Fundametals of Rendering Image Pipeline

Chapter 8 of "Physically Based
Rendering" by Pharr\&Humphreys

Image Pipeline

SPD - spectral power distribution
XYZ - Computed color from samples
Tone Reproduction - perceptual mapping
RGB - display color values
gamma correction - compensate for display non-linearities
Dithering - trade-off spatial resolution for color resolution
Display

Chapter 8 - Film and the Imaging Pipeline

$8.1-8.2$	PBRT interface to film and image
8.3	Image pipeline - 2 paragraphs: read
8.4	Perceptual issues - we'll cover this in class Except for 8.4.2 (Bloom): read this yourself
8.5	Final image pipeline stages - read

Image Pipeline

Visible Light

Image Pipeline

782

Perception: human eye and vision

- Eye is an amazing device!
- Vision is even more so
- Yet, can trick it rather easily
- Need to understand what is important
- CG has to be tuned to perception
- Already used three receptor fact - got RGB
- Where does the eye stop and the brain begin?

Retina detectors

- 3 types of color sensors - S, M, L (cones)
- Works for bright light (photopic)
- Peak sensitivities located at approx. 430nm, 560 nm , and 610 nm for "average" observer.
- Roughly equivalent to blue, green, and red sensors

3-Component Color

- The de facto representation of color on screen display is RGB. (additive color)
- Most printers use CMY(K), (subtractive color)
- Color spectrum can be represented by 3 basis functions
- Compute floating point values of color intensities from shading model

782

The eye and the retina

Retina detectors

- 1 type of monochrome sensor (rods)
- Important at low light (scotopic)
- Next level: lots of specialized cells
- Detect edges, corners, etc.
- Sensitive to contrast
- Weber's law:

$$
\frac{\Delta I}{I}=K
$$

782

Radiometry vs. Photometry

Luminance - how bright an SPD is to a human observer

Physics	Radiometry	Radiometric Units
Flux Angular flux density Flux density Flux density	Radiant energy Radiant power Radiance Irradiance Radiosity Radiant intensity	$\begin{aligned} & \text { joules }\left[J=\mathrm{kgm}^{2} / \mathrm{s}^{2}\right] \\ & \text { watts }[W=\text { joules } / \mathrm{s}] \\ & {\left[W / \mathrm{m}^{2}\right. \text { sr] }} \\ & {\left[W / \mathrm{m}^{2}\right]} \\ & {\left[\mathrm{W} / \mathrm{m}^{2}\right]} \\ & {[\mathrm{W} / \mathrm{sr}]} \end{aligned}$
Physics	Photometry	Photometric Units
Flux Angular flux density Flux density Flux density	Luminous energy Luminous power Luminance Illuminance Luminosity Luminous intensity	talbot lumens [talbots/second] Nit [lumens $/ m^{2} \mathrm{sr}$] Lux [lumens $/ m^{2} s r$] Lux [lumens $\left./ m^{2} s r\right]$ Candela [lumens/sr]

782

Human Vision

- What does the human observer really notice in the real world?
- How does the human vision change under different lighting conditions?
- What does the human observer notice in an image?
- What is the best way to represent an image on a digital display?

Contrast

- Inner gray boxes are the same intensity

Radiometry vs. Photometry

Each spectral quantity can be converted to its corresponding photometric quantity by integrating the product of its spectral distribution and the spectral response curve that describes the relative sensitivity of the human eye to various wavelengths. under normally illuminated indoor environments

CIE XYZ color - all visible SPDs can be accurately represented for human observers with 3 values - computed by integrating with the 3 matching curves.
$x_{\lambda}=\int_{\lambda} S(\lambda) X(\lambda) d \lambda$
Luminance, Y , related to spectral radiance by spectral response
$y_{\lambda}=\int_{\lambda} S(\lambda) Y(\lambda) d \lambda$
$Y=\int_{\lambda} L(\lambda) V(\lambda) d \lambda$
$z_{\lambda}=\int_{\lambda} S(\lambda) Z(\lambda) d \lambda$
$Y=683 \int_{\lambda} L(\lambda) Y(\lambda) d \lambda$
782

Just Noticeable Differences

- Contrast: $\frac{\Delta I}{I}$

- For most intensities, contrast of .02 is
 just noticeable
- We're sensitive to contrasts, not intensity!

Contrast sensitivity

- In reality, different sensitivity for different (spatial) frequencies
- Max at ~ 8 cycles/degree

- More sensitive to achromatic changes

- Try the same but red on green pattern
- Practical consequence: color needs fewer bits
- Used in video coding
782

Constancies

- Ability to extract the same information under different conditions
- approximately the same info, in fact
- Size constancy: object at 10 m vs. 100 m
- Lightness constancy: dusk vs. noon
- Color constancy: tungsten vs. sunlight
- Not completely clear how this happens

782

Tone mapping

- Real world range (physical light energy units)
- Monitors cover very small part of it
- Sensible conversion is needed
- Tone mapping procedure
- Book describes a few methods
- Often ignored in many applications
- Might calibrate Light $=(1,1,1)$, surface $=(0.5,0.5,0.5)$
- No "right" basis for light
- Works because of real-world adaptation process

Tone Reproduction

Adaptation

- Partially discard "average" signal - If everything is yellowish - ignore this
- Receptors "getting tired" of the same input
- Need some time to adapt when condition change
- Stepping into sunlit outside from inside
- Model "adaptation" to look more realistic
- Viewing conditions for monitors might be very different

782

Image Pipeline

Ranges

Luminance $\left(\mathrm{cd} / \mathrm{m}^{2}\right.$, or nits $)$	
600,000	Sun at horizon
120,000	Watt light bulb
8,000	Clear sky
$100-1000$	Typical office
$1-100$	Street lighting
$1-10$	Typical computer display
0.25	

Histogram

Zone System

- Measure the luminance on a surface perceived as middle-gray - map to zone V
- Measure dynamic range from both light and dark areas.
- If dynamic range <9 zones then full range can be captured in print
- Otherwise withhold or add light in development to lighten or darken the final print

Approaches

- Tone Reproduction or Mapping
- Mapping from image luminance range to display luminance range
- Use a scale factor to map pixel values
- Spatially uniform vs spatially varying?
- Spatially uniform - monotonic, single factor
- Non-uniform - scale varies
- Histogram
${ }_{782}$

Zone System

- Used by Ansel Adams. Utilizes measured luminance to produce a good final print
- Zone: an approximate luminance level. There are 11 print zones
- Middle-grey: Subjective middle brightness region of the scene, typically map to zone V
- Key: Subjective lightness or darkness of a scene

Maximum to White Operator

- Map brightest pixel to max luminance of display
- Problems for very well lit scenes
- Nothing about the visual system

Contrast Based

- JND - Just notice difference
- Objective: set luminances so that one JND in displayed image corresponds to one JND in actual environment
$\Delta \mathrm{Y}\left(\mathrm{Y}^{\mathrm{a}}\right)$ is the JND for adaptation luminance Y^{a}
$\Delta Y\left(Y^{a}\right)=0.0594\left(1.219+\left(Y^{a}\right)^{0.4}\right)^{2.5}$

$$
\Delta Y\left(Y_{d}^{a}\right)=s \Delta Y\left(Y_{w}^{a}\right)
$$

Running Example

.

Adaptation Luminance

- How to compute adaptation luminance?
- Average
- Log average
- Spatially varying: uniform radius
- Spatially varying: varying radius

Varying Adaptive Luminance

- Compute local adaptation luminance that varies smoothly over the image.
- Need care at boundaries of light \& dark
- Halo artifact if dark local adapt. luminance Includes bright pixels (mapped to black)

High Contrast Operator

$$
\begin{array}{ll}
\text { Auxiliary capacity function: } & C(Y)=\int_{0}^{Y} \frac{d Y \prime}{T V I(Y \prime)} \\
\text { Used to determine JNDs in a range } & C\left(Y_{a}\right)-C\left(Y_{b}\right)
\end{array}
$$

$$
\begin{aligned}
& \text { Better definition that can be integrated easily } \\
& C(Y)= \begin{cases}Y / 0.0014 & Y<0.0034 \\
2.4483+\log (L / 0.0034) / 0.4027 & 0.0034 \leq Y<1 \\
16.563+(Y-1) / 0.4027 & 1 \leq Y<7.2444 \\
32.0693+\log (Y / 7.2444) / 0.0556 & \text { otherwise }\end{cases}
\end{aligned}
$$

Luminance Scaling

- Use log-average luminance to approximate the key of the scene

$$
\bar{Y}=\exp \left(\frac{1}{N} \sum_{x, y} \log \left(\delta+Y_{w}(x, y)\right)\right.
$$

- Use log since small bright areas do not influence unduly

High Contrast Operator

Need to detect boundaries - only use neighboring dark pixels around dark pixels

TVI(): threshold versus intensity - gives just noticeable luminance difference for given adaptation level.

$$
\text { Number of JNDs in range: } \quad \frac{Y_{a}-Y_{b}}{T V I\left(Y^{a}\right)}
$$

Tone Mapping Operator

$$
T(Y)=Y_{d}^{\max } \frac{C(Y)-C\left(Y_{\min }\right)}{C\left(Y_{\max }\right)-C\left(Y_{\min }\right)}
$$

$$
s(x, y)=\frac{T\left(Y^{a}(x, y)\right)}{Y^{a}(x, y)}
$$

High Contrast Method

Find minimum and maximum image luminance
Build luminance image pyramid
Apply high contrast tone mapping

Local Contrast

$$
l c(s, x, y)=\frac{B_{s}(x, y)-B_{2 s}(x, y)}{B_{s}(x, y)}
$$

find largest s such that: $\quad|l c(s, x, y)|<c$

$$
Y^{a}(x, y)=B_{s}(x, y)
$$

Uniform v. Non-Uniform Operators

Local Contrast

Consider area around pixel:
as large as possible
as small as necessary to exclude high contrast use blurred versions of image
pixel (x,y) value in blurred image: $\quad B_{S}(x, y)$
s : filter width

Local Contrast

$$
\begin{gathered}
C(Y)= \begin{cases}Y / 0.0014 & Y<0.0034 \\
2.4483+\log (L / 0.0034) / 0.4027 & 0.0034 \leq Y<1 \\
16.563+(Y-1) / 0.4027 & 1 \leq Y<7.2444 \\
32.0693+\log (Y / 7.2444) / 0.0556 & \text { otherwise }\end{cases} \\
T(Y)=Y_{d}^{\max } \frac{C(Y)-C\left(Y_{\min }\right)}{C\left(Y_{\max }\right)-C\left(Y_{\min }\right)} \\
Y^{a}(x, y)=B_{s}(x, y) \\
s(x, y)=\frac{T\left(Y^{a}(x, y)\right)}{Y^{a}(x, y)}
\end{gathered}
$$

Determining Neighborhoods

local contrast computed with blur radius of 1.5 and 3.0

Dodging and Burning

Printing technique in which some light is added (burning) or withheld (dodging) from a portion of the print during development
Developed by Ansel Adams and his Zone System

In a normal-key image middle-gray maps to a key value $\mathrm{a}=.18$

Luminance mapping
$Y_{\text {display }}(x, y)=\frac{Y(x, y)\left(1+\frac{Y(x, y)}{Y_{\text {white }}^{2}}\right)}{1+Y(x, y)}$

showing curve for various values of $\mathrm{Y}_{\text {white }}$

Photographic Tone Reproduction for Digital Images
Erik Reinhard, Michael Stark, Peter Shirley, James Ferwerda SIGGRAPH 2002
key of a scene: subjective value indicating scene lit normal, light (high key), or dark (low key) used to map zone V of scene to key-percent-reflectivity of print

Luminance mapping

$$
\begin{gathered}
Y=\frac{a Y_{w}(x, y)}{\bar{Y}} \\
Y_{d}(x, y)=\frac{Y(x, y)}{1+Y(x, y)}
\end{gathered}
$$

Control burn out of high luminance - global operator

$$
Y_{\text {display }}(x, y)=\frac{Y(x, y)\left(1+\frac{Y(x, y)}{Y_{\text {white }}^{2}}\right)}{1+Y(x, y)}
$$

Luminance mapping

From Reinhard's web site

Local Adaptation

at scale, s and for pixel (x, y)

$$
R_{i}(x, y, s)=\frac{1}{\pi\left(\alpha_{i} s\right)^{2}} \exp \left(-\frac{x^{2}+y^{2}}{\left(\alpha_{i} s\right)^{2}}\right)
$$

convolve image with Gaussians to get response function

$$
V_{i}(x, y, s)=L(x, y) \otimes R_{i}(x, y, s)
$$

or multiply in the frequency domain

Varying Scales

- The effects of using different scales

Automatic Dodging-and-Burning

- Choose largest neighborhood around a pixel with fairly even luminance
- Take the largest scale that doesn't exceed a contrast threshold:

$$
\left|V\left(x, y, s_{m}\right)\right|<\varepsilon
$$

- Final local operator

$$
Y_{d}(x, y)=\frac{Y(x, y)}{1+V_{l}\left(x, y, s_{m}\right)}
$$

782

782

Comparison

Durand et al.

Reinhard et al

Color Systems

- Response: $\quad R=\int w(\lambda) L(\lambda) d \lambda$
- Detector response is linear
- Scaled input -> scaled response
$-\operatorname{response}\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)=\operatorname{response}\left(\mathrm{L}_{1}\right)+$ response $\left(\mathrm{L}_{2}\right)$
- Choose three basis lights $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$
- Record responses to them
- Can compute response to any linear combination
- Tristimulus theory of light
- Most color systems are just different choice of basis lights
782- Could have "RBG" lights as a basis

Tristimulus Response

- Given spectral power distribution $\mathrm{S}(\lambda)$

$$
\begin{aligned}
& X=\int x(\lambda) S(\lambda) d \lambda \\
& Y=\int y(\lambda) S(\lambda) d \lambda \\
& Z=\int z(\lambda) S(\lambda) d \lambda
\end{aligned}
$$

- Given $S_{1}(\lambda), S_{2}(\lambda)$, if the X, Y, and Z responses are same then they are metamers wrt to the sensor
- Used to show that three sensor types are same

CIE Color Matching Experiment

- Basis for industrial color standards and "pointwise" color models

Color Systems

- Our perception registers:
- Hue
- Saturation
- Lightness or brightness
- Artists often specify colors in terms of
- Tint
- Shade
- Tone

782

CIE Standard

- CIE: International Commission on

Illumination (Comission Internationale de l'Eclairage).

- Human perception based standard (1931), established with color matching experiment
- Standard observer: a composite of a group of 15 to 20 people

CIE Experiment Result

- Three pure light sources:
$\mathrm{R}=700 \mathrm{~nm}, \mathrm{G}=546 \mathrm{~nm}, \mathrm{~B}=436 \mathrm{~nm}$.
$S(\lambda)=r R(\lambda)+g G(\lambda)+b B(\lambda)$
$X_{S}=\int x(\lambda) S(\lambda) d \lambda=r X_{R}+g X_{G}+b X_{B}$
- $\mathrm{r}, \mathrm{g}, \mathrm{b}$ can be negative

782
(b)

CIE tristimulus values

- Particular way of choosing basis lights
- Gives rise to a standard !!!
- Gives X, Y, Z color values
- Y corresponds to achromatic (no color) channel
- Chromaticity values:
$-\mathrm{x}=\mathrm{X} /(\mathrm{X}+\mathrm{Y}+\mathrm{Z}) ; \mathrm{y}=\mathrm{Y} /(\mathrm{X}+\mathrm{Y}+\mathrm{Z})$
- Typically use $\mathrm{x}, \mathrm{y}, \mathrm{Y}$

Chromaticity

- Normalize XYZ by dividing by luminance
- Project onto $\mathrm{X}+\mathrm{Y}$ $+\mathrm{Z}=1$
- Doesn't represent all visible colors, since luminous energy is not represented

Chromaticity

Chromaticity

Chromaticity

- D and E are complementary colors
- can be mixed to produce white light
- color F is a mix of G and C
- F is non-spectral its dominant wavelength is the complement of B

Color Gamut

Color Gamut

- area of colors that a physical device can represent
- hence - some colors can't be represented on an RGB screen

Color Gamut

no triangle can lie within the horseshoe and cover the whole area

$R G B<->X Y Z$

- Just a change of basis
- Need detailed monitor information to do this right
- Used in high quality settings (movie industry, lighting design, publishing)
- Normalized (lazy) way:
- $(1,1,1)$ in RGB <-> $(1,1,1)$ in XYZ
- matrices exist
$\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{lll}0.5149 & .3244 & .1607 \\ 0.2654 & .6704 & .0642 \\ 0.0248 & .1248 & .8504\end{array}\right]\left[\begin{array}{l}R \\ G \\ B\end{array}\right]$

The RGB Cube

- RGB color space is perceptually non-linear
- Dealing with >1.0 and <0 !
- RGB space is a subset of the colors human can perceive
- Con: what is 'bloody red' in RGB?

Differences in Color Spaces

- What is the use? For display, editing, computation, compression, ...?
- Several key (very often conflicting) features may be sought after:
- Additive (RGB) or subtractive (CMYK)
- Separation of luminance and chromaticity
- Equal distance between colors are equally perceivable (Lab)

Other color spaces

- CMY(K) - used in printing
- LMS - sensor response
- HSV - popular for artists
- Lab, UVW, YUV, YCrCb, Luv,
- Opponent color space - relates to brain input:
- R+G+B(achromatic); R+G-B(yellow-blue); R-G(redgreen)
- All can be converted to/from each other
- There are whole reference books on the subject

CMY(K): printing

- Cyan, Magenta, Yellow (Black) - CMY(K)
- A subtractive color model

RGB and CMY

- Converting between RGB and CMY

The RGB Cube
The CMY Cube

RGB and CMY

782

Secondary Collors

HSV

- This color model is based on polar coordinates, not Cartesian coordinates.
- HSV is a non-linearly transformed (skewed) version of RGB cube
- Hue: quantity that distinguishes color family, say red from yellow, green from blue
- Saturation (Chroma): color intensity (strong to weak). Intensity of distinctive hue, or degree of color sensation from that of white or grey
- Value (luminance): light color or dark color
\qquad

Luv and UVW

- A color model for which, a unit change in luminance and chrominance are uniformly perceptible
- $\mathrm{U}=13 \mathrm{~W}^{*}$ (u - uo) $; \mathrm{V}=13 \mathrm{~W}^{*}(\mathrm{v}-\mathrm{vo}) ; \mathrm{W}=25$ (100 Y) $1 / 3-17$
- where Y, u and v can be calculated from :
- $\mathrm{X}=\mathrm{O} .607 \mathrm{Rn}+0.174 \mathrm{Gn}+0.200 \mathrm{Bn}$
- $\mathrm{Y}=0.299 \mathrm{Rn}+0.587 \mathrm{Gn}+0.114 \mathrm{Bn}$
- $\mathrm{Z}=0.066 \mathrm{Gn}+1.116 \mathrm{Bn}$
- $x=X /(X+Y+Z)$
- $y=Y /(X+Y+Z)$
- $\mathrm{z}=\mathrm{Z} /(\mathrm{X}+\mathrm{Y}+\mathrm{Z})$
- $\mathrm{u}=4 \mathrm{x} /(-2 \mathrm{x}+12 \mathrm{y}+3)$
- $v=6 y /(-2 x+12 y+3)$

Yuv and YCrCb : digital video

- Initially, for PAL analog video, it is now also used in CCIR 601 standard for digital video
- Y (luminance) is the CIE Y primary.

$$
\mathrm{Y}=0.299 \mathrm{R}+0.587 \mathrm{G}+0.114 \mathrm{~B}
$$

- It can be represented by U and V -- the color differences.

$$
\mathrm{U}=\mathrm{B}-\mathrm{Y} ; \mathrm{V}=\mathrm{R}-\mathrm{Y}
$$

- YCrCb is a scaled and shifted version of YUV and used in JPEG and MPEG (all components are positive)
$\mathrm{Cb}=(\mathrm{B}-\mathrm{Y}) / 1.772+0.5 ; \mathrm{Cr}=(\mathrm{R}-\mathrm{Y}) / 1.402+0.5$

Image Pipeline

Gamma Correction

- The phosphor dots are not a linear system (voltage vs. intensity)

$$
\begin{aligned}
R_{\mathrm{m}} & =K\left(R_{\mathrm{i}}^{\prime}\right)^{)_{\mathrm{r}}} \\
R_{\mathrm{i}}^{\prime} & =k\left(R_{\mathrm{i}}\right)^{1 / /_{\mathrm{r}}}
\end{aligned}
$$

Examples (RGB, HSV, Luv)

Color Matching on Monitors

- Use CIE XYZ space as the standard

$$
\left[\begin{array}{c}
A \prime \\
B_{\prime}^{\prime} \\
C \prime
\end{array}\right]=\left[\begin{array}{c}
X_{R} X_{G} X_{B} \\
Y_{R} Y_{G} Y_{B} \\
Z_{R} Z_{G} Z_{B}
\end{array}\right]\left[\begin{array}{c}
A \\
B \\
C
\end{array}\right]
$$

- Use a simple linear $C_{2}=M_{2}^{-1} M_{1} C_{1}$
- Color matching on printer is more difficult, approximation is needed (CMYK)

Half-toning

- If we cannot display enough intensities? reduce spatial resolution and increase intensity resolution by allowing our eyes to perform spatial integration
- example is halftoning
- approximate 5 intensity levels with the following 2×2 patterns.

Image Pipeline

