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Foley, van Dam et al.
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Chapter 4, 5, 6 of “Digital Image Warping” by 
Wolberg
Chapter 2, 4 of “Discrete-Time Signal Processing” by 
Oppenheim, Shafer

Additional Reading



Motivation 

• Real World - continuous
• Digital (Computer) world - discrete
• Typically we have to either:

– create discrete data from continuous or (e.g. 
rendering/ray-tracing, illumination models, 
morphing)

– manipulate discrete data (textures, surface 
description, image processing,tone mapping)



Motivation 

• Artifacts occurring in sampling - aliasing:
– Jaggies
– Moire
– Flickering small objects
– Sparkling highlights
– Temporal strobing

• Preventing these artifacts - Antialiasing



Motivation 
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Motivation- Graphics



“System” or
Algorithm

Multiplication with
“shah” function

Motivation

Engineering approach:
• black-box

• discretization:



“System” or
Algorithm

Convolution

• How can we characterize our “black box”?
• We assume to have a “nice” box/algorithm:

– linear
– time-invariant

• then it can be characterized through the 
response to an “impulse”:



• Impulse:

• discrete impulse:

• Finite Impulse Response (FIR) vs.
• Infinite Impulse Response (IIR)

Convolution (2)



• An arbitrary signal x[k] can be written as:

• Let the impulse response be h[k]:

“System” or
Algorithm

δ[k] h[k]

Convolution (3)



“System” or
Algorithm

x[k] y[k]

IIR - N=inf.
FIR - N<inf.

Convolution (4)
• for a time-invariant system h[k-n] would 

be the impulse response to a delayed 
impulse d[k-n]

• hence, if y[k] is the response of our 
system to the input x[k] (and we assume a 
linear system):



• Let’s look at a special input sequence:

• then:

Fourier Transforms



• Hence        is an eigen-function and H(ω) its 
eigenvalue

• H(ω) is the Fourier-Transform of the h[n] 
and hence characterizes the underlying 
system in terms of frequencies

• H(ω) is periodic with period 2π
• H(ω) is decomposed into

– phase (angle) response
– magnitude response

Fourier Transforms (2)



Properties

• Linear
• scaling
• convolution
• Multiplication

• Differentiation

• delay/shift



• Parseval’s Theorem

• preserves “Energy” - overall signal content

Properties (2)
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sampling
T 1/T

Transform Pairs - Shah

• Sampling = Multiplication with a Shah 
function:

• multiplication in spatial domain = 
convolution in the frequency domain

• frequency replica of primary spectrum
(also called aliased spectra)



Linear
Filter

Gaussian
Filter

derivative
Filter

Transforms Pairs (2)
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Spatial Domain:

Mathematically:
f(x)*h(x) 

Frequency Domain:

Evaluated at discrete
 points (sum)

• Multiplication:• Convolution:

How? - Reconstruction

online demo



Sampling Theorem

• A signal can be reconstructed from its 
samples without loss of information if the 
original signal has no frequencies above 1/2 
of the sampling frequency

• For a given bandlimited function, the rate at 
which it must be sampled is called the 
Nyquist frequency
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Nearest neighbor Linear Interpolation

Example



Acquisition

Reconstru
ction

Resampling

Original function Sampled function

Reconstructed
Function Re-sampled function

General Process -
Frequency Domain



Pre-Filtering

Acquisit
ion

Reconstruction

Original function Band-limited function

Sampled
Function Reconstructed function

Pre-Filtering
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Post-aliasing

Once Again ...
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Spatial domain Frequency domain

x

x

*

*

Pipeline - Example (2)



Spatial domain Frequency domain

x*

Pipeline - Example (3)



• Non-bandlimited signal

• Low sampling rate (below Nyquist)

• Non perfect reconstruction

Sources of Aliasing

sampling

sampling



Aliasing



Bandlimited



Spatial Domain:
• convolution is exact

Frequency Domain:
• cut off freq. replica

Interpolation



Derivatives

Spatial Domain:
• convolution is exact

Frequency Domain:
• cut off freq. replica



Spatial d. Frequency d.

Reconstruction Kernels

• Nearest Neighbor
(Box)

• Linear

• Sinc

• Gaussian
• Many others



Smoothing

Post-aliasing

Pass-band    stop-
band

Ideal filter

Practical
filter

Ideal Reconstruction

• Box filter in frequency domain =
• Sinc Filter in spatial domain
• impossible to realize (really?)



Ideal Reconstruction

• Use the sinc function – to bandlimit the 
sampled signal and remove all copies of the 
spectra introduced by sampling

• But:
– The sinc has infinite extent and we must use 

simpler filters with finite extents.  
– The windowed versions of sinc may introduce 

ringing artifacts which are perceptually 
objectionable.



Reconstructing with Sinc



π

Low-pass
filter

π

band-pass
filter

π

high-pass
filter

Ideal Reconstruction

– Realizable filters do not have sharp transitions; 
also have ringing in pass/stop bands



T

?

Higher Dimensions?

• Design typically in 1D
• extensions to higher dimensions (typically):

– separable filters
– radially symmetric filters
– limited results

• research topic



Possible Errors

• Post-aliasing
– reconstruction filter passes frequencies beyond the 

Nyquist frequency (of duplicated frequency spectrum) 
=> frequency components of the original signal appear 
in the reconstructed signal at different frequencies

• Smoothing
– frequencies below the Nyquist frequency are attenuated

• Ringing (overshoot)
– occurs when trying to sample/reconstruct discontinuity

• Anisotropy
– caused by not spherically symmetric filters



Aliasing vs. Noise



Antialiasing

• Antialiasing = Preventing aliasing
• 1. Analytically pre-filter the signal

– Solvable for points, lines and polygons
– Not solvable in general (e.g. procedurally 

defined images)
• 2. Uniform supersampling and resample
• 3. Nonuniform or stochastic sampling 



Uniform Supersampling

• Increasing the sampling rate moves each 
copy of the spectra further apart, potentially 
reducing the overlap and thus aliasing

• Resulting samples must be resampled 
(filtered) to image sampling rate 



Distribution of Extrafoveal 
Cones

• Yellot theory (1983)
– Aliases replaced by noise
– Visual system less sensitive to high freq noise

Monkey eye cone distribution Fourier Transform



Non-Uniform Sampling - 
Intuition

• Uniform sampling
– The spectrum of uniformly spaced samples is also a set 

of uniformly spaced spikes
– Multiplying the signal by the sampling pattern 

corresponds to placing a copy of the spectrum at each 
spike (in freq. space)

– Aliases are coherent, and very noticeable
• Non-uniform sampling

– Samples at non-uniform locations have a different 
spectrum; a single spike plus noise

– Sampling a signal in this way converts aliases into 
broadband noise

– Noise is incoherent, and much less objectionable 



Non-Uniform Sampling -
Patterns

• Poisson
– Pick n random points in sample space

• Uniform Jitter
– Subdivide sample space into n regions

• Poisson Disk
– Pick n random points, but not too close



Poisson Disk Sampling

Fourier DomainSpatial Domain



Uniform Jittered Sampling

Fourier DomainSpatial Domain



Non-Uniform Sampling - 
Patterns

• Spectral characteristics of these 
distributions:
– Poisson: completely uniform (white noise).  

High and low frequencies equally present
– Poisson disc: Pulse at origin (DC component of 

image), surrounded by empty ring (no low 
frequencies), surrounded by white noise

– Jitter: Approximates Poisson disc spectrum, but 
with a smaller empty disc.



Stratified Sampling

• Put at least one sample in each strata
• Multiple samples in strata do no good
• Also have samples far away from each 

other

• Graphics: jittering



Stratification

• OR 
– Split up the integration domain in N disjoint 

sub-domains or strata
– Evaluate the integral in each of the sub-

domains separately with one or more samples. 
• More precisely:



Stratification



More Jittered  Sequences



Jitter

• Place samples in the grid
• Perturb the samples up to 1/2 width or 

height



Exact – 256 samples/pixel Jitter with 1 sample/pixel

1 sample/pixel Jitter with 4 samples/pixel

Texture Example 



Multiple Dimensions

• Too many samples
• 1D
• 2D                                        3D



Jitter Problems

• How to deal with higher dimensions?
– Curse of dimensionality
– D dimensions means ND “cells” (if we use a 

separable extension)
• Solutions:

– We can look at each dimension independently
– We can either look in non-separable geometries
– Latin Hypercube (or N-Rook) sampling



Multiple Dimensions

• Make (separate) strata for each dimension 
• Randomly associate strata among each 

other
• Ensure good sample “distribution”

– Example: 2D screen position; 2D lens position; 
1D time



Optimal sampling lattices

• Dividing space up into equal cells doesn’t 
have to be on a Cartesian lattices

• In fact - Cartesian is NOT the optimal way 
how to divide up space uniformly

Cartesian Hexagonal



Optimal sampling lattices

• We have to deal with different geometry
• 2D - hexagon
• 3D - truncated octahedron



• Distributing n samples in D dimensions, 
even if n is not a power of D

• Divide each dimension in n strata
• Generate a jittered sample in each of the n 

diagonal entries
• Random shuffle in each dimension

Latin Hypercubes - N-Rooks



Stratification - problems

• Clamping (LHS helps)
• Could still have large

empty regions

• Other geometries,
e.g. stratify circles
or spheres?

}



How good are the samples ?

• How can we evaluate how well our samples 
are distributed?
– No “holes”
– No clamping

• Well distributed patterns have low 
discrepancy
– Small = evenly distributed
– Large = clustering

• Construct low discrepancy sequence
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n points

N points

Discrepancy

• DN - Maximum difference between the 
fraction of N points xi and relative size of 
volume [0,1]n

• Pick a set of
sub-volumes B of [0,1]n

• DN ->0 when N is
very large
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Discrepancy

• Examples of sub-volumes B of [0,1]d:
– Axis-aligned
– Share a corner at the origin (star 

discrepancy)
• Best discrepancy that has

been obtained in d
dimensions:



Discrepancy
• How to create low-discrepancy sequences?

– Deterministic sequences!! Not random 
anymore

– Also called pseudo-random
– Advantage - easy to compute

• 1D:



Pseudo-Random Sequences 

• Radical inverse
– Building block for high-D sequences
– “inverts” an integer given in base b



• Most simple sequence
• Uses radical inverse of base 2
• Achieves minimal

possible discrepancy
i         binary     radical     xi

        form of i   inverse
0 0 0.0 0
1 1 0.1 0.5
2 10 0.01 0.25
3 11 0.11 0.75
4 100 0.001 0.125
5 101 0.101 0.625
6 110 0.011 0.375

0 12 34

Van Der Corput Sequence



Halton 
• Can be used if N is not known in advance
• All prefixes of a sequence are well 

distributed
• Use prime number bases for each 

dimension
• Achieves best possible discrepancy



Hammersley Sequences

• Similar to Halton
• Need to know total number of samples in 

advance
• Better discrepancy than Halton



Hammersley Sequences



Hammersley Sequences



Folded Radical Inverse

• Hammersley-Zaremba
• Halton-Zaremba
• Improves discrepancy



Examples



(t,m,d) nets

• The most successful constructions of low-
discrepancy sequences are based on (t,m,d)-
nets and (t,d)-sequences.

• Basis b; 
• Is a point set in [0,1]d consisting of bm 

points, such that every box

of volume bt-m contains bt points



(t,d) Sequences

• (t,m,d)-Nets ensures, that all samples are 
uniformly distributed for any integer subdivision 
of our space.

• (t,d)-sequence is a sequence xi of points in [0,1]d 
such that for all integers          and m>t, the point 
set

is a (t,m,d)-net in base b.
• The number t is the quality parameter. Smaller 

values of t yield more uniform nets and sequences 
because b-ary boxes of smaller volume still 
contain points.



(0,2) Sequences

• Used in pbrt for the Low-discrepancy 
sampler

• Base 2



Practical Issues

• Create one sequence
• Create new ones from the first sequence by 

“scrambling” rows and columns
• This is only possible for (0,2) sequences, 

since they have such a nice property (the 
“n-rook” property)



Texture

Jitter with 1 sample/pixel

Hammersley Sequence with 1 sample/pixel



Best-Candidate Sampling

• Jittered stratification 
– Randomness (inefficient)
– Clustering problems
– Undersampling (“holes”)

• Low Discrepancy Sequences
– Still (visibly) aliased

• “Ideal”: Poisson disk distribution
– too computationally expensive

• Best Sampling - approximation to Poisson disk



Poisson Disk 

• Comes from structure of eye – rods and cones
• Dart Throwing
• No two points are closer than a threshold
• Very expensive
• Compromise – Best Candidate Sampling

– Compute pattern which is reused by tiling the image 
plane (translating and scaling).

– Toroidal topology
– Effects the distance between points

on top to bottom



Best-Candidate Sampling

Jittere
d

Poisson Disk Best Candidate



Best-Candidate Sampling



Texture



Texture
Jitter with 1 sample/pixel Best Candidate with 1 sample/pixel

Jitter  with 4 sample/pixel Best Candidate  with 4 sample/pixel



Next

• Probability Theory
• Monte Carlo Techniques
• Rendering Equation 


