Fundamentals of Rendering Reflectance Functions

Chapter 9 of "Physically Based Rendering" by Pharr\&Humphreys

Chapter 9

9.0	Terms, etc.
9.1	SpRRT Interface Read about Snell's law and Fresnel reflection; we'll cover this after covering reflectance integrals
9.2	Specific models of reflection: Lambertian, microfacts, Lafortune, and Fresnel effects
$9.3-9.6$	

Surface Reflectance

- Measured data
- Gonioreflectometer (See the Cornell Lab)
- Phenomenological models
- Intuitive parameters
- Most of graphics
- Simulation
- Know composition of some materials
- simulate complicated reflection from simple basis
- Physical (wave) optics
- Using Maxwell's equations
- Computationally expensive
- Geometric optics
- Use of geometric surface properties

Gonioreflectometer

Surface Reflectance

Diffuse

- Scatter light equally in all directions
- E.g. dull chalkboards, matte paint

Glossy specular

- Preferred set of direction around reflected direction
- E.g. plastic, high-gloss paint

Perfect specular

- E.g. mirror, glass

Retro-reflective

- E.g. velvet or earth's mogn

Surface Reflectance

- Isotropic vs. anisotropic
- If you turn an object around a point $->$ does the shading change?

Surface Reflectance

Phong (isotropic)
Banks (anisotropic)
Banks (anisotropic)

Surface Properties

- Reflected radiance is proportional to incoming flux and to irradiance (incident power per unit area).

$$
d L_{o}\left(p, \omega_{o}\right) \propto d E\left(p, \omega_{i}\right)
$$

Figure 2.9: Bidirectional reflection distribution function.

The BSDF

- Bidirectional Scattering Distribution Function: $f\left(p, \omega_{o}, \omega_{i}\right)$
- Measures portion of incident irradiance $\left(E_{\mathrm{i}}\right)$ that is reflected as radiance $\left(L_{\mathrm{o}}\right)$

$$
f\left(p, \omega_{o}, \omega_{i}\right)=\frac{d L_{o}\left(p, \omega_{o}\right)}{d E\left(p, \omega_{i}\right)}
$$

- Or the ratio between incident radiance $\left(L_{\mathrm{i}}\right)$ and reflected radiance $\left(L_{\mathrm{o}}\right)$

$$
f\left(p, \omega_{o}, \omega_{i}\right)=\frac{d L_{o}\left(p, \omega_{o}\right)}{d E\left(p, \omega_{i}\right)}=\frac{d L_{o}\left(p, \omega_{o}\right)}{L_{i}\left(p, \omega_{i}\right) \cos \theta_{i} d \omega_{i}}
$$

The BRDF and the BTDF

- Bidirectional Reflectance Distribution Function (BRDF)
- Describes distribution of reflected light
- Bidirectional Transmittance Distribution Function (BTDF)
- Describes distribution of transmitted light
- $\mathrm{BSDF}=\mathrm{BRDF}+\mathrm{BTDF}$

Illumination via the $B \times D F$

- The Reflectance Equation

$$
L_{o}\left(p, \omega_{o}\right)=\int_{S^{2}} f\left(p, \omega_{o}, \omega_{i}\right) L_{i}\left(p, \omega_{i}\right)\left|\cos \theta_{i}\right| d \omega_{i}
$$

- The reflected radiance is
- the sum of the incident radiance over the entire (hemi)sphere
- foreshortened
- scaled by the BxDF

Parameterizations

- 6-D BRDF $f_{r}\left(p, \omega_{o}, \omega_{i}\right)$
- Incident direction L_{i}
- Reflected/Outgoing direction L_{o}
- Surface position p : textured BxDF
- 4-D BRDF $f_{r}\left(\omega_{o}, \omega_{i}\right)$
- Homogeneous material
- Anisotropic, depends on incoming azimuth
- e.g. hair, brushed metal, ornaments

Parameterizations

- 3-D BRDF $f_{r}\left(\theta_{o}, \theta_{i}, \phi_{o}-\phi_{i}\right)$
- Isotropic, independent of incoming azimuth
- e.g. Phong highlight
- 1-D BRDF $f_{r}\left(\theta_{i}\right)$
- Perfectly diffuse
- e.g. Lambertian

BxDF Property 0

- Ranges from 0 to ∞ (strictly positive)
- Infinite when radiance distribution from single incident ray

$$
f_{r}\left(p, \omega_{o}, \omega_{i}\right)=\frac{d L_{o}\left(p, \omega_{o}\right)}{d E\left(p, \omega_{i}\right)}=\frac{d L_{o}\left(p, \omega_{o}\right)}{L_{i}\left(p, \omega_{i}\right) \cos \theta_{i} d \omega_{i}}
$$

BRDF Property 1

- Linearity of functions

BRDF Property 2

Helmholtz Reciprocity

$$
f_{r}\left(\omega_{o}, \omega_{i}\right)=f_{r}\left(\omega_{i}, \omega_{o}\right)
$$

- Materials are not a one-way street
- Incoming to outgoing pathway same as outgoing to incoming pathway

BRDF Property 3

- Isotropic vs. anisotropic

$$
f_{r}\left(\theta_{i}, \phi_{i}, \theta_{o}, \phi_{o}\right)=f_{r}\left(\theta_{o}, \theta_{i}, \phi_{o}-\phi_{i}\right)
$$

- Reciprocity and isotropy
$f_{r}\left(\theta_{o}, \theta_{i}, \phi_{o}-\phi_{i}\right)=f_{r}\left(\theta_{i}, \theta_{o}, \phi_{i}-\phi_{o}\right)=f_{r}\left(\theta_{o}, \theta_{i},\left|\phi_{o}-\phi_{i}\right|\right)$
$f_{r}\left(\omega_{o}, \omega_{i}, \phi_{o}-\phi_{i}\right)=f_{r}\left(\omega_{i}, \omega_{o}, \phi_{i}-\phi_{o}\right)=f_{r}\left(\omega_{o}, \omega_{i},\left|\phi_{o}-\phi_{i}\right|\right)$

BRDF Property 4

- Conservation of Energy
- Materials must not add energy (except for lights)
- Materials must absorb some amount of energy
- When integrated, must add to less than one

Reflectance

- Reflectance ratio of reflected to incident flux

$$
\begin{aligned}
\rho(p)= & \frac{d \Phi_{o}(p)}{d \Phi_{i}(p)}=\frac{\int_{\Omega_{o}} L_{o}\left(p, \omega_{o}\right) \cos \theta_{o} d \omega_{o}}{\int_{\Omega_{i}} L_{i}\left(p, \omega_{i}\right) \cos \theta_{i} d \omega_{i}} \\
& =\frac{\int_{\Omega_{o}} \int_{\Omega_{i}} f\left(p, \omega_{i}, \omega_{o}\right) L_{i}\left(p, \omega_{i}\right) \cos \theta_{i} \cos \theta_{o} d \omega_{i} d \omega_{o}}{\int_{\Omega_{i}} L_{i}\left(p, \omega_{i}\right) \cos \theta_{i} d \omega_{i}}
\end{aligned}
$$

Reflectance between 0 and 1

Reflectance

- If incident distribution is uniform and isotropic

$$
\begin{aligned}
\rho(p) & =\frac{\int_{\Omega_{o}} \int_{\Omega_{i}} f\left(p, \omega_{i}, \omega_{o}\right) L_{i}\left(p, \omega_{i}\right) \cos \theta_{i} \cos \theta_{o} d \omega_{i} d \omega_{o}}{\int_{\Omega_{i}} L_{i}\left(p, \omega_{i}\right) \cos \theta_{i} d \omega_{i}} \\
& =\frac{\int_{\Omega_{o}} \int_{\Omega_{i}} f\left(p, \omega_{i}, \omega_{o}\right) \cos \theta_{i} \cos \theta_{o} d \omega_{i} d \omega_{o}}{\int_{\Omega_{i}} \cos \theta_{i} d \omega_{i}}
\end{aligned}
$$

Relates reflectance to the BRDF

Reflectance

- Hemispherical-directional reflectance
- Reflection in a given direction due to constant illumination over a hemisphere
- Total reflection over hemisphere due to light from a given direction (reciprocity)
- Also called albedo - incoming photon is reflected with probability less than one

$$
\rho_{h d}\left(p, \omega_{o}\right)=\int_{H^{2}(n)} f_{r}\left(p, \omega_{o} \omega_{i}\right)\left|\cos \theta_{i}\right| d \omega_{i}
$$

Reflectance

- Hemispherical-hemispherical reflectance
- Constant spectral value that gives the fraction of incident light reflected by a surface when the incident light is the same from all directions

$$
\rho_{h h}(p)=\frac{1}{\pi} \int_{H^{2}(n)} \int_{H^{2}(n)} f_{r}\left(p, \omega_{o} \omega_{i}\right)\left|\cos \theta_{o} \cos \theta_{i}\right| d \omega_{o} d \omega_{i}
$$

Representations

- Tabulated BRDF's
- Require dense sampling and interpolation scheme
- Factorization
- Into two 2D functions for data reduction (often after reparameterization)
- Basis Functions (Spherical Harmonics)
- Loss of quality for high frequencies
- Analytical Models
- Rough approximation only
- Very compact
- Most often represented as parametric equation (Phong, Cook-Torrance, etc.)

Law of Reflection

- Angle of reflectance $=$ angle of incidence

$$
\begin{aligned}
& R=-I+(\cos \theta N+I)+(\cos \theta N+I) \\
& R=I-2(I \cdot N) N \\
& \omega_{r}=R\left(\omega_{i}, N\right)
\end{aligned}
$$

$$
\varphi_{r}=\left(\varphi_{i}+\pi\right) \bmod 2 \pi
$$

Polished Metal

Ideal Reflection (Mirror)

- BRDF cast as a delta function

$$
L_{r, m}\left(\theta_{o}, \varphi_{o}\right)=L_{i}\left(\theta_{r}, \varphi_{r} \pm \pi\right)
$$

$$
f_{r, m}\left(\theta_{i}, \varphi_{i}, \theta_{o}, \varphi_{o}\right)=\frac{\delta\left(\cos \theta_{i}-\cos \theta_{r}\right)}{\cos \theta_{i}} \delta\left(\varphi_{i}-\varphi_{r} \pm \pi\right)
$$

$$
L_{r, m}\left(\theta_{o}, \varphi_{o}\right)=\int f_{r, m}\left(\theta_{i}, \varphi_{i}, \theta_{o}, \varphi_{o}\right) L_{i}\left(\theta_{i}, \varphi_{i}\right) \cos \theta_{i} d \cos \theta_{i} d \varphi_{i}
$$

$$
\begin{aligned}
& =\int \frac{\delta\left(\cos \theta_{i}-\cos \theta_{r}\right)}{\cos \theta_{i}} \delta\left(\varphi_{i}-\varphi_{r} \pm \pi\right) L_{i}\left(\theta_{i}, \varphi_{i}\right) \cos \theta_{i} d \cos \theta_{i} d \varphi_{i} \\
& =L_{i}\left(\theta_{r}, \varphi_{r} \pm \pi\right)
\end{aligned}
$$

Mirror Surface

Snell's Law

- $\eta_{i}, \eta_{\mathrm{t}}$ indices of refraction (ratio of speed of light in vacuum to the speed of light i the medium)

$$
\begin{aligned}
\eta_{i} \sin \theta_{i} & =\eta_{t} \sin \theta_{t} \\
\mathfrak{n} N \times I & =\mathrm{n} N \times T
\end{aligned} \quad \omega_{t}=T\left(\omega_{i}, N\right)
$$

$$
\varphi_{r}=\left(\varphi_{i}+\pi\right) \bmod 2 \pi
$$

Law of Refraction

- Starting at Snell's law: $\begin{gathered}\frac{\eta_{i}}{\eta_{t}} N \times I=N \times T \\ N \times(T-\mu I)=0\end{gathered}$
- We conclude that $T=\mu I+\gamma N$
- Assuming a normalized T: $\quad T^{2}=1=\mu^{2}+\gamma^{2}+2 \mu \gamma(I \cdot N)$
- Solving this quadratic equation: $\quad \gamma=-\mu(I \cdot N) \pm \sqrt{1-\mu^{2}\left(1-(I \cdot N)^{2}\right)}$
- Leads to the total reflection condition: $\quad 1-\mu^{2}\left(1-(I \cdot N)^{2}\right) \geq 0$

Optical Manhole

- Total Internal Reflection
- For water $n_{w}=4 / 3$

Livingston and Lynch

Fresnel Reflection

- At top layer interface
- Some light is reflected,
- Remainder is transmitted through
- Simple ray-tracers: just given as a constant
- Physically based - depends on
- incident angle
- Polarization of light
- wavelength
- Solution of Maxwell's equations to smooth surfaces
- Dielectrics vs. conductors

Fresnel Reflection - Dielectrics

- Objects that don't conduct electricity (e.g. glass)
- Fresnel term F for a dielectric is proportion of reflection (e.g. glass, plastic)
- grazing angles: 100% reflected (see the material well!)
- normal angles: 5\% reflected (almost mirror-like)

Fresnel Reflection - Dielectrics

- Polarized light:

$$
\begin{aligned}
& r_{\|}=\frac{\eta_{t} \cos \theta_{i}-\eta_{i} \cos \theta_{t}}{\eta_{t} \cos \theta_{i}+\eta_{i} \cos \theta_{t}} \\
& r_{\perp}=\frac{\eta_{i} \cos \theta_{i}-\eta_{t} \cos \theta_{t}}{\eta_{i} \cos \theta_{i}+\eta_{t} \cos \theta_{t}}
\end{aligned}
$$

- Where ω_{t} is computed according to Snell's law
- Unpolarized light:

$$
\begin{aligned}
& F_{r}\left(\omega_{i}\right)=\frac{1}{2}\left(r_{\|}^{2}+r_{\perp}^{2}\right) \\
& F_{t}\left(\omega_{i}\right)=\left(1-F_{r}\left(\omega_{i}\right)\right)
\end{aligned}
$$

Fresnel Reflection - Dielectrics

Fresnel Reflection - Conductor

- Typically metals
- No transmission
- Absorption coefficient k

Fresnel Reflection - Conductor

- Polarized light:

$$
\begin{aligned}
r_{i 1}^{2} & =\frac{\left(\eta^{2}+k^{2}\right) \cos ^{2} \theta_{i}-2 \eta \cos \theta_{i}+1}{\left(\eta^{2}+k^{2}\right) \cos ^{2} \theta_{i}+2 \eta \cos \theta_{i}+1} \\
r_{\perp}^{2} & =\frac{\left(\eta^{2}+k^{2}\right)-2 \eta \cos \theta_{i}+\cos ^{2} \theta_{i}}{\left(\eta^{2}+k^{2}\right)+2 \eta \cos \theta_{i}+\cos ^{2} \theta_{i}}
\end{aligned}
$$

- Unpolarized light:

$$
F_{r}\left(\omega_{i}\right)=\frac{1}{2}\left(r_{11}^{2}+r_{\perp}^{2}\right)
$$

Fresnel Reflection - Conductor

- How to determine k or η ?
- Measure F_{r} for $\theta_{\mathrm{i}}=0$ (normal angle)
- 1. Assume $\mathrm{k}=0$

$$
r_{\perp}^{2}=r_{\|}^{2}=\frac{(\eta-1)^{2}}{(\eta+1)^{2}} \quad \eta=\frac{1+\sqrt{F_{r}(0)}}{1-\sqrt{F_{r}(0)}}
$$

- 2. Assume $\eta=1$

$$
r_{\perp}^{2}=r_{\|}^{2}=\frac{k^{2}}{k^{2}+4}
$$

$$
k=2 \sqrt{\frac{F_{r}(0)}{1-F_{r}(0)}}
$$

Fresnel Normal (Dielectric)

Fresnel Grazing (Dielectric)

90\% reflected

Material
10\% transmitted

Fresnel Mid (Dielectric)

Fresnel Reflection

Conductor (Aluminum)

Dielectric ($\mathrm{N}=1.5$)

Schlick Approximation:

$$
F(\theta)=F(0)+(1-F(0))(1-\cos \theta)^{5}
$$

Fresnel Reflection

- Example - Copper
- color shift as θ goes from 0 to $\pi / 2$
- at grazing, specular highlight is color of light
$\pi / 2$

Measured
Approximated Reflectance

Ideal Specular - Summary

- Reflection:

$$
f_{r}\left(p, \omega_{i}, \omega_{o}\right)=F_{r}\left(\omega_{i}\right) \frac{\delta\left(\omega_{i}-R\left(\omega_{o}, N\right)\right)}{\left|\cos \theta_{i}\right|}
$$

- Transmission:

$$
f_{t}\left(p, \omega_{i}, \omega_{o}\right)=\frac{\eta_{o}^{2}}{\eta_{i}^{2}}\left(1-F_{r}\left(\omega_{i}\right)\right) \frac{\delta\left(\omega_{o}-T\left(\omega_{i}, N\right)\right)}{\left|\cos \theta_{i}\right|}
$$

Ideal Diffuse Reflection

- Uniform
- Sends equal amounts of light in all directions
- Amount depends on angle of incidence
- Perfect
- all incoming light reflected
- no absorption

$$
f_{r}\left(\omega_{i}, \omega_{o}\right) \propto k_{d}
$$

Layered Surface

Layered Surface Larger

Ideal Diffuse Reflection

$$
\left.\begin{array}{rl}
L_{o, d}\left(\omega_{o}\right) & =\int_{\Omega} f_{r, d}\left(\omega_{i}, \omega_{r}\right) L_{i}\left(\omega_{i}\right) \cos \theta_{i} d \omega_{i} \\
& =f_{r, d} \int_{\Omega} L_{i}\left(\omega_{i}\right) \cos \theta_{i} d \omega_{i} \\
& =f_{r, d} E \\
M & =\int_{\Omega} L_{o, d}\left(\omega_{o}\right) \cos \theta_{o} d \omega_{o} \\
& =L_{o, d} \int \cos \theta_{o} d \omega_{o} \\
& =L_{o, d} \pi
\end{array} \quad \rho_{d}=\frac{M}{E}=\frac{L_{o, d} \pi}{E}=\frac{f_{r, d} E \pi}{E}=f_{r, d} \pi\right]
$$

Lamberts Cosine Law: $M=\rho_{d} E=\rho_{d} E_{s} \cos \theta_{s}$

Diffuse

- Helmholtz reciprocity?
- Energy preserving?

$$
\begin{aligned}
& \rho_{d} \leq 1 \\
& f_{r, d}=\frac{\rho_{d}}{\pi} \leq \frac{1}{\pi}
\end{aligned}
$$

Reflectance Models

- Ideal
- Diffuse
- Specular
- Ad-hoc: Phong
- Classical / Blinn
- Modified
- Ward
- Lafortune
- Microfacets (Physically-based)
- Torrance-Sparrow (Cook-Torrance)
- Ashkhimin

Classical Phong Model

$L_{o}\left(p, \omega_{o}\right)=\left(k_{d}\left(N \cdot \omega_{i}\right)+k_{d}\left(R\left(\omega_{o}, N\right) \cdot \omega_{i}\right)^{e}\right) L_{i}\left(p, \omega_{i}\right)$

- Where $0<\mathrm{k}_{\mathrm{d}}, \mathrm{k}_{\mathrm{s}}<1$ and $\mathrm{e}>0$
- Cast as a BRDF:

$$
f_{r}\left(p, \omega_{i}, \omega_{o}\right)=k_{d}+k_{s} \frac{\left(R\left(\omega_{o}, N\right) \cdot \omega_{i}\right)^{e}}{\left(N \cdot \omega_{i}\right)}
$$

- Not reciprocal
- Not energy-preserving
- Specifically, too reflective at glancing angles, but not specular enough
- But cosine lobe itself symmetrical in ω_{i} and ω_{o}

Blinn-Phong

- Like classical Phong, but based on half-way vector

$$
\begin{aligned}
& f_{r}\left(p, \omega_{i}, \omega_{o}\right)=k_{d}+k_{s} \frac{\left(H\left(\omega_{o}, \omega_{i}\right) \cdot N\right)^{e}}{\left(N \cdot \omega_{i}\right)} \\
& \omega_{h}=H\left(\omega_{o}, \omega_{i}\right)=\operatorname{norm}\left(\omega_{o}+\omega_{i}\right)
\end{aligned}
$$

- Implemented in OpenGL
- Not reciprocal
- Not energy-preserving
- Specifically, too reflective at glancing angles, but not specular enough
- But cosine lobe itself symmetrical in ω_{i} and ω_{o}

Modified Phong

$$
f_{r}\left(p, \omega_{i}, \omega_{o}\right)=\frac{k_{d}}{\pi}+\frac{k_{s}(e+2)}{2 \pi}\left(R\left(\omega_{o}, N\right) \cdot \omega_{i}\right)^{e}
$$

- For energy conservation: $\mathrm{k}_{\mathrm{d}}+\mathrm{k}_{\mathrm{s}}<1$ (sufficient, not necessary)
- Peak gets higher as it gets sharper, but same total reflectivity

Ward-Phong

- Based on Gaussians

$$
f_{r}\left(p, \omega_{i}, \omega_{o}\right)=\frac{k_{d}}{\pi}+\frac{k_{s}}{\sqrt{\cos \theta_{i} \cos \theta_{o}}} \frac{\exp \left(-\tan \omega_{h} / \alpha^{2} \dot{\jmath}\right)}{4 \pi \alpha^{2}}
$$

- α : surface roughness, or blur in specular component.

Lafortune Model

- Phong cosine lobes symmetrical (reciprocal), easy to compute
- Add more lobes in order to match with measured BRDF
- How to generalize to anisotropic BRDFs?
- weight dot product:

$$
f_{r}\left(p, \omega_{i}, \omega_{o}\right)=\frac{k_{d}}{\pi}+\sum_{i=1}^{\text {nlobes }}\left(\omega_{o} R_{i} \omega_{i}\right)^{e_{i}}
$$

Glossy

Physically-based Models

- Some basic principles common to many models:
- Fresnel effect
- Surface self-shadowing
- Microfacets
- To really model well how surfaces reflect light, need to eventually move beyond BRDF
- Different physical models required for different kinds of materials
- Some kinds of materials don't have good models
- Remember that BRDF makes approximation of completely local surface reflectance!

Cook-Torrance Model

- Based in part on the earlier Torrance-Sparrow model
- Neglects multiple scattering

$$
f_{r}\left(p, \omega_{i}, \omega_{o}\right)=\frac{F_{r}\left(\omega_{h}\right) D\left(\omega_{h}\right) G\left(\omega_{o}, \omega_{i}\right)}{4 \cos \theta_{i} \cos \theta_{o}}
$$

- D - Microfacet Distribution Function
- how many "cracks" do we have that point in our (viewing) direction?
- G - Geometrical Attenuation Factor
- light gets obscured by other "bumps"
- F - Fresnel Term

Microfacet Models

- Microscopically rough surface
- Specular facets oriented randomly
- measure of scattering due to variation in angle of microfacets
- a statistic approximation, I.e. need a statistic distribution function

Rough Surface

Microfacet Distribution Function D

- Blinn

$$
D\left(\omega_{h}\right)=c e^{-\left(\frac{\omega_{h} \cdot N}{m}\right)^{2}}
$$

- where m is the root mean square slope of the facets (as an angle)
- Blinn says c is a arbitrary constant
- Really should be chosen to normalize BRDF. . .

Microfacet Distribution Function D

- Beckmann (most effective)

$$
D\left(\omega_{h}\right)=\frac{1}{m^{2} \cos ^{4} \alpha} e^{-\left(\frac{\tan \alpha}{m}\right)^{2}}
$$

- Represents a distribution of slopes
- But $\alpha=\tan \alpha$ for small α

(d)

Multiscale Distribution Function

- May want to model multiple scales of roughness:

$$
\begin{aligned}
& D\left(\omega_{h}\right)=\sum_{j} w_{j} D_{j}\left(\omega_{h}\right) \\
& \sum_{j} w_{j}=1
\end{aligned}
$$

- Bumps on bumps ...

Self-Shadowing (V-Groove Model)

- Geometrical Attenuation Factor G
- how much are the "cracks" obstructing themselves?

No interference shadowing

masking

$$
G=\min \left[1, \frac{2\left(N \cdot \omega_{h}\right)\left(N \cdot \omega_{o}\right)}{\left(\omega_{o} \cdot \omega_{h}\right)}, \frac{2\left(N \cdot \omega_{h}\right)\left(N \cdot \omega_{i}\right)}{\left(\omega_{o} \cdot \omega_{h}\right)}\right]
$$

Cook-Torrance - Summary

(a) Phong model

(b) Torrance-Sparrow model

Cook-Torrance - Summary

Ashkhimin Model

- Modern Phong
- Phenomological, but:
- Physically plausible
- Anisotropic
- Good for both Monte-Carlo and HW implementation

Ashkhimin Model

- Weighted sum of diffuse and specular part:
$f_{r}\left(p, \omega_{i}, \omega_{o}\right)=k_{d}\left(1-k_{s}\right) f_{d}\left(p, \omega_{i}, \omega_{o}\right)+k_{s} f_{s}\left(p, \omega_{i}, \omega_{o}\right)$
- Dependence of diffuse weight on k_{s} decreases diffuse reflectance when specular reflectance is large
- Specular part f_{s} not an impulse, really just glossy
- Diffuse part f_{d} not constant: energy specularly reflected cannot be diffusely reflected
- For metals, $\mathrm{f}_{\mathrm{d}}=0$

Ashkhimin Model

- k_{s} : Spectrum or color of specular reflectance at normal incidence.
- k_{d} : Spectrum or color of diffuse reflectance (away from the specular peak).
- $\mathrm{q}_{\mathrm{u}}, \mathrm{q}_{\mathrm{v}}$: Exponents to control shape of specular peak.
- Similar effects to Blinn-Phong model
- If an isotropic model is desired, use single value q
- A larger value gives a sharper peak
- Anisotropic model requires two tangent vectors u and v
- The value q_{u} controls sharpness in the direction of u
- The value q_{v} controls sharpness in the direction of v

Ashkhimin Model

- $\quad \phi$ is the angle between u and ωh

$$
D\left(\omega_{h}\right)=\sqrt{\left(q_{u}+1\right)\left(q_{v}+1\right)}\left(\omega_{h} \cdot N\right)^{\left(q_{u} \cos ^{2} \phi+q_{v} \cos ^{2} \phi\right)}
$$

Ashkhimin Model

- Diffuse term given by:
$f_{d}\left(p, \omega_{i}, \omega_{o}\right)=\frac{28}{23 \pi}\left(1-\left(1-\left(\omega_{o} \cdot N\right)\right)^{5}\right)\left(1-\left(1-\left(\omega_{i} \cdot N\right)\right)^{5}\right)$
- Leading constant chosen to ensure energy conservation
- Form comes from Schlick approximation to Fresnel factor
- Diffuse reflection due to subsurface scattering: once in, once out

Complex BRDF

- Combination of the three.

BRDF illustrations

Phong

Oren-Nayar

Illumination

BRDF illustrations

Cook-Torrance-Sparrow BRDF

Hapke BRDF

BRDF illustrations

lumber

cement

BRDF illustrations

Surface microstructure

bv = Brdf Viewer

Diffuse

Torrance-Sparrow

Anisotropic
Szymon Rusinkiewicz Princeton U.

BRDF cannot

Spatial variation of reflectance

BRDF cannot

Transparency and Translucency (depth)

Glass: transparent Wax: translucent BTDF

Opaque milk (rendered)

Translucent milk (rendered)

