Signals and Sampling

Chapter 7 of “Physically Based Rendering” by Pharr & Humphreys

<table>
<thead>
<tr>
<th>Chapter 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Sampling Theory</td>
</tr>
<tr>
<td>7.2 Image Sampling Interface</td>
</tr>
<tr>
<td>7.3 Stratified Sampling</td>
</tr>
<tr>
<td>7.4 Low-Discrepancy Sampling</td>
</tr>
<tr>
<td>7.5 Best-Candidate Sampling Patterns</td>
</tr>
<tr>
<td>7.6 Image Reconstruction</td>
</tr>
</tbody>
</table>

Additional Reading

Chapter 14.10 of “CG: Principles & Practice” by Foley, van Dam et al.

Chapter 4, 5, 8, 9, 10 in “Principles of Digital Image Synthesis,” by A. Glassner

Chapter 4, 6 of “Digital Image Warping” by Wolberg

Chapter 2, 4 of “Discrete-Time Signal Processing” by Oppenheim, Shafer

Motivation

- Real World - continuous
- Digital (Computer) world - discrete
- Typically we have to either:
 - create discrete data from continuous or (e.g. rendering/ray-tracing, illumination models, morphing)
 - manipulate discrete data (textures, surface description, image processing, tone mapping)

Engineering approach:

- nearest neighbor:

 ![Convolution with box filter](image)

- linear filter:

 ![Convolution with tent filter](image)

Artifacts occurring in sampling - aliasing:

- Jaggies
- Moire
- Flickering small objects
- Sparkling highlights
- Temporal strobing

Preventing these artifacts - Antialiasing
Motivation - Graphics

Original (continuous) signal

"manipulated" (continuous) signal

sampled signal

Reconstruction filter

Motivation

Engineering approach:

• black-box

“System” or Algorithm

Multiplication with "shah" function

Convolutions

• How can we characterize our “black box”?

• We assume to have a “nice” box/algorithm:
 – linear
 – time-invariant

• then it can be characterized through the response to an “impulse”:

Convolution (2)

• Impulse:
 \[\delta(x) = 0, \text{ if } x \neq 0 \quad \int_{-\infty}^{\infty} \delta(x) \, dx = 1 \]

• discrete impulse:
 \[\delta[k] = 0, \text{ if } k \neq 0 \]
 \[\delta[0] = 1 \]

• Finite Impulse Response (FIR) vs.

• Infinite Impulse Response (IIR)

Convolution (3)

• An arbitrary signal \(x[k] \) can be written as:
 \[x[k] = \ldots + x[-1] \delta[k + 1] + x[0] \delta[k] + x[1] \delta[k - 1] + \ldots \]

• Let the impulse response be \(h[k] \):

\[\delta[k] \rightarrow \text{"System" or Algorithm} \rightarrow h[k] \]

Convolution (4)

• for a time-invariant system \(h[k-n] \) would be the impulse response to a delayed impulse \(d[k-n] \)

• hence, if \(y[k] \) is the response of our system to the input \(x[k] \) (and we assume a linear system):

\[y[k] = \sum_{n=-N}^{N} x[n] h[k-n] \]

\(x[k] \rightarrow \text{"System" or Algorithm} \rightarrow y[k] \)
Fourier Transforms

- Let’s look at a special input sequence:
 \[x[k] = e^{j\omega k} \]
- then:
 \[y[k] = \sum_{n=-N}^{N} e^{j\omega (k-n)}h[n] \]
 \[= e^{j\omega k} \sum_{n=-N}^{N} e^{-j\omega n}h[n] \]
 \[= H(\omega)e^{j\omega k} \]

Fourier Transforms (2)

- Hence \(e^{j\omega k} \) is an eigen-function and \(H(\omega) \) its eigenvalue
- \(H(\omega) \) is the Fourier-Transform of the \(h[n] \) and hence characterizes the underlying system in terms of frequencies
- \(H(\omega) \) is periodic with period \(2\pi \)
- \(H(\omega) \) is decomposed into
 - phase (angle) response \(<H(\omega)> \)
 - magnitude response \(|H(\omega)| \)

Properties

- Linear \(af(x) + bg(x) \Leftrightarrow aF(\omega) + bG(\omega) \)
- scaling \(f(ax) \Leftrightarrow \frac{1}{a}F(\omega/a) \)
- convolution \(f(x) \ast g(x) \Leftrightarrow F(\omega)G(\omega) \)
- Multiplication \(f(x) \times g(x) \Leftrightarrow F(\omega) \otimes G(\omega) \)
- Differentiation \(\frac{d^n}{dx^n}f(x) \Leftrightarrow (j\omega)^nF(\omega) \)
- delay/shift \(f(x-\tau) \Leftrightarrow e^{-j\omega \tau}F(\omega) \)

Properties (2)

- Parseval’s Theorem
 \[\int_{-\infty}^{\infty} f^2(x)dx \Leftrightarrow \int_{-\infty}^{\infty} F^2(\omega)d\omega \]
 - preserves “Energy” - overall signal content

Transforms Pairs

- Fourier Transform
- Average Filter
- Box/Sinc Filter

Transform Pairs - Shah

- Sampling = Multiplication with a Shah function:
 \[\text{Sampling} \rightarrow \text{Multiplication} \]
- multiplication in spatial domain = convolution in the frequency domain
- frequency replica of primary spectrum (also called aliased spectra)
Transforms Pairs (2)

General Process

Spatial Domain:
Mathematically:
Convolution:
\[f(x) * h(x) = \int f(t)h(x-t)dt \]
Frequency Domain:
Multiplication:
\[F(\omega) \times H(\omega) \]
Evaluated at discrete points (sum)

Sampling Theorem

• A signal can be reconstructed from its samples without loss of information if the original signal has no frequencies above 1/2 of the sampling frequency
• For a given bandlimited function, the rate at which it must be sampled is called the Nyquist frequency

How? - Reconstruction

Example

Example

Given
Needed
2D
Given
Needed
1D

2D
1D

Nearest neighbor
Linear Interpolation
Sources of Aliasing

- Non-bandlimited signal
- Low sampling rate (below Nyquist)
- Non perfect reconstruction

Bandlimited

Spatial Domain:
- convolution is exact

Frequency Domain:
- cut off freq. replica

\[f_r(x) - f(x) = 0 \]

\[\text{Sinc}(x) = \frac{\sin(\pi x)}{\pi x} \]

Interpolation

Spatial Domain:
- convolution is exact

Frequency Domain:
- cut off freq. replica

Reconstruction Kernels

- Nearest Neighbor (Box)
- Linear
- Sinc
- Gaussian
- Many others

Derivatives

Spatial Domain:
- convolution is exact

Frequency Domain:
- cut off freq. replica

\[f_r^d(x) - f^d(x) = 0 \]

\[\text{Cos}(x) = \frac{\cos(\pi x)}{x} - \frac{\sin(\pi x)}{\pi x^2} \]
Ideal Reconstruction

- Box filter in frequency domain = Sinc Filter in spatial domain
- impossible to realize (really?)

Ideal Reconstruction

- Use the sinc function – to bandlimit the sampled signal and remove all copies of the spectra introduced by sampling
- But:
 - The sinc has infinite extent and we must use simpler filters with finite extents.
 - The windowed versions of sinc may introduce ringing artifacts which are perceptually objectionable.

Reconstructing with Sinc

- Realizable filters do not have sharp transitions; also have ringing in pass/stop bands

Higher Dimensions?

- Design typically in 1D
- extensions to higher dimensions (typically):
 - separable filters
 - radially symmetric filters
 - limited results
- research topic

Possible Errors

- Post-aliasing
 - reconstruction filter passes frequencies beyond the Nyquist frequency (of duplicated frequency spectrum)
 - frequency components of the original signal appear in the reconstructed signal at different frequencies
- Smoothing
 - frequencies below the Nyquist frequency are attenuated
- Ringing (overshoot)
 - occurs when trying to sample/reconstruct discontinuity
- Anisotropy
 - caused by not spherically symmetric filters
Aliasing vs. Noise

Antialiasing

• Antialiasing = Preventing aliasing
• 1. Analytically pre-filter the signal
 – Solvable for points, lines and polygons
 – Not solvable in general (e.g. procedurally defined images)
• 2. Uniform supersampling and resample
• 3. Nonuniform or stochastic sampling

Uniform Supersampling

• Increasing the sampling rate moves each copy of the spectra further apart, potentially reducing the overlap and thus aliasing
• Resulting samples must be resampled (filtered) to image sampling rate

Distribution of Extrafoveal Cones

• Yellot theory (1983)
 – Aliases replaced by noise
 – Visual system less sensitive to high freq noise

Non-Uniform Sampling - Intuition

• Uniform sampling
 – The spectrum of uniformly spaced samples is also a set of uniformly spaced spikes
 – Multiplying the signal by the sampling pattern corresponds to placing a copy of the spectrum at each spike (in freq. space)
 – Aliases are coherent, and very noticeable
• Non-uniform sampling
 – Samples at non-uniform locations have a different spectrum; a single spike plus noise
 – Sampling a signal in this way converts aliases into broadband noise
 – Noise is incoherent, and much less objectionable

Non-Uniform Sampling - Patterns

• Poisson
 – Pick n random points in sample space
• Uniform Jitter
 – Subdivide sample space into n regions
• Poisson Disk
 – Pick n random points, but not too close
Non-Uniform Sampling - Patterns

- Spectral characteristics of these distributions:
 - Poisson: completely uniform (white noise). High and low frequencies equally present
 - Poisson disc: Pulse at origin (DC component of image), surrounded by empty ring (no low frequencies), surrounded by white noise
 - Jitter: Approximates Poisson disc spectrum, but with a smaller empty disc.

Stratified Sampling

- Put at least one sample in each strata
- Multiple samples in strata do no good
- Also have samples far away from each other
- Graphics: jittering

Stratification

- OR
 - Split up the integration domain in N disjoint sub-domains or strata
 - Evaluate the integral in each of the sub-domains separately with one or more samples.
- More precisely:

\[
\int_{0}^{a_{1}} f(x) \, dx + \int_{a_{1}}^{a_{2}} f(x) \, dx + \cdots + \int_{a_{n-2}}^{a_{n-1}} f(x) \, dx + \int_{a_{n-1}}^{1} f(x) \, dx
\]
More Jittered Sequences

![Image of more jittered sequences]

Jitter

- Place samples in the grid
- Perturb the samples up to 1/2 width or height

Texture Example

- Exact – 256 samples/pixel
- Jitter with 1 sample/pixel
- 1 sample/pixel
- Jitter with 4 samples/pixel

Multiple Dimensions

- Too many samples
- 1D
- 2D
- 3D

Jitter Problems

- How to deal with higher dimensions?
 - Curse of dimensionality
 - D dimensions means N^D “cells” (if we use a separable extension)
- Solutions:
 - We can look at each dimension independently
 - We can either look in non-separable geometries
 - Latin Hypercube (or N-Rook) sampling

Multiple Dimensions

- Make (separate) strata for each dimension
- Randomly associate strata among each other
- Ensure good sample “distribution”
 - Example: 2D screen position; 2D lens position; 1D time
Optimal sampling lattices

- Dividing space up into equal cells doesn’t have to be on a Cartesian lattices
- In fact - Cartesian is NOT the optimal way how to divide up space uniformly

[Cartesian, Hexagonal]

Latin Hypercubes - N-Rooks

- Distributing n samples in D dimensions, even if n is not a power of D
- Divide each dimension in n strata
- Generate a jittered sample in each of the n diagonal entries
- Random shuffle in each dimension

Stratification - problems

- Clamping (LHS helps)
- Could still have large empty regions
- Other geometries, e.g. stratify circles or spheres?

How good are the samples ?

- How can we evaluate how well our samples are distributed?
 - No “holes”
 - No clamping
- Well distributed patterns have low discrepancy
 - Small = evenly distributed
 - Large = clustering
- Construct low discrepancy sequence

Discrepancy

- \(D_N \) - Maximum difference between the fraction of N points \(x_i \) and relative size of volume \([0,1]^n\)
- Pick a set of sub-volumes B of \([0,1]^n\)
- \(D_N = \sup_{B} \left| \sum_{i=1}^{N} \chi_{B}(x_i) \right| - \frac{\text{Vol}(B)}{N} \)
- \(D_N \to 0 \) when N is very large
Discrepancy

- Examples of sub-volumes B of $[0,1]^d$:
 - Axis-aligned
 - Share a corner at the origin (star discrepancy)
- Best discrepancy that has been obtained in d dimensions:
 \[
 D^*_n(P) = O\left(\frac{(\log N)^d}{N}\right)
 \]

Pseudo-Random Sequences

- Radical inverse
 - Building block for high-D sequences
 - “inverts” an integer given in base b
 \[
 n = a_k \ldots a_2 a_1 = a_k b^k + a_{k-1} b^{k-1} + \ldots
 \]
 \[
 \Phi_b(n) = 0.a_k a_{k-1} \ldots a_1 = a_k b^{-1} + a_{k-1} b^{-2} + a_1 b^{-k} + \ldots
 \]

Van Der Corput Sequence

- Most simple sequence $x_i = \Phi_2(i)$
- Uses radical inverse of base 2
- Achieves minimal possible discrepancy
 \[
 D^*_n(P) = O\left(\frac{(\log N)}{N}\right)
 \]

Halton

- Can be used if N is not known in advance
- All prefixes of a sequence are well distributed
- Use prime number bases for each dimension
- Achieves best possible discrepancy
 \[
 x_i = (\Phi_2(i), \Phi_3(i), \Phi_5(i), \ldots, \Phi_p(i))
 \]
 \[
 D^*_n(P) = O\left(\frac{(\log N)^d}{N}\right)
 \]

Hammersley Sequences

- Similar to Halton
- Need to know total number of samples in advance
- Better discrepancy than Halton

\[
 x_i = \left(\frac{i - 1/2}{N}, \Phi_b_2(i), \Phi_b_3(i), \ldots, \Phi_b_p(i)\right)
\]
Hammersley Sequences

Folded Radical Inverse

- Hammersley-Zaremba
- Halton-Zaremba
- Improves discrepancy

\[\Phi_b(n) = \sum_{i=1}^{\infty} ((a_i + i - 1) \mod b) \frac{1}{b^i} \]

Examples

(t,m,d) nets

- The most successful constructions of low-discrepancy sequences are based on (t,m,d)-nets and (t,d)-sequences.
- Basis \(b \); \(0 \leq t \leq m \)
- Is a point set in \([0,1]^d\) consisting of \(b^m \) points, such that every box
 \[E = \prod_{i=1}^{d} (a_i b^{-d_i}, (a_i + 1)b^{-d_i}) \]
 of volume \(b^{m-d} \) contains \(b^d \) points

(t,d) Sequences

- (t,m,d)-Nets ensures, that all samples are uniformly distributed for any integer subdivision of our space.
- (t,d)-sequence is a sequence \(x_i \) of points in \([0,1]^d\) such that for all integers \(0 \leq k \) and \(m \geq t \), the point set
 \[\{ x_i | k b^m \leq n < (k + 1)b^m \} \]
 is a (t,m,d)-net in base \(b \).
- The number \(t \) is the quality parameter. Smaller values of \(t \) yield more uniform nets and sequences because \(b \)-ary boxes of smaller volume still contain points.
(0,2) Sequences

- Used in pbrt for the Low-discrepancy sampler
- Base 2

Practical Issues

- Create one sequence
- Create new ones from the first sequence by “scrambling” rows and columns
- This is only possible for (0,2) sequences, since they have such a nice property (the “n-rook” property)

Texture

- Jitter with 1 sample/pixel
- Hammersley Sequence with 1 sample/pixel

Best-Candidate Sampling

- Jittered stratification
 - Randomness (inefficient)
 - Clustering problems
 - Undersampling (“holes”)
- Low Discrepancy Sequences
 - Still (visibly) aliased
- “Ideal”: Poisson disk distribution
 - too computationally expensive
- Best Sampling - approximation to Poisson disk

Poisson Disk

- Comes from structure of eye – rods and cones
- Dart Throwing
- No two points are closer than a threshold
- Very expensive
- Compromise – Best Candidate Sampling
 - Compute pattern which is reused by tiling the image plane (translating and scaling).
 - Toroidal topology
 - Effects the distance between points on top to bottom
Best-Candidate Sampling

```plaintext
i ← 0
while i < N
    x_i ← unit()
    y_i ← unit()
    reject ← false
    For k ← 0 to i - 1
        d ← (x_i - x_k)^2 + (y_i - y_k)^2
        if d < (2r_o)^2 then
            reject ← true
            break
        endif
    endfor
    if not reject then
        i ← i + 1
    endif
endwhile
```

Texture

- Jitter with 1 sample/pixel
- Best Candidate with 1 sample/pixel
- Jitter with 4 sample/pixel
- Best Candidate with 4 sample/pixel

Next

- Probability Theory
- Monte Carlo Techniques
- Rendering Equation