frac{b-a}{N} \sum_{i=1}^{N} E\left[f\left(X_{i}\right)\right]
\end{aligned}
$$

- $\mathrm{E}\left[\mathrm{F}_{\mathrm{N}}\right.$ is equal to the correct integral:

$$
=\frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x) d x
$$

$$
=\frac{b-a}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x) p(x) d x
$$

$$
=\int_{a}^{b} f(x) d x
$$

General MC Estimator

- Can relax condition for general PDF
- Important for efficient evaluation $\begin{aligned} & \text { of integral - draw random } \\ & \text { variable from arbitrary PDF } \mathrm{p}(\mathrm{X})\end{aligned} F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}$
- And hence:

$$
E\left[F_{N}\right]=E\left[\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}\right]
$$

$$
=\frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} \frac{f(x)}{p(x)} p(x) d x
$$

782
$=\int_{a}^{b} f(x) d x$

Confidence Interval

- We know we should expect the correct result, but how likely are we going to see it?
- Strong law of large numbers (assuming that Y_{i} are independent and identically distributed):

$$
\operatorname{Pr}\left\{\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} Y_{i}=E[Y]\right\}=1
$$

Confidence Interval

- Rate of convergence: Chebychev Inequality

$$
\begin{aligned}
& \operatorname{Pr}\{|X-\mu| \geq \varepsilon\} \leq \frac{\sigma^{2}}{\varepsilon^{2}} \\
& \operatorname{Pr}\{|F-E[F]| \geq k\} \leq \frac{V[F]}{k^{2}}
\end{aligned}
$$

- Setting

$$
\delta=\frac{V[F]}{k^{2}}
$$

- We have $\quad \operatorname{Pr}\left\{\left\lvert\, F-E[F] \geq \sqrt{\frac{V[F]}{\delta}}\right.\right\} \leq \delta$
- Answers with what probability is error below a certain amount

MC Estimator

- How good is it? What's our error?
- Our error (root-mean square) is in the variance, hence

$$
\begin{aligned}
& V\left[F_{N}\right]=V\left[\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}\right] \\
& =\frac{1}{N^{2}} \sum_{i=1}^{N} V\left[\frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}\right] \\
& =\frac{1}{N} V[F]
\end{aligned}
$$

MC Estimator

- Hence our overall error:

$$
\operatorname{Pr}\left\{\left\lvert\, F_{N}-E\left[F_{N}\right] \geq \frac{1}{\sqrt{N}} \sqrt{\frac{V[F]}{\delta}}\right.\right\} \leq \delta
$$

- $\mathrm{V}[\mathrm{F}]$ measures square of RMS error!
- This result is independent of our dimension

Distribution of the Average

- Central limit theorem: sum of iid random variables with finite variance will be approximately normally distributed
- assuming normal distribution:

$$
\lim _{N \rightarrow \infty} \operatorname{Pr}\left\{\left|F_{N}-E[F]\right| \leq t \frac{\sigma_{F}}{\sqrt{N}}\right\}=\frac{1}{\sqrt{2 \pi}} \int_{\infty}^{t} e^{-x^{2} / 2} d x
$$

Distribution of the Average

- Central limit theorem assuming normal distribution
$\lim _{N \rightarrow \infty} \operatorname{Pr}\left\{\left|F_{N}-E[F]\right| \leq t \frac{\sigma_{F}}{\sqrt{N}}\right\}=\frac{1}{\sqrt{2 \pi}} \int_{\infty}^{t} e^{-x^{2} / 2} d x$
- This can be re-arranged as $\operatorname{Pr}\left\{\left|F_{N}-I\right| \geq t \sigma_{F_{N}}\right\}=\sqrt{\frac{2}{\pi}} \int_{t}^{\infty} e^{-x^{2} / 2} d x \quad \bigcap \mathrm{~N}=160$
- well known Bell curve

Distribution of the Average

- This can be re-arranged as

$$
\begin{aligned}
& \operatorname{Pr}\left\{\left|F_{N}-I\right| \geq t \sigma_{F_{N}}\right\}=\sqrt{\frac{2}{\pi}} \int_{t}^{\infty} e^{-x^{2} / 2} d x \\
& 3 \text { we can conclude }
\end{aligned}
$$

- Hence for $\mathrm{t}=3$ we can conclude

$$
\operatorname{Pr}\left\{\left|F_{N}-I\right| \geq 3 \sigma_{F_{N}}\right\}=0.997
$$

- I.e. pretty much all results are within three standard deviations (probabilistic error bound - 0.997 confidence)

Choosing Samples

- How to sample random variables?
- Assume we can do uniform distribution
- How to do general distributions?
- Inversion
- Rejection
- Transformation

Inversion Method

- Idea - we want all the events to be distributed according to y -axis, not x -axis

- Uniform distribution is easy!

29

Inversion Method

- Compute CDF (make sure it is normalized!)

- Compute the inverse $P^{-1}(\mathrm{y})$

- Obtain a uniformly distributed random number ξ
- Compute $\mathrm{X}_{\mathrm{i}}=\mathrm{P}^{-1}(\xi)$

782

Example - Power Distribution

- Used in BSDF's $\quad p(x)=c x^{n} \quad 0 \leq x \leq 1$
- Make sure it is normalized $\int c x^{n} d x=1 \quad c=n+1$
- Compute the CDF $\quad P(x) \stackrel{0}{=} \int(n+1) s^{n} d s=x^{n+1}$
- Invert the CDF $\quad P^{-1}(x)=\sqrt[n+1]{x}$
- Now we can choose a uniform ξ distribution to get a power distribution!

$$
X=\sqrt[n+1]{\xi}
$$

Rejection Method

- Sometimes
- We cannot integrate $\mathrm{p}(\mathrm{x})$
- We can't invert a function $\mathrm{P}(\mathrm{x})$ (we don't have the function description)
- Need to find $q(x)$, such that $p(x)<c q(x)$
- Dart throwing
- Choose a pair of random variables (X, ξ)
- test whether $\xi<\mathrm{p}(\mathrm{X}) / \mathrm{cq}(\mathrm{X})$

Rejection Method

- Essentially we pick a point (x, $\xi \mathrm{cq}(\mathrm{x})$)
- If point lies beneath $p(x)$ then we are ok
- Not all points do -> expensive method
- Example - sampling a
- Circle: $\pi / 4=78.5 \%$ good samples
- Sphere: $\pi / 6=52.3 \%$ good samples
- Gets worst in higher dimensions

Example - Exponential Distrib.

- E.g. Blinn's Fresnel Term $p(x)=c e^{-a x} \quad 0 \leq x \leq \infty$
- Make sure it is normalized $\int c e^{-a x} d x=1 \quad c=a$
- Compute the CDF $\quad P(x)=\int_{0}^{0} a e^{-a s} d s=1-e^{-a x}$
- Invert the CDF $\quad P^{-1}(x)=-\frac{0}{a} / \ln (1-x)$
- Now we can choose a uniform x distribution to get an exponential distribution!

$$
X=-1 / a \ln (1-\xi)=-1 / a \ln \xi
$$

- extend to any funcs by piecewise approx.

Transforming between Distrib.

- Inversion Method --> transform uniform random distribution to general distribution
- transform general X ($\operatorname{PDF}_{\mathrm{p}}(\mathrm{x})$) to general $\mathrm{Y}\left(\mathrm{PDF}_{\mathrm{y}}(\mathrm{x})\right)$
- Case 1: $\mathrm{Y}=\mathrm{y}(\mathrm{X})$
- $\mathrm{y}(\mathrm{x})$ must be one-to-one, i.e. monotonic
- hence
$P_{y}(y)=\operatorname{Pr}\{Y \leq y(x)\}=\operatorname{Pr}\{X \leq x\}=P_{x}(x)$

Transforming between Distrib.

- $y(x)$ usually not given
- However, if CDF's are the same, we use generalization of inversion method:

$$
y(x)=P_{y}^{-1}\left(P_{x}(x)\right)
$$

Multiple Dimensions

- Spherical coordinates:

$$
p(r, \theta, \phi)=r^{2} \sin \theta p(x, y, z)
$$

- Now looking at spherical directions:
- We want to solid angle to be uniformly distributed $\quad d \omega=\sin \theta \mathrm{d} \theta \mathrm{d} \phi$
- Hence the density in terms of ϕ and θ :

$$
\begin{aligned}
p(\theta, \phi) \mathrm{d} \theta \mathrm{~d} \phi & =p(\omega) \mathrm{d} \omega \\
p(\theta, \phi) & =\sin \theta p(\omega)
\end{aligned}
$$

782

Multidimensional Sampling

- Separable case - independently sample X from p_{x} and Y from $\mathrm{p}_{\mathrm{y}}: p(x, y)=p_{x}(x) p_{y}(y)$
- Often times this is not possible - compute the marginal density function $\mathrm{p}(\mathrm{x})$ first:

$$
p(x)=\int p(x, y) d y
$$

- Then compute conditional density function (p of y given x) $p(y \mid x)=\frac{p(x, y)}{p(x)}$
- Use 1 D sampling with $\mathrm{p}(\mathrm{x})$ and $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$

Sampling of Hemisphere

- Uniformly, I.e. $p(\omega)=c$

$$
1=\int_{H^{2}} p(\omega) \quad c=\frac{1}{2 \pi}
$$

- Sampling θ first:

$$
p(\theta)=\int_{0}^{2 \pi} p(\theta, \phi) d \phi=\int_{0}^{2 \pi} \frac{\sin \theta}{2 \pi} d \phi=\sin \theta
$$

- Now sampling in ϕ :

$$
p(\phi \mid \theta)=\frac{p(\theta, \phi)}{p(\theta)}=\frac{1}{2 \pi}
$$

Sampling of Hemisphere

- Now we use inversion technique in order to sample the PDF's:

$$
\begin{aligned}
P(\theta) & =\int_{0}^{\alpha} \sin \alpha d \alpha=1-\cos \theta \\
P(\phi \mid \theta) & =\int_{0}^{\alpha} \frac{1}{2 \pi} d \alpha=\frac{\phi}{2 \pi}
\end{aligned}
$$

- Inverting these:

$$
\begin{aligned}
& \theta=\cos ^{-1} \xi_{1} \\
& \phi=2 \pi \xi_{2}
\end{aligned}
$$

Sampling of Hemisphere

- Converting these to Cartesian coords:

$$
\begin{array}{ll}
\theta=\cos ^{-1} \xi_{1} & x=\sin \theta \cos \phi=\cos \left(2 \pi \xi_{2}\right) \sqrt{1-\xi_{1}^{2}} \\
\phi=2 \pi \xi_{2} & y=\sin \theta \sin \phi=\sin \left(2 \pi \xi_{2}\right) \sqrt{1-\xi_{1}^{2}} \\
& z=\cos \theta=\xi_{1}
\end{array}
$$

- Similar derivation for a full sphere

Sampling a Disk

- Uniformly: $p(x, y)=\frac{1}{\pi} \quad p(r, \theta)=r p(x, y)=\frac{r}{\pi}$
- Sampling r first: $\quad p(r)=\int_{0}^{2 \pi} p(r, \theta) d \theta=2 r$
- Then sampling in $\theta: p(\theta \mid r)=\frac{p(r, \theta)}{p(r)}=\frac{1}{2 \pi}$
- Inverting the CDF: $P(r)=r^{2} \quad P(\theta \mid r)=\frac{\theta}{2 \pi}$ $r=\sqrt{\xi_{1}} \quad \theta=2 \pi \xi_{2}$
782 44

Cosine Weighted Hemisphere

- Could use marginal and conditional densities, but use Malley's method instead:
- uniformly generate points on the unit disk
- Generate directions by projecting the points on the disk up to the hemisphere above it

rejected samples

Cosine Weighted Hemisphere

- Our scattering equations are cos-weighted!!
- Hence we would like a sampling distribution, that reflects that!
- Cos-distributed $p(\omega)=c \cdot \cos \theta$

$$
\begin{array}{rlr}
1 & =\int_{H^{2}} p(\omega) d \omega & c=\frac{1}{\pi} \\
& =\int_{0}^{2 \pi \pi / 2} \int_{0}^{\pi} c \cos \theta \sin \theta d \theta d \phi & p(\theta, \phi)=\frac{1}{\pi} \cos \theta \sin \theta \\
& =2 c \pi \int_{0}^{\pi / 2} \cos \theta \sin \theta d \theta
\end{array}
$$

Cosine Weighted Hemisphere

- Why does this work?
- Unit disk: $\mathrm{p}(\mathrm{r}, \phi)=\mathrm{r} / \pi$
- Map to hemisphere: $r=\sin \theta$
- Jacobian of this mapping (r, ϕ)-> $(\sin \theta, \phi)$
- Hence:

$$
\begin{gathered}
\left.\left|J_{T}(x)\right|=\left\lvert\, \begin{array}{cc}
\cos \theta & 0 \\
0 & 1
\end{array}\right.\right) \mid=\cos \theta \\
p(\theta, \phi)=\left|J_{T}\right| p(r, \phi)=\frac{\cos \theta \sin \theta}{\pi}
\end{gathered}
$$

Performance Measure

- Key issue of graphics algorithm time-accuracy tradeoff!
- Efficiency measure of Monte-Carlo:
- V: variance
- T: rendering time
- Better algorithm if
- Better variance in same time or
- Faster for same variance
- Variance reduction techniques wanted!

Russian Roulette

- cannot just leave these samples out
- With some probability q we will replace with a constant c
- With some probability (1-q) we actually do the normal evaluation, but weigh the result accordingly

$$
F^{\prime}=\left\{\begin{array}{cc}
\frac{F-q c}{1-q} & \xi>q \\
c & \text { otherwise }
\end{array}\right.
$$

- The expected value works out fine

$$
E\left[F^{\prime}\right]=(1-q)\left(\frac{E[F]-q c}{1-q}\right)+q c=E[F]
$$

Russian Roulette

- Don't evaluate integral if the value is small (doesn't add much!)
- Example - lighting integral $L_{o}\left(p, \omega_{o}\right)=\int_{s^{2}} f_{r}\left(p, \omega_{o}, \omega_{i}\right) L_{i}\left(p, \omega_{i}\right) \cos \theta_{i} \mid d \omega_{i}$
- Using N sample direction and a distribution of $\mathrm{p}\left(\omega_{\mathrm{i}}\right) \frac{1}{N} \sum_{i=1}^{N} \frac{f_{r}\left(p, \omega_{o}, \omega_{i}\right) L_{i}\left(p, \omega_{i}\right)\left|\cos \theta_{i}\right|}{\mathrm{p}\left(\omega_{i}\right)}$
- Avoid evaluations where f_{r} is small or θ close to 90 degrees

Russian Roulette

- Increases variance
- Improves speed dramatically
- Don't pick q to be high though!!

Stratified Sampling - Revisited

- domain Λ consists of a bunch of strata Λ_{i}
- Take n_{i} samples in each strata
- General MC estimator: $\quad F_{i}=\frac{1}{n_{i}} \sum_{j=1}^{N} \frac{f\left(X_{i, j}\right)}{p\left(X_{i, j}\right)}$
- Expected value and variance (assuming v_{i} is the volume of one strata):

$$
\mu_{i}=E\left[f\left(X_{i, j}\right)\right]=\frac{1}{v_{i}} \int_{\Lambda_{i}} f(x) d x \sigma_{i}^{2}=\frac{1}{v_{i}} \int_{\Lambda_{i}}\left(f(x)-\mu_{i}\right)^{2} d x
$$

- Variance for one strata with n_{i} samples: σ_{i}^{2} / n_{i}

Stratified Sampling - Revisited

- Overall estimator / variance:
$V[F]=V\left[\sum v_{i} F_{i}\right]=\sum V\left[v_{i} F_{i}\right]=\sum v_{i}^{2} V\left[F_{i}\right]=\sum \frac{v_{i}^{2} \sigma_{i}^{2}}{n_{i}}$
- Assuming number of samples proportional to volume of strata $-\mathrm{n}_{\mathrm{i}}=\mathrm{v}_{\mathrm{i}} \mathrm{N}$:

$$
V\left[F_{N}\right]=\frac{1}{N} \sum v_{i} \sigma_{i}^{2}
$$

- Compared to no-strata (Q is the mean of f over the whole domain Λ):

$$
V\left[F_{N}\right]=\frac{1}{N}\left(\sum v_{i} \sigma_{i}^{2}+\sum v_{i}\left(\mu_{i}-Q\right)\right)
$$

782

Stratified Sampling - Revisited

$$
V\left[F_{N}\right]=\frac{1}{N} \sum v_{i} \sigma_{i}^{2} \quad V\left[F_{N}\right]=\frac{1}{N}\left(\sum v_{i} \sigma_{i}^{2}+\sum v_{i}\left(\mu_{i}-Q\right)\right)
$$

- Stratified sampling never increases variance
- Right hand side minimized, when strata are close to the mean of the whole function
- I.e. pick strata so they reflect local behaviour, not global (I.e. compact)
- Which is better?

Stratified Sampling - Revisited

- Curse of dimensionality
- Alternative - Latin Hypercubes
- Better variance than uniform random
- Worse variance than stratified

Quasi Monte Carlo

- Doesn't use 'real' random numbers
- Replaced by low-discrepancy sequences
- Works well for many techniques including importance sampling
- Doesn't work as well for Russian Roulette and rejection sampling
- Better convergence rate than regular MC

Bias

$$
\beta=E[F]-F
$$

- If β is zero - unbiased, otherwise biased
- Example - pixel filtering

$$
I(x, y)=\iint f(x-s, y-t) L(s, t) d s d t
$$

- Unbiased MC estimator, with distribution p

$$
I(x, y) \approx \frac{1}{N p} \sum_{i=1}^{N} f\left(x-s_{i}, y-t_{i}\right) L\left(s_{i}, t_{i}\right)
$$

- Biased (regular) filtering:

$$
I(x, y) \approx \frac{\sum_{i} f\left(x-s_{i}, y-t_{i}\right) L\left(s_{i}, t_{i}\right)}{\sum_{i} f\left(x-s_{i}, y-t_{i}\right)}
$$

Bias

- typically $N p \neq \sum_{i} f\left(x-s_{i}, y-t_{i}\right)$
- I.e. the biased estimator is preferred
- Essentially trading bias for variance

Importance Sampling MC

- Can improve our "chances" by sampling areas, that we expect have a great influence
- called "importance sampling"
- find a (known) function p, that comes close to the function we want to compute the integral of,
- then evaluate: $I=\int_{0}^{1} p(x) \frac{f(x)}{p(x)} d x$

Importance Sampling MC

- Crude MC: $\quad F=\sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right)$
- For importance sampling, actually "probe" a new function f / p. I.e. we compute our new estimates to be:

$$
F=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

Optimal Probability Density

- Variance $\mathrm{V}[\mathrm{f}(\mathrm{x}) / \mathrm{p}(\mathrm{x})]$ should be small
- Optimal: $\mathrm{f}(\mathrm{x}) / \mathrm{p}(\mathrm{x})$ is constant, variance is 0 $\mathrm{p}(\mathrm{x}) \propto \mathrm{f}(\mathrm{x})$ and. $. \mathrm{p}(\mathrm{x}) \mathrm{dx}=1$
- $p(x)=f(x) / . \int f(x) d x$
- Optimal selection is impossible since it needs the integral
- Practice: where f is large p is large

Are These Optimal ?

$$
\begin{gathered}
L_{r}(p)=L_{e}(p)+\frac{R(p)}{\pi} \frac{L(p, \omega) \cos \theta}{p r(\omega)} \\
\operatorname{pr}(\omega)=\frac{1}{2 \pi} \\
\operatorname{pr}(\omega)=\frac{\cos (\theta)}{\pi}
\end{gathered}
$$

782
$L_{r}(p)=L_{e}(p)+R(p) L(p, \omega)$ 65

Importance Sampling MC

- Since we are finding random samples distributed by a probability given by p and we are actually evaluating in our experiments f / p, we find the variance of these experiments to be:

$$
\begin{aligned}
\sigma_{\text {imp }}^{2} & =\int_{0}^{1}\left(\frac{f(x)}{p(x)}\right)^{2} p(x) d x-I^{2} \\
& =\int_{0}^{1} \frac{f^{2}(x)}{p(x)} d x-I^{2}
\end{aligned}
$$

- improves error behavior (just plug in $p=f / \mu$)

782

Multiple Importance Sampling

- Importance strategy for f and g , but how to sample f*g?, e.g.

$$
L_{o}\left(p, \omega_{o}\right)=\int f\left(p, \omega_{i}, \omega_{o}\right) L_{i}\left(p, \omega_{i}\right) \cos \theta_{i} \mid d \omega_{i}
$$

- Should we sámple according to f or according to L_{i} ?
- Either one isn't good
- Use Multiple Importance Sampling (MIS)

Multiple Importance Sampling

- In order to evaluate $\int f(x) g(x) d x$
- Pick n_{f} samples according to p_{f} and n_{g} samples according to p_{g}
- Use new MC estimator:

$$
\frac{1}{n_{f}+n_{g}}\left(\sum_{i=1}^{n_{f}} \frac{f\left(X_{i}\right) g\left(X_{i}\right) w_{f}\left(X_{i}\right)}{p_{f}\left(X_{i}\right)}+\sum_{j=1}^{n_{s}} \frac{f\left(Y_{j}\right) g\left(Y_{j}\right) w_{g}\left(Y_{j}\right)}{p_{g}\left(Y_{j}\right)}\right)
$$

- Balance heuristic vs. power heuristic:
${ }_{782} \quad w_{s}(x)=\frac{n_{s} p_{s}(x)}{\sum_{i} n_{i} p_{i}(x)} \quad w_{s}(x)=\frac{\left(n_{s} p_{s}(x)\right)^{\beta}}{\sum_{i}\left(n_{i} p_{i}(x)\right)^{\beta}}$
782

$$
w_{s}(x)=\frac{n_{s} p_{s}(x)}{\sum_{i} n_{i} p_{i}(x)} \quad w_{s}(x)=\frac{\left(n_{s} p_{s}(x)\right)^{\beta}}{\sum_{i}\left(n_{i} p_{i}(x)\right)^{\beta}}
$$

MC for global illumination

- We know the basics of MC
- How to apply for global illumination?
- How to apply to BxDF's
- How to apply to light source

MC for GI - general case

- General problem - evaluate:
$L_{o}\left(p, \omega_{o}\right)=\int f\left(p, \omega_{i}, \omega_{o}\right) L_{i}\left(p, \omega_{i}\right)\left|\cos \theta_{i}\right| d \omega_{i}$
- We don't know much about f and L, hence use cos-weighted sampling of hemisphere in order to find a ω_{i}
- Use Malley's method
- Make sure that ω_{o} and ω_{i} lie in same hemisphere

MC for Gl - microfacet BRDFs

- Typically based on microfacet distribution (Fresnel and Geometry terms not statistical measures)
- Example - Blinn: $D\left(\omega_{h}\right)=(n+2)\left(\omega_{h} \cdot N\right)^{n}$
- We know how to sample a spherical / power distribution: $\quad \cos \theta_{h}=\sqrt[n+1]{\xi_{1}}$ $\phi=2 \pi \xi_{2}$
- This sampling is over ω_{h}, we need a distribution over ω_{i}

MC for GI - microfacet BRDFs

- This sampling is over ω_{h}, we need a distribution over ω_{i} :

$$
\begin{aligned}
d \omega_{i} & =\sin \theta_{i} d \theta_{i} d \phi_{i} \\
d \omega_{h} & =\sin \theta_{h} d \theta_{h} d \phi_{h}
\end{aligned}
$$

- Which yields to
(using that $\theta_{h}=2 \theta_{\mathrm{h}}$ and $\phi_{\mathrm{h}}=\phi_{\mathrm{h}}$):
$\frac{d \omega_{h}}{d \omega_{i}}=\frac{\sin \theta_{h} d \theta_{h} d \phi_{h}}{\sin \theta_{i} d \theta_{i} d \phi_{i}}=\frac{\sin \theta_{h} d \theta_{h} d \phi_{h}}{\sin 2 \theta_{h} 2 d \theta_{h} d \phi_{h}}=\frac{\sin \theta_{h}}{4 \cos \theta_{h} \sin \theta_{h}}$
${ }_{782}=\frac{1}{4 \cos \theta_{h}}$

MC for GI - microfacet BRDFs

- Isotropic microfacet model:

$$
p(\theta)=\frac{p_{h}(\theta)}{4\left(\omega_{o} \cdot \omega_{h}\right)}
$$

MC for Gl - microfacet BRDFs

- Anisotropic model (after Ashikhmin and Shirley) for a quarter disk:

$$
\begin{aligned}
\phi & =\arctan \left(\sqrt{\frac{e_{x}+1}{e_{y}+1}} \tan \left(\frac{\pi \xi_{1}}{2}\right)\right) \\
\cos \theta_{h} & =\xi_{2}^{\left(e_{x} \cos ^{2} \phi+e_{y} \sin ^{2} \phi+1\right)^{-1}}
\end{aligned}
$$

- If $e_{x}=e_{y}$, then we get Blinn's model

MC for GI - Specular

- Delta-function - special treatment
$\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(p, \omega_{i}, \omega_{o}\right) L_{i}\left(p, \omega_{i}\right)\left|\cos \theta_{i}\right|}{p\left(\omega_{i}\right)}=\frac{1}{N} \sum_{i=1}^{N} \frac{\left.\rho_{h d}\left(\omega_{o}\right) \frac{\delta\left(\omega-\omega_{i}\right)}{\left|\cos \theta_{i}\right|} L_{i}\left(p, \omega_{i}\right) \right\rvert\, \cos \theta_{i}}{p\left(\omega_{i}\right)}$
- Since p is also a delta function

$$
p\left(\omega_{i}\right)=\delta\left(\omega-\omega_{i}\right)
$$

- this simplifies to

$$
\rho_{h d}\left(\omega_{o}\right) L_{i}(p, \omega)
$$

MC for GI - Multiple BxDF's

- Sum up distribution densities

$$
p(\omega)=\frac{1}{N} \sum_{i=1}^{N} p_{i}(\omega)
$$

- Have three unified samples - the first one determines according to which BxDF to distribute the spherical direction

Light Sources

- We need to evaluate
- Sp: Cone of directions from point p to light (for evaluating the rendering equation for direct illuminations), I.e. ω_{i}
$L_{o}\left(p, \omega_{o}\right)=\int_{\Omega} f\left(p, \omega_{i}, \omega_{o}\right) L_{i}\left(p, \omega_{i}\right)\left|\cos \theta_{i}\right| d \omega_{i}$
- $\underline{\text { Sr: }}$ Generate random rays from the light source (Bi-directional Path Tracing or Photon Mapping)

- Like spot light, but with a texture in front of it
- Sp: like spot light, i.e. delta function
- $\underline{\text { Sr: like spot light, i.e. sampling of a cone }}$

$$
\begin{array}{ll}
p(\theta, \phi)=p(\theta) p(\phi) & 1=c \int_{0}^{\theta_{\max }} \sin \theta d \theta=c\left(1-\cos \theta_{\max }\right) \\
p(\phi)=1 / 2 \pi & p(\theta)=1 /\left(1-\cos \theta_{\max }\right) \\
p(\theta)=c &
\end{array}
$$

Goniophotometric Lights

- Like point light (hard shadows)

- Non-uniform power in all directions - given by distribution map
- $\underline{\text { Sp: }}$: like point-light
- Delta-light source
- Treat similar to specular BxDF
- $\underline{\text { Sr: like point light, i.e. sampling of a }}$
uniform sphere

inil.
 Area Lights

- Defined by shape
- Soft shadows

- Sp: distribution over solid angle

$$
\begin{aligned}
& \text { - } \theta_{\mathrm{o}} \text { is the angle between } \omega_{\mathrm{i}} \\
& \text { and (light) shape normal } \\
& \text { - A is the area of the shape }
\end{aligned} \quad d \omega_{i}=\frac{\cos \theta_{o}}{r^{2}} d A
$$

- Sr :
- Sampling over area of the shape
- Sampling distribution depends on the area of the shape

$$
p(x)=\frac{1}{A}
$$

782

溴 Spherical Lights

- Special area shape
- Not all of the sphere is visible from outside of the sphere
- Only sample the area, that is visible from p
- Sp : distribution over solid angle - Use cone sampling $\quad \sin \theta_{\max }=\frac{r}{|p-c|}$
- Sr: Simply sample a uniform sphere

Infinite Area Lights

- Typically environment light (spherical)
- Encloses the whole scene
- Sp :
- Normal given - cos-weighted sampling
- Otherwise - uniform spherical distribution
- Sr :
- uniformly sample sphere at two points p_{1} and p_{2}
- The direction $p_{1}-p_{2}$ is the uniformly distributed ray

782

Summary

$$
\begin{aligned}
E_{p}[f(x)] & =\mu \\
V[f(x)] & =\int_{D} f(x) p(x) d x \\
& \left.=E[f(x)-\mu)^{2}\right] \\
F_{N} & =\frac{b-a}{N} \sum_{i=1}^{N} f\left(X_{i}\right) \\
V\left[F_{N}\right] & =\frac{1}{N} V[F]
\end{aligned}
$$

