## Fundamentals of Rendering -Reflectance Functions

Chapter 9 of "Physically Based Rendering" by Pharr&Humphreys

## Chapter 9

| 9.0     | Terms, etc.                                                                                                                                     |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.1     | PBRT Interface                                                                                                                                  |
| 9.2     | Specular reflection and transmission<br>Read about Snell's law and Fresnel reflection; we'll cover this after<br>covering reflectance integrals |
| 9.3-9.6 | Specific models of reflection: Lambertian, microfacts, Lafortune, and Fresnel effects                                                           |

- Measured data
  - Gonioreflectometer (See the Cornell Lab)
- Phenomenological models
  - Intuitive parameters
  - Most of graphics
- Simulation
  - Know composition of some materials
  - simulate complicated reflection from simple basis
- Physical (wave) optics
  - Using Maxwell's equations
  - Computationally expensive
- Geometric optics
  - Use of geometric surface properties

#### Gonioreflectometer





#### Diffuse

- Scatter light equally in all directions
- E.g. dull chalkboards, matte paint
- Glossy specular
  - Preferred set of direction around reflected direction
  - E.g. plastic, high-gloss paint



- Perfect specular - E.g. mirror, glass Retro-reflective
  - E.g. velvet or earth's moon





- Isotropic vs. anisotropic
  - If you turn an object around a point -> does the shading change?





Phong (isotropic)

Banks (anisotropic)

Banks (anisotropic)





#### Surface Properties

• Reflected radiance is proportional to incoming flux and to irradiance (incident power per unit area).

$$dL_o(p,\omega_o) \propto dE(p,\omega_i)$$



Figure 2.9: Bidirectional reflection distribution function.

## The BSDF

- Bidirectional Scattering Distribution
   Function: *f*(*p*, ω<sub>o</sub>, ω<sub>i</sub>)
- Measures portion of incident irradiance  $(E_i)$  that is reflected as radiance  $(L_0)$

$$f(p, \boldsymbol{\omega}_o, \boldsymbol{\omega}_i) = \frac{dL_o(p, \boldsymbol{\omega}_o)}{dE(p, \boldsymbol{\omega}_i)}$$

• Or the ratio between incident radiance  $(L_i)$ and reflected radiance  $(L_o)$ 

$$f(p, \boldsymbol{\omega}_o, \boldsymbol{\omega}_i) = \frac{dL_o(p, \boldsymbol{\omega}_o)}{dE(p, \boldsymbol{\omega}_i)} = \frac{dL_o(p, \boldsymbol{\omega}_o)}{L_i(p, \boldsymbol{\omega}_i)\cos\theta_i d\omega_i}$$

## The BRDF and the BTDF

- Bidirectional Reflectance Distribution Function (BRDF)
  - Describes distribution of reflected light
- Bidirectional Transmittance Distribution Function (BTDF)
  - Describes distribution of transmitted light
- BSDF = BRDF + BTDF

## Illumination via the BxDF

• The Reflectance Equation

$$L_o(p, \omega_o) = \int_{S^2} f(p, \omega_o, \omega_i) L_i(p, \omega_i) |\cos \theta_i| d\omega_i$$

- The reflected radiance is
  - the sum of the incident radiance over the entire (hemi)sphere
  - foreshortened
  - scaled by the BxDF



#### Parameterizations

- 6-D BRDF  $f_r(p, \omega_o, \omega_i)$ 
  - Incident direction  $L_i$
  - Reflected/Outgoing direction  $L_o$
  - Surface position p: textured BxDF
- 4-D BRDF  $f_r(\omega_o, \omega_i)$ 
  - Homogeneous material
  - Anisotropic, depends on incoming azimuth
  - e.g. hair, brushed metal, ornaments

#### Parameterizations

- 3-D BRDF  $f_r(\theta_o, \theta_i, \phi_o \phi_i)$ 
  - Isotropic, independent of incoming azimuth
  - e.g. Phong highlight
- 1-D BRDF  $f_r(\theta_i)$ 
  - Perfectly diffuse
  - e.g. Lambertian

- Ranges from 0 to  $\infty$  (strictly positive)
- Infinite when radiance distribution from single incident ray

$$f_r(p,\omega_o,\omega_i) = \frac{dL_o(p,\omega_o)}{dE(p,\omega_i)} = \frac{dL_o(p,\omega_o)}{L_i(p,\omega_i)\cos\theta_i d\omega_i}$$

• Linearity of functions



Sillion, Arvo, Westin, Greenberg

Helmholtz Reciprocity

$$f_r(\omega_o, \omega_i) = f_r(\omega_i, \omega_o)$$

– Materials are not a one-way street

Incoming to outgoing pathway same as outgoing to incoming pathway



• Isotropic vs. anisotropic



• Reciprocity and isotropy  $f_r(\theta_o, \theta_i, \phi_o - \phi_i) = f_r(\theta_i, \theta_o, \phi_i - \phi_o) = f_r(\theta_o, \theta_i, |\phi_o - \phi_i|)$   $f_r(\omega_o, \omega_i, \phi_o - \phi_i) = f_r(\omega_i, \omega_o, \phi_i - \phi_o) = f_r(\omega_o, \omega_i, |\phi_o - \phi_i|)$ 

- Conservation of Energy
  - Materials must not add energy (except for lights)
  - Materials must absorb some amount of energy
  - When integrated, must add to less than one



• Reflectance ratio of reflected to incident flux

$$\rho(p) = \frac{d\Phi_o(p)}{d\Phi_i(p)} = \frac{\int_{\Omega_o} L_o(p, \omega_o) \cos \theta_o d\omega_o}{\int_{\Omega_i} L_i(p, \omega_i) \cos \theta_i d\omega_i}$$

$$=\frac{\int_{\Omega_o}\int_{\Omega_i}f(p,\omega_i,\omega_o)L_i(p,\omega_i)\cos\theta_i\cos\theta_o d\omega_i d\omega_o}{\int_{\Omega_i}L_i(p,\omega_i)\cos\theta_i d\omega_i}$$

Reflectance between 0 and 1

• If incident distribution is uniform and isotropic

$$\rho(p) = \frac{\int_{\Omega_o} \int_{\Omega_i} f(p, \omega_i, \omega_o) L_i(p, \omega_i) \cos \theta_i \cos \theta_o d\omega_i d\omega_o}{\int_{\Omega_i} L_i(p, \omega_i) \cos \theta_i d\omega_i}$$

$$=\frac{\int_{\Omega_o}\int_{\Omega_i}f(p,\omega_i,\omega_o)\cos\theta_i\cos\theta_o d\omega_i d\omega_o}{\int_{\Omega_i}\cos\theta_i d\omega_i}$$

#### Relates reflectance to the BRDF

- Hemispherical-directional reflectance
  - Reflection in a given direction due to constant illumination over a hemisphere
  - Total reflection over hemisphere due to light from a given direction (reciprocity)
  - Also called albedo incoming photon is reflected with probability less than one

$$\rho_{hd}(p,\omega_o) = \int_{H^2(n)} f_r(p,\omega_o\omega_i) |\cos\theta_i| d\omega_i$$

- Hemispherical-hemispherical reflectance
  - Constant spectral value that gives the fraction of incident light reflected by a surface when the incident light is the same from all directions

$$\rho_{hh}(p) = \frac{1}{\pi} \int_{H^2(n)} \int_{H^2(n)} f_r(p, \omega_o \omega_i) |\cos \theta_o \cos \theta_i| d\omega_o d\omega_i$$

## Representations

- Tabulated BRDF's
  - Require dense sampling and interpolation scheme
- Factorization
  - Into two 2D functions for data reduction (often after reparameterization)
- Basis Functions (Spherical Harmonics)
  - Loss of quality for high frequencies
- Analytical Models
  - Rough approximation only
  - Very compact
  - Most often represented as parametric equation (Phong, Cook-Torrance, etc.)

#### Law of Reflection

• Angle of reflectance = angle of incidence

$$R = -I + (\cos \theta N + I) + (\cos \theta N + I)$$
$$R = I - 2(I \cdot N)N$$
$$\omega_r = R(\omega_i, N)$$





 $\varphi_r = (\varphi_i + \pi) \mod 2\pi$ 

#### **Polished Metal**



## **Ideal Reflection (Mirror)**

• BRDF cast as a delta function



#### Mirror Surface



## Snell's Law

•  $\eta_i$ ,  $\eta_t$  indices of refraction (ratio of speed of light in vacuum to the speed of light i the medium)  $\eta_i \sin \theta_i = \eta_t \sin \theta_t$   $\omega_t = T(\omega_i, N)$ 



## Law of Refraction

• Starting at Snell's law:

$$\frac{\eta_i}{\eta_t} N \times I = N \times T$$
$$V \times (T - \mu I) = 0$$

- We conclude that  $T = \mu I + \gamma N$
- Assuming a normalized T:  $T^2 = 1 = \mu^2 + \gamma^2 + 2\mu\gamma(I \cdot N)$
- Solving this quadratic equation:  $\gamma = -\mu(I \cdot N) \pm \sqrt{1 \mu^2(1 (I \cdot N)^2)}$
- Leads to the total reflection condition:  $1 \mu^2 (1 (I \cdot N)^2) \ge 0$

## **Optical Manhole**

- Total Internal Reflection
- For water  $n_w = 4/3$





Livingston and Lynch

## Fresnel Reflection

- At top layer interface
  - Some light is reflected,
  - Remainder is transmitted through
- Simple ray-tracers: just given as a constant
- Physically based depends on
  - incident angle
  - Polarization of light
  - wavelength
- Solution of Maxwell's equations to smooth surfaces
- Dielectrics vs. conductors

#### Fresnel Reflection - Dielectrics

- Objects that don't conduct electricity (e.g. glass)
- Fresnel term F for a dielectric is proportion of reflection (e.g. glass, plastic)
  - grazing angles: 100% reflected (see the material well!)
  - normal angles: 5% reflected (almost mirror-like)

#### Fresnel Reflection - Dielectrics

- Polarized light:  $r_{\parallel} = \frac{\eta_t \cos\theta_i - \eta_i \cos\theta_t}{\eta_t \cos\theta_i + \eta_i \cos\theta_t}$   $r_{\perp} = \frac{\eta_i \cos\theta_i - \eta_t \cos\theta_t}{\eta_i \cos\theta_i + \eta_t \cos\theta_t}$
- Where  $\omega_t$  is computed according to Snell's law
- Unpolarized light:

$$F_r(\omega_i) = \frac{1}{2} \left( r_{\parallel}^2 + r_{\perp}^2 \right)$$
$$F_t(\omega_i) = \left( 1 - F_r(\omega_i) \right)$$

#### Fresnel Reflection - Dielectrics



## Fresnel Reflection - Conductor

- Typically metals
- No transmission
- Absorption coefficient k

#### Fresnel Reflection - Conductor

- Polarized light:  $r_{\parallel}^{2} = \frac{(\eta^{2} + k^{2})\cos^{2}\theta_{i} - 2\eta\cos\theta_{i} + 1}{(\eta^{2} + k^{2})\cos^{2}\theta_{i} + 2\eta\cos\theta_{i} + 1}$   $r_{\perp}^{2} = \frac{(\eta^{2} + k^{2}) - 2\eta\cos\theta_{i} + \cos^{2}\theta_{i}}{(\eta^{2} + k^{2}) + 2\eta\cos\theta_{i} + \cos^{2}\theta_{i}}$
- Unpolarized light:

$$F_r(\omega_i) = \frac{1}{2} \left( r_{\parallel}^2 + r_{\perp}^2 \right)$$

### Fresnel Reflection - Conductor

- How to determine k or  $\eta$ ?
- Measure  $F_r$  for  $\theta_i=0$  (normal angle)
- 1. Assume k = 0  $r_{\perp}^2 = r_{\parallel}^2 = \frac{(\eta - 1)^2}{(\eta + 1)^2}$   $\eta = \frac{1 + \sqrt{F_r(0)}}{1 - \sqrt{F_r(0)}}$
- 2. Assume  $\eta = 1$

$$r_{\perp}^{2} = r_{\parallel}^{2} = \frac{k^{2}}{k^{2} + 4}$$
  $k = 2\sqrt{\frac{F_{r}(0)}{1 - F_{r}(0)}}$ 



### Fresnel Grazing (Dielectric)

90% reflected



10% transmitted

#### Fresnel Mid (Dielectric)



#### **Fresnel Reflection**



Schlick Approximation:

 $F(\theta) = F(0) + (1 - F(0))(1 - \cos\theta)^{5}$ 

## **Fresnel Reflection**

- Example Copper
  - color shift as  $\theta$  goes from 0 to  $\pi/2$
  - at grazing, specular
     highlight is color of light





Measured Reflectance **Approximated Reflectance** 

#### Ideal Specular - Summary

• Reflection:

$$f_r(p,\omega_i,\omega_o) = F_r(\omega_i) \frac{\delta(\omega_i - R(\omega_o,N))}{|\cos\theta_i|}$$

• Transmission:

$$f_t(p,\omega_i,\omega_o) = \frac{\eta_o^2}{\eta_i^2} (1 - F_r(\omega_i)) \frac{\delta(\omega_o - T(\omega_i,N))}{|\cos\theta_i|}$$

# **Ideal Diffuse Reflection**

- Uniform
  - Sends equal amounts of light in all directions
  - Amount depends on angle of incidence
- Perfect
  - all incoming light reflected
  - no absorption

 $f_r(\omega_i, \omega_o) \propto k_d$ 







## **Ideal Diffuse Reflection**

Lamberts Cosine Law:  $M = \rho_d E = \rho_d E_s \cos\theta_s$ 

# Diffuse

- Helmholtz reciprocity?
- Energy preserving?

$$\rho_d \leq 1$$

$$f_{r,d} = \frac{\rho_d}{\pi} \leq \frac{1}{\pi}$$

# **Reflectance Models**

- Ideal
  - Diffuse
  - Specular
- Ad-hoc: Phong
  - Classical / Blinn
  - Modified
  - Ward
  - Lafortune
- Microfacets (Physically-based)
  - Torrance-Sparrow (Cook-Torrance)
  - Ashkhimin

# **Classical Phong Model**

$$L_o(p, \mathbf{\omega}_o) = (k_d(N \cdot \mathbf{\omega}_i) + k_d(R(\mathbf{\omega}_o, N) \cdot \mathbf{\omega}_i)^e)L_i(p, \mathbf{\omega}_i)$$

- Where  $0 < k_d$ ,  $k_s < 1$  and e > 0
- Cast as a BRDF:

$$f_r(p, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o) = k_d + k_s \frac{(R(\boldsymbol{\omega}_o, N) \cdot \boldsymbol{\omega}_i)^e}{(N \cdot \boldsymbol{\omega}_i)}$$

- Not reciprocal
- Not energy-preserving
- Specifically, too reflective at glancing angles, but not specular enough
- But cosine lobe itself symmetrical in  $\omega_i$  and  $\omega_o$

# Blinn-Phong

• Like classical Phong, but based on half-way vector

$$f_r(p, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o) = k_d + k_s \frac{(H(\boldsymbol{\omega}_o, \boldsymbol{\omega}_i) \cdot N)^e}{(N \cdot \boldsymbol{\omega}_i)}$$

$$\omega_h = H(\omega_o, \omega_i) = norm(\omega_o + \omega_i)$$

- Implemented in OpenGL
- Not reciprocal
- Not energy-preserving
- Specifically, too reflective at glancing angles, but not specular enough
- But cosine lobe itself symmetrical in  $\omega_i$  and  $\omega_o$

## Modified Phong

$$f_r(p, \omega_i, \omega_o) = \frac{k_d}{\pi} + \frac{k_s(e+2)}{2\pi} (R(\omega_o, N) \cdot \omega_i)^e$$

- For energy conservation:  $k_d + k_s < 1$ (sufficient, not necessary)
- Peak gets higher as it gets sharper, but same total reflectivity

# Ward-Phong

- Based on Gaussians  $f_r(p,\omega_i,\omega_o) = \frac{k_d}{\pi} + \frac{k_s}{\sqrt{\cos\theta_i \cos\theta_o}} \frac{\exp\left(-\frac{\tan^2\omega_h}{\alpha^2}\right)}{4\pi\alpha^2}$
- α: surface roughness, or blur in specular component.

## Lafortune Model

- Phong cosine lobes symmetrical (reciprocal), easy to compute
- Add more lobes in order to match with measured BRDF
- How to generalize to anisotropic BRDFs?
- weight dot product:

$$f_r(p, \omega_i, \omega_o) = \frac{k_d}{\pi} + \sum_{i=1}^{nlobes} (\omega_o R_i \omega_i)^{e_i}$$

# Glossy





# Physically-based Models

- Some basic principles common to many models:
  - Fresnel effect
  - Surface self-shadowing
  - Microfacets
- To really model well how surfaces reflect light, need to eventually move beyond BRDF
- Different physical models required for different kinds of materials
- Some kinds of materials don't have good models
- Remember that BRDF makes approximation of completely local surface reflectance!

# Cook-Torrance Model

- Based in part on the earlier Torrance-Sparrow model
- Neglects multiple scattering

$$f_r(p,\omega_i,\omega_o) = \frac{F_r(\omega_h)D(\omega_h)G(\omega_o,\omega_i)}{4\cos\theta_i\cos\theta_o}$$

- D Microfacet Distribution Function
  - how many "cracks" do we have that point in our (viewing) direction?
- G Geometrical Attenuation Factor
  - light gets obscured by other "bumps"
- F Fresnel Term

# Microfacet Models

- Microscopically rough surface
- Specular facets oriented randomly
- measure of scattering due to variation in angle of microfacets
- a statistic approximation, I.e. need a statistic distribution function

### Rough Surface



# **Microfacet Distribution Function D**

• Blinn

$$D(\boldsymbol{\omega}_h) = c e^{-(\frac{\boldsymbol{\omega}_h \cdot N}{m})^2}$$

- where m is the root mean square slope of the facets (as an angle)
- Blinn says c is a arbitrary constant
- Really should be chosen to normalize BRDF. . .

# **Microfacet Distribution Function D**

• Beckmann (most effective)

$$D(\omega_h) = \frac{1}{m^2 \cos^4 \alpha} e^{-(\frac{\tan \alpha}{m})^2}$$

- Represents a distribution of slopes
- But  $\alpha = \tan \alpha$  for small  $\alpha$



Fig. 3. (a) Beckmann distribution for m = 0.2, (b) Gaussian distribution for m = 0.2, (c) Beckmann distribution for m = 0.6, (d) Gaussian distribution for m = 0.6.

## **Multiscale Distribution Function**

- May want to model multiple scales of roughness:  $D(\omega_h) = \sum_j w_j D_j(\omega_h)$  $\sum_j w_j = 1$
- Bumps on bumps ...

# Self-Shadowing (V-Groove Model)

- Geometrical Attenuation Factor G
  - how much are the "cracks" obstructing themselves?



## Cook-Torrance - Summary



(a) Phong model

(b) Torrance-Sparrow model

#### Cook-Torrance - Summary



- Modern Phong
- Phenomological, but:
  - Physically plausible
  - Anisotropic
- Good for both Monte-Carlo and HW implementation

• Weighted sum of diffuse and specular part:

$$f_r(p, \omega_i, \omega_o) = k_d (1 - k_s) f_d(p, \omega_i, \omega_o) + k_s f_s(p, \omega_i, \omega_o)$$

- Dependence of diffuse weight on k<sub>s</sub> decreases diffuse reflectance when specular reflectance is large
- Specular part f<sub>s</sub> not an impulse, really just glossy
- Diffuse part f<sub>d</sub> not constant: energy specularly reflected cannot be diffusely reflected
- For metals,  $f_d = 0$

- k<sub>s</sub>: Spectrum or color of specular reflectance at normal incidence.
- k<sub>d</sub>: Spectrum or color of diffuse reflectance (away from the specular peak).
- $q_u, q_v$ : Exponents to control shape of specular peak.
  - Similar effects to Blinn-Phong model
  - If an isotropic model is desired, use single value q
  - A larger value gives a sharper peak
  - Anisotropic model requires two tangent vectors u and v
  - The value  $q_u$  controls sharpness in the direction of u
  - The value  $q_v$  controls sharpness in the direction of v

•  $\phi$  is the angle between u and  $\omega$ h

$$D(\boldsymbol{\omega}_h) = \sqrt{(q_u+1)(q_v+1)} (\boldsymbol{\omega}_h \cdot N)^{(q_u\cos^2\phi + q_v\cos^2\phi)}$$

• Diffuse term given by:

$$f_d(p, \omega_i, \omega_o) = \frac{28}{23\pi} (1 - (1 - (\omega_o \cdot N))^5) (1 - (1 - (\omega_i \cdot N))^5)$$

- Leading constant chosen to ensure energy conservation
- Form comes from Schlick approximation to Fresnel factor
- Diffuse reflection due to subsurface scattering: once in, once out

## Complex BRDF

• Combination of the three.







Phong Illumination Oren-Nayar

#### Cook-Torrance-Sparrow BRDF



Hapke BRDF







lumber

cement



#### Surface microstructure

#### bv = Brdf Viewer



Diffuse



#### Torrance-Sparrow





Anisotropic

#### Szymon Rusinkiewicz Princeton U.

### **BRDF** cannot

#### Spatial variation of reflectance









## **BRDF** cannot

#### Transparency and Translucency (depth)



Glass: transparent Wax: translucent BTDF

Opaque milk (rendered)

Translucent milk (rendered)

**BSSRDF**